Закон сохранения электрического заряда. Закон Кулона. В чем заключается закон сохранения заряда

Закон сохранения заряда

Не все явления природы можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества, термодинамики. Эти науки ничего не говорят о природе сил, которые связывают отдельные атомы и молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенном расстоянии друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представлений о том, что в природе существуют электрические заряды.

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - это электризация тел при соприкосновении. Взаимодействие тел, обнаруживаемое при электризации, называется электромагнитным взаимодействием, а физическая величина, определяющая электромагнитное взаимодействие, - электрическим зарядом. Способность электрических зарядов притягиваться и отталкиваться говорит о наличии двух различных видов зарядов: положительных и отрицательных.

Электрические заряды могут появляться не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например, под воздействием силы (пьезоэффект). Но всегда в замкнутой системе, в которую не входят заряды, при любых взаимодействиях тел алгебраическая (т.е. с учетом знака) сумма электрических зарядов всех тел остается постоянной. Этот экспериментально установленный факт называется законом сохранения электрического заряда.

Нигде и никогда в природе не возникают и не исчезают электрические заряды одного знака. Появление положительного заряда всегда сопровождается появлением равного по абсолютному значению, но противоположного по знаку отрицательного заряда. Ни положительный, ни отрицательный заряды не могут исчезнуть в отдельности друг от друга, если равны по абсолютному значению.

Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц - электронов - от одних тел к другим. Как известно, в состав любого атома входят положительно заряженные ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.

Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а второе - равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.

Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, аннигилируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.

Электродинамика - наука о свойствах электромагнитного поля.

Электромагнитное поле - определяется движением и взаимодействием заряженных частиц.

Проявление эл/магнитного поля - это действие эл/магнитных сил:
1) силы трения и силы упругости в макромире;
2) действие эл/магнитных сил в микромире (строение атома, сцепление атомов в молекулы, превращение элементарных частиц)

Открытие эл/магнитного поля - Дж. Максвелл.

ЭЛЕКТРОСТАТИКА

Раздел электродинамики, изучает покоящиеся электрически заряженные тела.

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
- взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Электрический заряд - физическая величина, определяет интенсивность электромагнитных взаимодействий.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными - притягиваются.
Протон имеет положительный заряд, электрон - отрицательный, нейтрон - электрически нейтрален.

Элементарный заряд - минимальный заряд, разделить который невозможно.
Чем объяснить наличие электромагнитных сил в природе? - в состав всех тел входят заряженные частицы.
В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.

Тело заряжено , если имеет избыток зарядов какого-либо знака:
отрицательно заряжено - если избыток электронов;
положительно заряжено - если недостаток электронов.

Электризация тел - это один из способов получения заряженных тел, например, соприкосновением).
При этом оба тела заряжаются, причем заряды противоположны по знаку, но равны по модулю.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.
(... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

Замкнутая система - система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Основной закон электростатики.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

Когда тела считаются точечными ? - если расстояние между ними во много раз больше размеров тел.
Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.

Единица электрического заряда: 1 Кл - это заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А
1 Кл - очень большой заряд
Элементарный заряд:

Принято записывать коэффициент пропорциональности в законе Кулона в вакууме в виде

где электрическая постоянная

Закон Кулона для величины силы взаимодействия зарядов в произвольной среде (в СИ):

Диэлектрическая проницаемость среды характеризует электрические свойства среды. В вакууме

Таким образом, сила Кулона зависит от свойств среды между заряженными телами.




Электростатика и законы постоянного тока - Класс!ная физика

Опыты однозначно показывают, что при электризации тел всегда появляются заряды противоположных знаков. Если одно из двух тел вследствие взаимодействия станет отри-цательно заряженным, то другое будет иметь положительный заряд.

Возьмем два электрометра с одинаковы-ми шарами и подготовим их к измерению электрических зарядов. Для этого заземлим их металлические корпуса.

