Транспорт СО2 (диоксида углерода). Транспорт со2 кровью Углекислый газ в природе: естественные источники

Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (пита­тельных веществ, газов, гормонов, ферментов, метаболитов).

Дыхательная функция состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким.

Транспорт газов кровью – в организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин , и в таком виде доставляется к тканям.

Кислород через тонкие стенки альвеол и капилляров поступает из воздуха в кровь, а углекислый газ из крови в воздух. Диффузия газов происходит в результате разности их концентраций в крови и в воздухе. Кислород проникает в эритроциты и соединяется с гемоглобином, кровь становится артериальной и направляется в ткани. В тканях происходит обратный процесс: кислород за счет диффузии переходит из крови в ткани, а углекислый газ , наоборот, переходит из тканей в кровь.

Кривая диссоциации оксигемоглобина - это зависимость насыщения гемоглобина кислородом (измеряется процентным отношением оксигемоглобина к общему количеству гемоглобина).

Газообмен между кровью и тканями. Нарушение газообмена в тканях.

Газообмен в тканях - четвертый этап дыхания, в результате которого кислород из крови капилляров поступает в клетки, а углекислый газ из клеток в кровь. Фактором, способствующим газообмену в тканях, является, также как и в легких, разность парциальных давлений газов между кровью и межтканевой жидкостью, омывающей все клетки и ткани.

Насколько клетки интенсивно поглощают кислород, настолько же интенсивно они вырабатывают углекислый газ. Напряжение углекислоты в клетках достигает 50 - 60 мм. рт. ст. Эта углекислота непрерывно переходит в межтканевую жидкость, а оттуда в кровь, делая кровь венозной.

Следствием таких нарушений газообмена может явиться гипоксия, кислородное голодание тканей. Гипоксия это недостаток кислорода.

Газообмен в легких, состав вдыхаемого альвеолярного, выдыхаемого воздуха.

Как атмосферный воздух, так и альвеолярный необходимо воздух представляют собой смесь газов, содержащую О2 , СО2 , N, и инертные газы. Определенное количество дыхательных газов содержится и в крови, поскольку она является их переносчиком. Парциальное давление того или иного газа в крови, ровно как и в любой другой жидкости, принято называть парциальным напряжением. Газообмен между альвеолярным воздухом и кровью капилляров (второй этап дыхания) осуществляется путем диффузии, благодаря разности давлений О2 и СО2. Тот воздух, который мы вдыхаем, т.е. атмосферный воздух , имеет более или менее постоянный состав: он содержит

20,94% кислорода,

0,03% углекислого газа

79,03% азота.

Выдыхаемый воздух обеднен кислородом и насыщен углекислотой. В среднем выдыхаемый воздух содержит

16,3% кислорода,

4% углекислоты

79,7% азота.

По сравнению с атмосферным воздухом, альвеолярный воздух содержит

14% кислорода,

5% углекислоты

79,5% азота.

Состав альвеолярного воздуха относительно стабилен, так как при спокойном дыхании в альвеолы поступает всего 350 мл свежего воздуха, что составляет лишь 1/7 того воздуха, который содержится в легких после обычного выдоха. Данный воздух находится в альвеолах и обеспечивает потребление кислорода для обменных процессов в капиллярах легких.

Такая же небольшая порция альвеолярного воздуха удаляется при выдохе, что способствует стабилизации его состава.

Регуляция дыхания. Нервно-регуляторная и гуморальная регуляция дыхания.

Внешнее дыхание- это обмен воздуха между альвеолами легких и внешней средой, которое осуществляется в результате ритмического дыхания движения грудной клетки,вызывающих чередование актов вдоха и выдоха.

Главная цель внешнего дыхания - поддержание оптимальный состав артериальной крови. Основной способ для достижения этой цели - регулирование объема легочной вентиляции путем изменения частоты и глубины дыхания. Какие же механизмы обеспечивают приспособление дыхания к меняющимся потребностям организма? Организм располагает двумя регуляторными системами - нервной и гуморальной . Последняя представлена циркулирующими в крови гормонами и метаболитами, которые могут влиять на дыхание.

Регуляция дыхания – называется процесс управления вентиляцией легких,направленный на поддержание дыхательных констант и приспособления дыхания к условиям изменяющейся внешней среды.

Следовательно, для осуществления дыхательных движений нужен продолговатый мозг и тот отдел спинного мозга, который посылает двигательные нервы к дыхательным мышцам.

Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО 2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО 2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО 2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

Напряжение СО 2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО 2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО 2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО 2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО 2 с образованием угольной кислоты.

В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО 2 , участвующие в реакции гидратации, должны сначала поступить в эритроциты.

Следующая реакция в цепи химических превращений СО 2 заключается в диссоциации слабой кислоты Н 2 СО 3 на ионы бикарбоната и водорода.

Накопление НСО 3 - в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО 3 - могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО 3 - должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО 3 - в эритроцит поступают ионы Сl - . Этот обменный процесс называется хлоридным сдвигом.

СО 2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

Гемоглобин, связанный с СО 2 , называется карбогемоглобином.

Зависимость содержания СО 2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.

2. Как при производстве бензина, так и при выработке электроэнергии происходят выбросы парниковых газов. Если структура генерации является столь «грязной», как в Нидерландах, то удельные выбросы СО2 при производстве «топлива» для электромобиля намного выше, чем удельные выбросы НПЗ. Если структура генерации является такой же чистой, как, например, автомобиль с двигателем внутреннего сгорания (ДВС) на данной стадии очевидно проигрывает.

3. Со стадией эксплуатации всё понятно. Основная доля выбросов автомобиля с ДВС приходится на эксплуатацию. У электромобиля она равна нулю.

Наконец, итог.

Как мы видим, даже при голландской («неудовлетворительной» с климатической точки зрения) структуре производства электроэнергии выбросы СО2 в течение жизненного цикла электромобиля меньше, чем у бензиновой машины. Если электромобиль бегает на полностью возобновляемой энергии, разрыв становится еще больше. А уж если (добавлю от себя) производства аккумуляторов в Китае будут работать на возобновляемом электричестве (), то и углеродный след электрического транспорта сойдет на нет практически полностью.

Красный пигмент гемоглобин (Нb) состоит из белковой части (глобина) и собственно пигмента (гема). Молекулы составляют четыре белковые субъединицы, каждая из которых присоединяет гем-группу с двухвалентным атомом железа, находящимся в ее центре. В легких каждый атом железа присоединяет одну молекулу кислорода. Кислород переносится в ткани, где он отделяется. Присоединение О 2 называется оксигенацией (насыщением кислородом), а его отсоединение - дезоксигенацией.

Транспорт СО 2

Около 10% углекислого газа (СО 2), конечного продукта окислительного метаболизма в клетках тканей, переносится кровью физически растворенным п 90% — в химически связанной форме. Большая часть углекислого газа сначала диффундирует из клеток тканей в плазму, а оттуда в эритроциты. Там молекулы СО 2 химически связываются и превращаются с помощью ферментов в намного более растворимые бикарбонат-ионы (НСО 3 -), которые переносятся в плазме крови. Образование СO 2 из НСО 3 - значительно ускоряется с помощью фермента карбоангидразы, присутствующего в эритроцитах.

Большая часть (около 50-60%) образованных бикарбонат-ионов поступает из эритроцитов обратно в плазму в обмен на хлорид-ионы. Они переносятся в легкие и выделяются в процессе выдоха после превращения в СO 2 . Оба процесса — образование НСО 3 - и освобождение СO 2 , соответственно связаны с оксигенацией и дезоксигенацией гемоглобина. Дезоксигемоглобин — заметно более сильное основание, чем оксигемоглобин, и может присоединить больше ионов Н + (буферная функция гемоглобина), таким образом способствуя образованию НСО 3 - в капиллярах тканей. В капиллярах легких НСО 3 - опять проходит из плазмы крови в эритроциты, соединяется с Н + -ионами и превращается опять в СO 2 . Этот процесс подтверждается тем фактом, что окисленная кровь выделяет больше протонов Н + . Намного меньшая доля СО 2 (около 5-10%) связана непосредственно с гемоглобином и переносится как карбаминогемоглобин.

Гемоглобин и угарный газ

Оксид углерода (угарный газ, СО) является бесцветным газом без запаха, который образуется во время неполного сгорания и, как кислород, может обратимо связываться с гемоглобином. Однако сродство угарного газа к гемоглобину заметно больше, чем у кислорода. Таким образом, даже когда содержание СО во вдыхаемом воздухе составляет 0,3%, 80% гемоглобина связывается с угарным газом (НbСО). Так как угарный газ в 200-300 раз медленней, чем кислород, освобождается от связи с гемоглобином, его токсическое действие определяется тем, что гемоглобин больше не может переносить кислород. У тяжелых курильщиков, например, 5-10% гемоглобина присутствует как НbСО, в то время как при его содержании в 20% появляются симптомы острого отравления (головная боль, головокружение, тошнота), а 65% могут быть смертельным.

