Строение глаза человека фото с описанием. Анатомия и структура. Построение изображения на глазной сетчатке. Сетчатая оболочка и зрительный нерв

Одним из главных органов, который напрямую связан с восприятием окружающего мира, считается глазной анализатор. Орган зрения играет первостепенную роль в многообразной деятельности человека, в своей эволюции он достиг совершенства и выполняет важные функции. С помощью глаза человек выделяет цвета, улавливает потоки световых лучей и направляет их на светочувствительные клетки, распознает объемные изображения и различает объекты на различных от него расстояниях. Орган зрения человека парный и располагается в черепной глазнице.

Глаз (орган зрения) располагается в черепной коробке в орбитальной впадине. Его держат несколько мышц, располагающиеся сзади и по бокам. Они крепят и обеспечивают двигательную активность, фокусацию глаза.

Анатомия органа зрения выделяет три основные части:

  • глазное яблоко;
  • нервные волокна;
  • вспомогательные части (мышцы, ресницы, железы, вырабатывающие слезы, брови, веки).

Форма глазного яблока шарообразная. Визуально виден только перед, который состоит из роговицы. Все остальное залегает глубоко в глазнице. Размеры глазного яблока в среднем у взрослого составляет 2,4 см. вычисляется он путем измерения расстояния между передним и задним полюсом. Прямая, которая соединяет этот промежуток – наружная (геометрическая, сагиттальная) ось.

Если соединить с точкой на сетчатке внутреннюю поверхность роговицы, то получим внутреннюю ось тела глаза, которая расположена на заднем полюсе. Ее длина в среднем - 2,13 см.

Основная часть глазного яблока – прозрачная субстанция, которая обволакивается тремя оболочками:

  1. Белковая – это достаточно прочная ткань, которая имеет характеристики соединительной. В ее функции входит защита от травм различного характера. Белковая оболочка покрывает весь зрительный анализатор. Передняя (видимая) часть прозрачна – это роговица. Склера – это задняя (невидимая) белковая оболочка. Она является продолжением роговицы, но отличается от нее тем, что она не прозрачной структуры. Плотность белковой оболочки обеспечивает глазу его форму.
  2. Средняя глазная оболочка – это тканевая структура, которая пронизана кровеносными капиллярами. Поэтому ее называют еще сосудистой. Основной ее функционал – это питание глаза всеми необходимыми веществами и кислородом. Она более толстая в видимой части и образует ресничную мышцу и тело, которая, сокращаясь, гарантирует возможность хрусталика искривляться. Радужная оболочка – это продолжение ресничного тела. Она состоит из нескольких слоев. Именно здесь есть клетки, отвечающие за пигментацию, они и определяют оттенок глаз. Зрачок выглядит, как отверстие, которое расположено в центре радужной оболочки. Оно окружено круговыми мышечными волокнами. В их функции входит сокращение зрачка. Другая группа мышц (радикальная), наоборот, расширяет зрачок. Все вместе помогает человеческому глазу регулировать количество света, которое проникает внутрь.
  3. Сетчатка – это внутренняя оболочка, состоит из задней и зрительной части. Передняя сетчатка имеет пигментные клетки и нейроны.

Кроме этого, орган зрения имеет хрусталик, водянистую влагу и стекловидное тело. Они являются внутренней составляющей глаза и частью оптической системы. Они переламливают и проводят лучи света через внутреннюю структуру глаза и фокусируют изображение на сетчатку.

Благодаря своим оптическим способностям (изменениям формы хрусталика), орган зрения передает изображение объектов, которые располагаются на разном расстоянии от зрительного анализатора.

Анатомия вспомогательных частей зрительного анализатора

Анатомия и физиология органа зрения состоит еще из вспомогательного аппарата. Он выполняет защитную функцию и обеспечивает двигательную активность.

Слеза, которая продуцируется специальными железами, предохраняет глаз от переохлаждения, высыхания и очищает от пыли и сора.

Весь слезный аппарат состоит из таких основных частей:

  • слезная железа;
  • отводящие протоки;
  • слезной мешок;
  • слезной канал;
  • носослезной проток.

Защитные способности также имеют веки, ресницы и брови. Последние предохраняют зрительный аппарат сверху и имеют волосистую структуру. Они отводят пот. Веки – это складки кожи, которые в закрытом состоянии полностью скрывают глазное яблоко. Они защищают зрительный орган от резкого света, пыли. Изнутри веко покрыто конъюнктивой, а их края покрыты ресничками. Здесь же расположены сальные железы, секрет которых смазывает край век.