Пластинку из органического стекла по-трем пластинкой, поверхность которой по-крыта бумагой. Если после этого коснемся металлических шариков каждой пластинкой, то увидим, что стрелки гальванометров от-клонятся на одинаковый угол (рис. 4.10). Для определения знака полученных зарядов под-несем поочередно к обоим шарикам эбо-нитовую палочку, потертую мехом. Один элект-рометр уменьшит показания, а другой — уве-личит. Это свидетельствует о том, что шары электрометров имеют заряды противополож-ных знаков. Проверить эти утверждения мож-но с помощью другого опыта. Для этого со-единим проволокой на изоляционной ручке оба шара на электрометрах. Стрелки обоих электрометров сразу упадут до нуля (рис. 4.11). Это свидетельствует о полной нейтрализации зарядов. Анализ проведенных опытов пока-зывает, что в природе действует закон со-хранения электрических зарядов .

Закон со-хранения электрических зарядов . В замкнутой системе алгебраическая сум-ма электрических зарядов тел, составляющих эту систему, остается постоянной.

Q 1 + Q 2 + Q 3 + … + Q n = const.

Бенджамин Франклин (1706—1790) — вы-дающийся американский политический деятель; работал в области физики: раз-работал теорию, объясняющую электри-зацию перетеканием «электрической жид-кости», ввел понятие положительного и отрицательного заряда; исследовал элект-рические явления в атмосфере.

впервые был сформулирован американским ученым Б. Франклином в 1747 г.

При решении физических задач с ис-пользованием закона сохранения электри-ческого заряда значения электрических за-рядов используются с их знаками.

Ученым известны физические процессы, в ходе которых из электромагнитного излу-чения образуются элементарные частицы. Типичный пример такого явления — обра-зование электрона и позитрона из γ-излу-чения, появляющегося при радиоактивных преобразованиях вещества. Многочислен-ные исследования однозначно доказали, что электрон, имеющий отрицательный заряд, всегда появляется в этих преобразованиях в паре с позитроном, имеющем положитель-ный заряд. Алгебраическая сумма зарядов электрона и позитрона равняется нулю. Электромагнитное излучение не имеет заря-да вообще. Таким образом,

в реакции обра-зования электронно-позитронной пары дейст-вует закон сохранения заряда .

q электрона + q позитрона = 0.

Позитрон — элементарная ча-стица, имеющая массу, при-близительно равную массе электрона; заряд позитрона положительный и равен заряду электрона.

На основании закона сохранения элект-рического заряда объясняется электризация макроскопических тел.

Как известно, все тела состоят из ато-мов, в состав которых входят электроны и протоны . Количество электронов и прото-нов в составе незаряженного тела одина-ковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном кон-такте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами зна-чительно слабее, чем протоны, переходят с одного тела на другое. Материал с сайта

Тело, на которое перешли электроны, будет иметь их избыток. Согласно закону сохранения электрический заряд этого тела будет равняться алгебраической сумме по-ложительных зарядов всех протонов и зарядов всех электронов. Этот его заряд будет отрицательным и по значению равным сум-ме зарядов избыточных электронов.

У тела с излишком электронов отрицательный заряд.

Тело, утратившее электроны, будет иметь положительный заряд, модуль которого бу-дет равен сумме зарядов электронов, поте-рянных телом.

У тела, имеющего положитель-ный заряд, электронов мень-ше, чем протонов.

Закон сохранения электрического заряда действует независимо от того, движутся за-ряженные тела или нет. Такое свойство заряда называется инвариантностью. Заряд электрона равняется 1,6 . 10 -19 Кл как при скорости 200 м/с, так и при скорости 100 000 км/с. Если бы было иначе, то электроны имели бы одни свойства в свободном состоянии и совершенно другие — в атоме. А это наукой не установлено.

Электрический заряд не изме-няется при переходе тела в другую систему отсчета.

На этой странице материал по темам:

  • Законы сохранения шпора

  • Закон сохранения электрического заряда конспект по физики

  • Закон сохранения электрического заряда шпаргалка

  • Закон сохранения энергии. электризация тел.