Часто для оценки гемопоэза или для распознавания различных форм анемии определяют среднее содержание гемоглобина в эритроците (СГЭ). Оно вычисляется по формуле:

Значение среднего содержания гемоглобина в эритроците лежит между 38 и 36 пикограммами (пг) (1 пг = 10ˉ¹² г). Эритроциты с нормальным СГЭ называются нормохромными (ортохромными). Если СГЭ низкое (например, из-за постоянной потери крови или дефицита железа), эритроциты называются гипохромными; если СГЭ высокое (например, при пернициозной анемии благодаря дефициту витамина В 12), они называются гиперхромными.

Формы анемии

Анемия определяется как дефицит (снижение количества) эритроцитов или сниженное содержание гемоглобина в крови. Диагноз анемии обычно ставится по содержанию гемоглобина, нижняя граница нормы достигает 140 г/л у мужчин и 120 г/л у женщин. Почти при всех формах анемии надежным симптомом заболевания является бледный цвет кожи и слизистых оболочек. Часто во время физических нагрузок заметно увеличивается сердечный ритм (увеличивая скорость кровообращения), а уменьшение кислорода в тканях приводит к одышке. Кроме того, встречается головокружение и легкая утомляемость.

Кроме железодефицитной анемии и хронической потери крови, например, из-за кровоточащих язв или опухолей в желудочно-кишечном тракте (гипохромные анемии), анемия может возникать при дефиците витамина В 12 . фолиевой кислоты или эритропоэтина. Витамин В 12 и фолиевая кислота участвуют в синтезе ДНК в незрелых клетках костного мозга и, таким образом, заметно влияют на деление и созревание эритроцитов (эритропоэз). При их нехватке образуется меньше эритроцитов, но они заметно увеличены из-за повышенного содержания гемоглобина (макроциты (мегалоциты), предшественники: мегалобласты), поэтому содержание гемоглобина в крови практически не изменяется (гиперхромная, мегалобластическая, макроцитарная анемия).

Дефицит витамина В 12 нередко возникает из-за нарушения всасывания витамина в кишечнике, реже — вследствие недостаточного приема с пищей. Эта так называемая пернициозная анемия наиболее часто является результатом хронического воспаления в слизистой кишечника с уменьшением образования желудочного сока.

Витамин В 12 всасывается в кишечнике только в связанном виде с фактором, находящимся в желудочном соке «внутренним фактором (Кастла)», который защищает его от разрушения пищеварительным соком в желудке. Так как печень может запасать большое количество витамина В 12 , то перед тем, как ухудшение всасывания в кишечнике повлияет на образование эритроцитов, может пройти 2-5 лет. Как и в случае дефицита витамина В 12 , дефицит фолиевой кислоты, другого витамина группы В, приводит к нарушению эритропоэза в костном мозге.

Есть две другие причины анемии. Одна из них — разрушение костного мозга (аплазия костного мозга) радиоактивным излучением (например, после аварии на атомной электростанции) или в результате токсичных реакций на лекарства (например, цитостатики) (апластическая анемия). Другая причина — это уменьшение продолжительности жизни эритроцитов в результате их разрушения или увеличенного распада (гемолитическая анемия). При сильной форме гемолитической анемии (например, следующей за неудачным переливанием крови), кроме бледности может наблюдаться изменение цвета кожи и слизистых оболочек на желтоватый. Эта желтуха (гемолитическая желтуха) вызвана увеличивающимся разрушением гемоглобина до билирубина (желтого желчного пигмента) в печени. Последнее приводит к увеличению уровня билирубина в плазме и его отложению в тканях.

Примером анемии, возникающей в результате наследственного нарушения синтеза гемоглобина, клинически проявляющейся как гемолитическая, служит серповидноклеточная анемия. При этой болезни, которая практически встречается только у представителей негроидных популяций, имеется молекулярное нарушение, приводящее к замене нормального гемоглобина на другую форму гемоглобина (HbS). В HbS аминокислота валин заменена на глутаминовую кислоту. Эритроцит, содержащий такой неправильный гемоглобин, в дезоксигенированном состоянии принимает форму серпа. Серповидные эритроциты более жесткие и плохо проходят через капилляры.