Общее строение органа зрения невозможно представить без мышечного аппарата, который обеспечивает нормальную двигательную активность.

Он состоит из 6 мышечных волокон:

  • нижней;
  • верхней;
  • медиальной и латеральной прямой;
  • косой.

От их способности к сокращению и расслаблению зависит работа всего зрительного анализатора.

Этапы развития человеческого глаза и секреты хорошего зрения

Анатомия и физиология органа зрения имеет разные характеристики на всех этапах его формирования. При нормальном течении беременности у женщины все структуры глаза формируются в четкой последовательности. Уже в сформировавшемся 9-ти месячном плоде орган зрения имеет все полностью развитые оболочки. Но существуют некоторые различия между глазом взрослого человека и новорожденного (масса, форма, размер, физиология).

Развитие глаза после рождения проходит определенные этапы:

  • в первые шесть месяцев у ребенка формируется желтое пятно и сетчатка (центральная ямка);
  • в этот же период происходит развитие работы зрительных путей;
  • формирование функций нервных реакций происходит до 4 месячного возраста;
  • окончательное формирование клеток коры мозга и их центров происходит в течение 24 месяцев;
  • в течение первого года жизни наблюдается развитие связей зрительного аппарата и других органов чувств.

Так, постепенно орган зрения формируется и совершенствуется. Его развитие продолжается вплоть до полового созревания человека. В этот период глаза ребенка практически полностью отвечают параметрам у взрослого.

Начиная от рождения, человек должен соблюдать гигиену органов зрения, что обеспечит длительную работу анализатора. Особенно это важно, когда происходит его развитие и формирование.

В этот период у детей часто портится зрение, что связано с чрезмерной нагрузкой на глаза, не соблюдением основных правил, например, при чтении, или недостаточности необходимых витаминов и микроэлементов в рационе.

Рассмотрим некоторые из важных правил гигиены зрения, которые необходимо соблюдать не только в период, когда происходит развитие, но и в течение всей жизни:

  1. Берегите глаза от механического и химического негативного воздействия.
  2. При чтении обеспечить хорошее освещение, которое должно располагаться с левой стороны. Но при этом оно не должно быть слишком ярким, так как это приводит в негодность светочувствительные клетки. Обеспечьте мягкое освещение.
  3. Расстояние от книги до глаз не должно быть меньше 35 см.
  4. Не читайте в транспорте, лежа. Постоянное движение и изменение расстояния между книгой и глазным аппаратом приводит к быстрой усталости, постоянной смене фокусации и неправильной работе мышц.
  5. Полностью обеспечьте организм достаточным количеством витамина А.

Глаз – это сложный оптический аппарат человеческого тела. Его основная функция – это передача изображения в кору головного мозга для анализа окружающих объектов. При этом мозг и органы зрения тесно связаны между собой. Поэтому очень важно сохранять основные функции нашего зрительного анализатора.

Люди во все времена задумывались над сложным строением человеческого организма. Так мудрый грек Герофил еще в древние времена описывал сетчатку глаза: «Взятая рыбацкая сетка, заброшенная на дно глазного бокала, которая ловит солнечные лучи». Это поэтическое сравнение оказалось удивительно точным. Сегодня уверенно можно утверждать, что сетчатка глаза – именно «сетка», способная «ловить» даже отдельные кванты света.

Сетчатку можно определить как многоэлементный фотоприемник изображений, который по упрощенной структуре представляется как разветвление зрительного нерва с дополнительными функциями обработки изображений.

Сетчатка глаза занимает зону диаметром около 22 мм, и за счет этого почти полностью (около 72% внутренней поверхности глазного яблока) устилает фоторецепторами глазное дно от реснитчатого тела до слепого пятна – зоны выхода из глазного дна зрительного нерва. При офтальмоскопии это выглядит как светлый диск по причине большего (чем в других зонах сетчатки) коэффициента отражения света.

Слепое пятно и центральная зона сетчатки

В зоне выхода зрительного нерва сетчатка не имеет фоточувствительных рецепторов. Поэтому изображение объектов, которые попадают в это место, человек не видит (отсюда и название «слепое пятно»). Оно имеет размер примерно 1,8 – 2 мм в диаметре, расположено в горизонтальной плоскости на расстоянии 4 мм от заднего полюса глазного яблока по направлению к носу ниже полюса глазного яблока.