  • Опыты подтверждающие закон сохранения электрического заряда

Вопросы по этому материалу:

В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело . Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.

Способы электризации тел , которые представляют собой взаимодействие заряженных тел, могут быть следующими:

  1. Электризация тел при соприкосновении . В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении . При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние . В основе влияния лежит явление электростатической индукции , то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света . В основе этого лежит фотоэлектрический эффект , или фотоэффект , когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.

Многочисленные опыты показывают, что когда имеет место электризация тела , то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда . Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы. Закон сохранения электрического заряда формулируется следующим образом:

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

q 1 + q 2 + q 3 + … + q n = const

где q 1 , q 2 и т.д. – заряды частиц.

Взаимодействие электрически заряженных тел

Взаимодействие тел , имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити. На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.2).

Рис. 1.2. Взаимодействие тел с зарядами одного знака.

Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.3).

Рис. 1.3. Взаимодействие тел с зарядами разных знаков.

Отсюда следует, что тела, имеющие заряды одинакового знака (одноимённо заряженные тела), взаимно отталкиваются, а тела, имеющие заряды разного знака (разноименно заряженные тела), взаимно притягиваются. Аналогичные вводы получаются, если приближать два султана, одноименно заряженные (рис. 1.4) и разноименно заряженные (рис. 1.5).

Возьмём два одинаковых электрометра и один из них зарядим (рис. 1). Его заряд соответствует \(6\) делениям шкалы.

Если соединить эти электрометры стеклянной палочкой, то никаких изменений не произойдёт. Это подтверждает тот факт, что стекло является диэлектриком. Если же для соединения электрометров использовать металлический стержень А (рис. 2), держа его за не проводящую электричество ручку В, то можно заметить, что первоначальный заряд разделится на две равные части: половина заряда перейдёт с первого шара на второй. Теперь заряд каждого электрометра соответствует \(3\) делениям шкалы. Таким образом, первоначальный заряд не изменился, он только разделился на две части.

Если заряд передать от заряженного тела к незаряженному телу такого же размера, то заряд разделится пополам между двумя этими телами. Но если второе, незаряженное тело, будет больше, чем первое, то на второе перейдёт больше половины заряда. Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдёт.

Но общая сумма заряда при этом не изменится. Таким образом, можно утверждать, что заряд сохраняется. Т.е. выполняется закон сохранения электрического заряда.

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

q 1 + q 2 + q 3 + ... + q n \(=\) const,

где q 1 , q 2 и т.д. - заряды частиц.

Замкнутой считают систему, в которую не входят заряды извне, а также не выходят из неё наружу.

Экспериментально установлено, что при электризации тел тоже выполняется закон сохранения электрического заряда. Нам уже известно, что электризация - это процесс получения электрически заряженных тел из электронейтральных. При этом заряжаются оба тела. Например, при натирании стеклянной палочки шёлковой тканью стекло приобретает положительный заряд, а шёлк становится отрицательно заряженным. В начале эксперимента ни одно из тел заряжено не было. В конце эксперимента оба тела заряжены. Экспериментально установлено, что эти заряды противоположны по знаку, но одинаковы по численному значению, т.е. их сумма равна нулю. Если тело заряжено отрицательно и при электризации оно ещё приобретает отрицательный заряд, то заряд тела возрастает. Но суммарный заряд этих двух тел не меняется.

Пример:

До электризации первое тело имеет заряд \(-2\) у.е (у.е. - условная единица заряда). В ходе электризации оно приобретает еще \(4\) отрицательных заряда. Тогда после электризации его заряд становится равен \(-2 + (-4) = -6\) у.е. Второе тело в результате электризации отдаёт \(4\) отрицательных заряда, и его заряд будет равным \(+4\) у.е. Суммируя заряд первого и второго тела в конце эксперимента, получим \(-6 + 4 = -2\) у.е. А такой заряд был у них до эксперимента.