Наследственное нарушение у гомозигот (доля HbS в суммарном гемоглобине 70-99%) приводит к закупорке небольших сосудов и, таким образом, к постоянному повреждению органов. Пораженные этой болезнью люди обычно достигают зрелости только при интенсивном лечении (например, частичной замене крови, приеме анальгетиков, избегании гипоксии (кислородного голодания) и иногда — пересадке костного мозга). В некоторых регионах тропической Африки с высоким процентом малярии 40% популяции являются гетерозиготными носителями данного гена (когда содержание HbS менее 50%), у них таких симптомов не обнаруживается. Измененный ген обусловливает устойчивость к малярийной инфекции (селективное преимущество).

Регуляция образования эритроцитов

Образование эритроцитов регулируется гормоном почек эритропоэтином. Организм обладает простой, но очень эффективной системой регуляции для поддержания содержания кислорода и вместе с тем количества эритроцитов относительно постоянным. Если содержание кислорода в крови падает ниже определенного уровня, например, после большой потери крови или во время пребывания на больших высотах, постоянно стимулируется образование эритропоэтина. В результате усиливается образование эритроцитов в костном мозге, что увеличивает способность крови к переносу кислорода. Когда дефицит кислорода преодолевается увеличением числа эритроцитов, образование эритропоэтина опять уменьшается. Пациенты, нуждающиеся в диализе (искусственном очищении крови от продуктов обмена веществ), с нарушением функционирования почек (например, с хронической почечной недостаточностью) часто испытывают явный дефицит эритропоэтина и поэтому почти всегда страдают от сопутствующей анемии.

Существует фактор перехода О2 и СО2, называется диффузионная способность легких. Это способность газа проникать через легочные мембраны за 1 мин. При изменении давления на 2 мм рт.ст. в норме диффузионная способность легких для О2 равна 25-35 мл/мин, при изменении давления на 1 мм рт.ст.. для СО2 24 раза выше. Скорость диффузии зависит от след. факторов.:

1. От разности парциального давления

2. От диффузионной способности

3. От перфузии

Транспорт газов кровью. Газы могут быть в растворенном состоянии и физически связанном. Кол-во газа зависит от парциального давления газа над жидкостью и от коэффициента растворимости. Чем выше давление газа и меньше температура, чем больше газа будет растворяться в жидкости, растворение газа в жидкости показывает коэффициент растворимости. Для О2 коэффициент растворимости равен 0,022, а для СО2 0,51. В артериальной крови при парциальном давлении О2 100мм рт.ст. в растворенном состоянии находится 0,3%. СО2 при парциальном давлении 40 мм рт.ст. в растворенном состоянии находится 2,5%.

Транспорт О2. Большая часть О2 переносится кровью в виде химического соединения с гемоглобином. Направление реакции зависит от парциального давления, О2 и содержание оксигемоглобина в крови отражается кривой диссоциации оксигемоглобина. Эту зависимость меду парциальным давлением и кол-вом оксигемоглобина вывел ученый Бак Форд. При 40 мм рт.ст. 80% гемоглобина насыщается О2, а при 60мм рт.ст. 90 % гемоглобина насыщается О2 и превращается в оксигемоглобин. Способность гемоглобина реагировать с О2 называется сродство. На это сродство влияет несколько факторов:

1. Эритроциты содержат 2,3дифосфоглицерат, его кол-во увеличивается при снижении напряжения, а при снижении напряжения О2 снижается.



3. РН крови. Чем больше РН тем сродство меньше.

4. Температура. Чем выше, тем сродство меньше.

Максимальное кол-во О2, которое может связать кровь при полном насыщении гемоглобина называется кислородной емкостью крови. 1 грамм гемоглобина связывает 1,34мм О2, поэтому кислородная емкость крови равна 19.

Транспорт СО2. СО2 в венозной крови составляет 55-58%. СО2 может переноситься в нескольких видах:

1. Соединение гемоглобина с СО2-называется карбгемоглобин, его 5%. А остальной СО2 транспортируется в виде кислых солей угольной кислоты. Угольная кислота образуется в клетках, она может переходить из тканей в кровь. Часть этого СО2 остается в физически растворенном состоянии, а большая часть претерпевает изменение. Эритроцитами переносится 2 соединения: карбгемоглобин и бикарбонат калия(KНСО3), а плазмой крови переносится бикарбонат натрия (NaHCO3).