Центральная зона сетчатки, которую называют желтым пятном, макулой или макулярной зоной, выглядит как наиболее темная зона глазного дна. У разных людей ее цвет может варьироваться от темно-желтого до темно-коричневого. Центральная зона имеет несколько вытянутую овальную форму в горизонтальной плоскости. Размер желтого пятна точно не определен, но принято считать, что в горизонтальной плоскости он составляет от 1,5 до 3 мм.

Желтое пятно, как и слепое пятно, не расположено в зоне полюса глазного яблока. Его центр смещен в горизонтальной плоскости в противоположном от слепого пятна направлении: на расстоянии около 1 мм от оси симметрии оптической системы глаза.

Сетчатка глаза имеет разную толщину. В зоне слепого пятна она является наиболее толстой (0,4 – 0,5 мм). Наименьшую толщину она имеет в центральной зоне желтого пятна (0,07 – 0,1 мм), где образуется так называемая центральная ямка. На краях сетчатки (зубчатая линия) ее толщина равна примерно 0,14 мм.

Хотя сетчатка и выглядит как тонкая пленка, все же она имеет сложную микроструктуру. В направлении лучей, которые поступают к сетчатке через прозрачные среды глаза и мембрану, отделяющую стекловидное тело от сетчатки, первым слоем сетчатки являются прозрачные нервные волокна. Они являются «проводниками», по которым в мозг передаются фотоэлектрические сигналы, несущие в себе информацию о зрительной картине объектов наблюдения: изображения, которые фокусируются оптической системой глаза на глазном дне.

Свет, плотность распределения которого на поверхности сетчатки пропорциональна яркости поля объектов, проникает через все слои сетчатки и попадает на светочувствительный слой, составленный из колбочек и палочек. Этот слой выполняет активное поглощение света.

Колбочки имеют длину 0,035 мм и диаметр от 2 мкм в центральной зоне желтого пятна до 6 мкм в периферийной зоне сетчатки. Порог чувствительности колбочек составляет примерно 30 квантов света, а пороговая энергия – 1,2 10 -17 Дж. Колбочки являются фоторецепторами дня «цветного» зрения.

Наибольшей приемлемостью пользуется трехкомпонентная теория Г. Гельмгольца, согласно которой восприятие цвета глазом обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Каждая колбочка имеет в разной концентрации три типа пигмента – светочувствительного вещества:

— первый тип пигмента (сине-голубой) поглощает свет в диапазоне длин волн 435-450 нм;
— второй тип (зеленый) – в диапазоне 525-540 нм;
— третий тип (красный) – в диапазоне 565-570 нм.


Палочки являются рецепторами ночного, «черно-белого» зрения. Их длина составляет 0,06 мм, а диаметр около 2 мкм. Они имеют пороговую чувствительность в 12 квантов света при длине волны 419 нм или пороговую энергию 4,8 0 -18 Дж. Следовательно, они намного более чувствительными к световому потоку.

Однако, вследствие слабой спектральной чувствительности палочек, объекты наблюдения ночью воспринимаются человеком как серые или черно-белые.

Плотность расположения колбочек и палочек по сетчатке не является одинаковой. Наибольшая плотность наблюдается в зоне желтого пятна. При приближении к периферии сетчатки плотность уменьшается.

В центре фовеа (фовеолы) находятся только колбочки. Их диаметр в этом месте является наименьшим, они плотно гексагонально заключены. В зоне фовеа плотность колбочек составляет 147000-238000 на 1 мм. Эта зона сетчатки имеет наибольшее пространственное разрешение, в связи с чем предназначена для наблюдения наиболее важных фрагментов пространства, на которых человек фиксирует свой взгляд.

Дальше от центра плотность уменьшается до 95 000 на 1 мм, а в парафовеа – до 10 000 на 1 мм. Плотность палочек самая высокая в парафовеоли – 150000-160000 на 1 мм. Дальше от центра их плотность также уменьшается, и на периферии сетчатки составляет всего 60000 на 1 мм. Средняя плотность палочек на сетчатке составляет 80000-100000 на 1 мм.

Функции сетчатки

Существует несоответствие между количеством отдельных фоторецепторов (7000000 колбочек и 120000000 палочек) и 1,2 миллиона волокон зрительного нерва. Оно проявляется в том, что количество «фотоприемников» более чем в 10 раз превышает количество «проводников», которые соединяют сетчатку с соответствующими центрами мозга.

Это делает понятной функцию слоев сетчатки: она заключается в осуществлении коммутации между отдельными фоторецепторами и участками зрительного центра мозга. С одной стороны, они не перегружают мозг «мелкой», второстепенной информацией, а с другой – не допускают потери важной составляющей зрительной информации о среде, которую наблюдает глаз. Поэтому каждая колбочка с фовеальной зоны имеет свой персональный канал прохождения нервных импульсов к мозгу.

Однако по мере удаления от фовеолы такие каналы образуются уже для групп фоторецепторов. Этому служат горизонтальные, биполярные амакринные и , а также внешние и внутренние её слои. Если каждая ганглиозная клетка для передачи сигналов в мозг имеет только свое персональное волокно (аксон), то это означает, что она благодаря коммутационному действию биполярных и горизонтальных клеток должна иметь синапсический контакт или с одним (в зоне фовеолы), или с несколькими (в периферийной зоне) фоторецепторами.

Ясно, что для этого нужно осуществлять соответствующую горизонтальную коммутацию фоторецепторов и биполярных клеток на более низком уровне, а также биполярных и ганглиозных клеток на высшем уровне. Такая коммутация обеспечивается через отростки горизонтальных и амакриновых клеток.

Синапсические контакты – это электрохимические контакты (синапсы) между клетками, которые осуществляются благодаря электрохимическим процессам с участием специфических веществ (нейромедиаторов). Ими обеспечивается «передача вещества» по «нервам-проводникам». Поэтому связи между различными дендритами сетчатки зависят не только от нервных импульсов, но и от процессов во всем организме. Эти процессы могут поставлять нейромедиаторы в зоны синапсов в сетчатке и в мозг как с участием нервных импульсов, так и с током крови, а также других жидкостей.

Дендриты – это отростки нервных клеток, которые воспринимают сигналы от других нейронов, рецепторных клеток, и проводят нервные импульсы через синапсические контакты к телу нейронов. Совокупность дендритов образует дендритную ветку. Совокупность дендритных ветвей называют дендритным деревом.

Амакриновые клетки осуществляют «боковое торможение» между соседними ганглиозными клетками. Этой обратной связью обеспечивается коммутация биполярных и ганглиозных клеток. Так не только решается задача подключения к мозгу ограниченного количества нервных волокон большого количества фоторецепторов, но и осуществляется предварительная обработка информации, поступающая от сетчатки к мозгу, то есть пространственная и временная фильтрация зрительных сигналов.

Таковы функции сетчатки глаза. Как видно, она очень хрупка и важна. Берегите ее!

Человеческий орган зрения почти не отличается по своему строению от глаза других млекопитающих, а это значит, что в процессе эволюции строение глаза человека не претерпело значительных изменений. И сегодня глаз по праву можно назвать одним из самых сложных и высокоточных устройств, созданных природой для человеческого организма. Подробнее с тем, как устроен человеческий зрительный аппарат, из чего состоит глаз и как он работает, вы познакомитесь в этом обзоре.

Общие сведения об устройстве и работе органа зрения

Анатомия глаза включает его внешнее (визуально видимое снаружи) и внутреннее (расположенное внутри черепа) строение. Внешняя часть глаза, доступная для наблюдения, включает в себя такие органы:

  • Глазница;
  • Веко;
  • Слезные железы;
  • Конъюнктива;
  • Роговица;
  • Склера;
  • Радужная оболочка;
  • Зрачок.

Снаружи на лице глаз выглядит как щель, но на самом деле глазное яблоко имеет форму шара, слегка вытянутого ото лба к затылку (по сагиттальному направлению) и имеющего массу около 7 г. Удлинение переднезаднего размера глаза больше нормы приводит к близорукости, а укорочение – к дальнозоркости.

Веки, слезные железы и ресницы

Эти органы не относятся к структуре глаза, но без них невозможна нормальная зрительная функция, поэтому их тоже стоит рассмотреть. Работа век заключается в увлажнении глаз, удалении из них соринок и защите их от повреждений.

Регулярное увлажнение поверхности глазного яблока происходит при моргании. В среднем человек моргает 15 раз в минуту, при чтении или работе с компьютером – реже. Слезные железы, расположенные в верхних наружных уголках век, работают непрерывно, выделяя одноименную жидкость в конъюнктивальный мешок. Излишки слез удаляются из глаз через носовую полость, попадая в нее через особые канальцы. При патологии, которая дакриоциститом называется, уголок глаза не может сообщаться с носом из-за закупорки слезного канала.