Нервно-гуморальная регуляция дыхания. Дыхательный центр. Само регуляция. Регуляция дыхания – это приспособление дыхания к постоянно меняющимся потребностям организма в кислороде. Важно, чтобы деятельность дыхательной системы соответствовала точности с потребностями организма в кислороде для оптимальной регуляции дыхания необходимо соответствующее механизмы – это рефлекторные и гуморальные механизмы. Рефлекторные механизмы или нервные осуществляются дыхательным центром. Дыхательным центром называется совокупность специализированных нервных клеток, которые расположены в различных отделах ЦНС, которые обеспечивают координационное ритмичное дыхание. Еще в начале XIX века французский ученый Легалуа обнаружил в опятах на птицах, что при действии на продолговатый мозг изменяется дыхание. А в 1842 году ученый Плоуранс экспериментально доказал, также в опытах путем раздражения и разрушения участков продолговатого доказал, что дыхательный центр находится в продолговатом мозне. Было установлено, что перерезка мозга выше Воролевого моста не изменяет дыхание. А если сделать перерезку между Воролевым мостом и продолговатым мозгом, то изменяется глубина и частота дыхания, а если сделать ниже продолговатого мозга, то дыхание останавливается. Этими опытами было доказано, что есть первичный дыхательные центры, которые находятся в головном мозге:

1-ый дыхательный центр: продолговатый мозг – он отвечает за смену вдоха и выдоха. Этот опыт также доказал в 1859 году русский ученый Миславский, путем точечного раздражения. Он установил, что дыхательный центр располагается в продолговатом мозге на дне 4-го желудочка в области ретикулярной фармации. Этот дыхательный центр является парным состоит из правой и левой половины. Нейроны правого посылают импульсы в дыхательные мышцы правой половины, а левого участка к левой половине. Каждый из них состоит еще из 2-х отделов: центр вдоха и центр выдоха, т.е. центр инспирации и центр экспирации.

2-ой дыхательный центр находится в Воролевом мосту он называется пневмотоксический, он отвечает за глубину и частоту дыхания. Есть еще и вторичные центры, которые находятся в спинном мозге. К ним относятся 3-й центр шейный отдел спинного мозга, здесь находится центр диафрагмального нерва. 4-й в грудном отделе спинного мозга, здесь находится центр межреберных мышц. 5-й – гипоталамус. 6-й кора головного мозга – это на увиденное, на услышанное изменяется дыхание. Главным гуморальным регулятором дыхательного центра является избыток СО2. Роль СО2 как специфического раздражителя дыхательного центра был доказан ученым Фредериком в опыте на собаке с перекрестным кровообращением. Для этого Фредерик брал 2-х животных, соединял их единым кругом кровообращения, пережимал трахею у 1-ой собаки, у нее в крови появлялся избыток СО2 – это называется гиперкапния и недостаток О2 – гипоксия. Кровь 1-ой собаки с избытком СО2 омывало головной мозг 2-ой собаки, и у 2-ой собаки наблюдалась отдышка, а у 1-ой наоборот задержка дыхания. В 1911 году немецкий ученый Винтерштейн высказал мысль, что в возбудителях дыхательного центра является не сам СО2, а концентрация водорода с ионами, т.е. совмещение, изменение РН в кислую сторону. Но в дальнейшем его теория была отвергнута и было доказано, что раздражителем является избыток СО2.

Рефлексы Гейл Инга – Бреера. Эти рефлексы можно наблюдать при раздражении вагуса, наблюдают 3 вида рефлекса:

1. Инспираторно – тормозящий – прекращение вдоха

2. Экспираторно – облегчающий – при выдохе задерживается наступление следующего вдоха

3. Сильное разевание легких вызывает короткое сильное возбуждение инспираторных мышц, возникает судорожный вдох(вздох) – это называется парадоксальный эффект Хд. Значение рефлексов Гейл Инга – Бреера состоит в регулировании соотношения глубины и частоты дыхания в зависимости от состояния легких. Регуляция дыхания обеспечивает 2 группы процессов, которые обеспечивает наш организм:

1. Поддержание газового состава артериальной крови – гомеостатическая регуляция

2. Процесс, приспособления дыхания к изменяющимся условиям окружающей среды – поведенческая регуляция..