Внутренняя сторона века и передняя видимая поверхность глазного яблока покрыта тончайшей прозрачной оболочкой – конъюнктивой. В ней тоже имеются добавочные мелкие слезные железы.

Именно ее воспаление или повреждение вызывает у нас чувство песка в глазу.

Веко держит полукруглую форму благодаря внутренней плотной хрящевой прослойке и круговым мышцам – смыкателям глазной щели. Края век украшены 1-2 рядами ресниц – они защищают глаза от пыли и пота. Здесь же открываются выводные протоки мелких сальных желез, воспаление которых называют ячменем.

Глазодвигательные мышцы

Эти мышцы работают активнее всех других мышц человеческого тела и служат для придания направления взгляду. От несогласованности в работе мышц правого и левого глаза возникает косоглазие. Специальные мышцы приводят в движение веки – поднимают и опускают их. Глазодвигательные мышцы крепятся своими сухожилиями к поверхности склеры.

Оптическая система глаза


Попробуем представить то, что внутри глазного яблока. Оптическая структура глаза состоит из светопреломляющего, аккомодационного и рецепторного аппаратов . Ниже приведено краткое описание всего пути, проходимого световым лучом, попадающим в глаз. Устройство глазного яблока в разрезе и прохождение через него световых лучей представит вам предложенный далее рисунок с обозначениями.

Роговица

Первая глазная «линза», на которую попадает и преломляется отраженный от предмета луч – это роговица. Это то, чем покрыт с передней стороны весь оптический механизм глаза.

Именно она обеспечивает обширное поле зрения и четкость изображения на сетчатке.

Повреждения роговицы ведут к туннельному зрению – человек видит окружающий мир как будто через трубу. Сквозь роговицу глаз «дышит» – она пропускает кислород извне.

Свойства роговицы:

  • Отсутствие кровеносных сосудов;
  • Полная прозрачность;
  • Высокая чувствительность к внешнему воздействию.

Сферическая поверхность роговицы предварительно собирает все лучи в одну точку, чтобы затем спроецировать ее на сетчатку . По подобию этого естественного оптического механизма созданы различные микроскопы и фотоаппараты.

Радужная оболочка со зрачком

Часть прошедших через роговицу лучей отсеивается радужкой. Последняя отграничена от роговицы небольшой полостью, наполненной прозрачной камерной жидкостью – передней камерой.

Радужка представляет собой подвижную светонепроницаемую диафрагму, регулирующую проходящий поток света. Круглая цветная радужка расположена сразу за роговицей.

Цвет ее варьирует от светло-голубого до темно-коричневого и зависит от расы человека и от наследственности.

Иногда встречаются люди, у которых левый и правый глаз имеют разный цвет. Красный цвет радужки бывает у альбиносов.

Р адужная оболочка снабжена кровеносными сосудами и оснащена особыми мышцами – кольцевыми и радиальными. Первые (сфинктеры), сжимаясь, автоматически сужают просвет зрачка, а вторые (дилататоры), сокращаясь, при необходимости расширяют его.

Зрачок находится в центре радужки и представляет собой круглое отверстие диаметром 2 – 8 мм. Его сужение и расширение происходит непроизвольно и никак не контролируется человеком. Сужаясь на солнце, зрачок защищает сетчатку глаза от ожога. Кроме как от яркого света, зрачок сужается от раздражения тройничного нерва и от некоторых медикаментов. Расширение зрачков может произойти от сильных негативных эмоций (ужас, боль, гнев).

Хрусталик

Дальше световой поток попадает на двояковыпуклую эластичную линзу – хрусталик. Он является аккомодационным механизмом, расположен позади зрачка и отграничивает собой передний отдел глазного яблока, включающий роговицу, радужную оболочку и переднюю камеру глаза. Сзади к нему плотно примыкает стекловидное тело.

В прозрачном белковом веществе хрусталика отсутствуют кровеносные сосуды и иннервация. Вещество органа заключено в плотную капсулу. Капсула хрусталика радиально прикреплена к цилиарному телу глаза с помощью так называемого ресничного пояска. Натяжение или ослабление этого пояска меняет кривизну хрусталика, что позволяет четко видеть как приближенные, так и отдаленные предметы. Это свойство называется аккомодацией.

Толщина хрусталика меняется от 3 до 6 мм, диаметр зависит от возраста, у взрослого человека достигая 1 см. Для детей новорожденного и грудного возраста характерна практически шарообразная форма хрусталика за счет его малого диаметра, но по мере взросления ребенка диаметр линзы постепенно увеличивается. У пожилых людей аккомодационные функции глаз ухудшаются.

Патологическое помутнение хрусталика называется катарактой.

Стекловидное тело

Стекловидным телом заполнена полость между хрусталиком и сетчаткой. Его состав представлен прозрачным студенистым веществом, свободно пропускающим свет. С возрастом, а также при высокой и средней близорукости, в стекловидном теле появляются мелкие помутнения, воспринимаемые человеком как «летающие мушки». В стекловидном теле отсутствуют кровеносные сосуды и нервы.

Сетчатая оболочка и зрительный нерв

Пройдя через роговицу, зрачок и хрусталик, лучи света фокусируются на сетчатке. Сетчатка – это внутренняя оболочка глаза, отличающаяся сложностью своего строения и состоящая в основном из нервных клеток. Она представляет собой разросшуюся вперед часть головного мозга.

Светочувствительные элементы сетчатки имеют вид колбочек и палочек. Первые являются органом дневного зрения, а вторые – сумеречного.

Палочки способны воспринимать очень слабые световые сигналы.

Дефицит в организме витамина А, который входит в состав зрительного вещества палочек, приводит к куриной слепоте – человек плохо видит в сумерках.


От клеток сетчатки берет свое начало зрительный нерв, представляющий собой соединенные вместе нервные волокна, исходящие из сетчатой оболочки. Место вхождения зрительного нерва в сетчатую оболочку называется слепым пятном, так как оно не содержит фоторецепторов. Зона с наибольшим количеством светочувствительных клеток расположена над слепым пятном, примерно напротив зрачка, и получила название «Желтое пятно».

Человеческие органы зрения устроены так, что на своем пути к полушариям головного мозга часть волокон зрительных нервов левого и правого глаза перекрещиваются. Поэтому в каждом из двух полушарий мозга есть нервные волокна как правого, так и левого глаза. Точка перекрещивания зрительных нервов называется хиазмой. Изображенная далее картинка указывает на место расположения хиазмы – основание головного мозга.

Построение пути светового потока таково, что рассматриваемый человеком предмет отображается на сетчатке в перевернутом виде.

После этого изображение с помощью зрительного нерва передается в мозг, «переворачивающий» его в нормальное положение. Сетчатая оболочка и зрительный нерв – это рецепторный аппарат глаза.

Глаз – одно из совершенных и сложных созданий природы. Малейшее нарушение хотя бы в одной из его систем ведет к расстройствам зрения.

Видео, которые будут Вам интересны:

Строение человеческого глаза напоминает фотоаппарат. В роли объектива выступают роговица, хрусталик и зрачок, которые преломляют лучи света и фокусируют их на сетчатке глаза. Хрусталик может менять свою кривизну и работает как автофокус у фотоаппарата - моментально настраивает хорошее зрение на близь или даль. Сетчатка, словно фотопленка, запечатляет изображение и отправляет его в виде сигналов в головной мозг, где происходит его анализ.

1 -зрачок , 2 -роговица , 3 -радужка , 4 -хрусталик , 5 -цилиарное тело , 6 -сетчатка, 7 -сосудистая оболочка , 8 -зрительный нерв , 9 -сосуды глаза , 10 -мышцы глаза , 11 -склера , 12 -стекловидное тело .

Сложное строение глазного яблока делает его очень чувствительным к различным повреждениям, нарушениям обмена веществ и заболеваниям.

Офтальмологи портала "Все о зрении" простым языком описали строение глаза человека дарят вам уникальную возможность наглядно ознакомиться с его анатомией.


Человеческий глаз – это уникальный и сложный парный орган чувств, благодаря которому мы получаем до 90% информации об окружающем нас мире. Глаз каждого человека обладает индивидуальными, только ему присущими характеристиками. Но общие черты строения важны для понимания того, какой же глаз изнутри и как он работает. В ходе эволюции глаз достиг сложного строения и в нём тесно взаимосвязаны структуры разного тканевого происхождения. Кровеносные сосуды и нервы, пигментные клетки и элементы соединительной ткани – все они обеспечивают основную функцию глаза – зрение.

Строение основных структур глаза

Глаз имеет форму сферы или шара, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично оно укрыто от возможного повреждения. Спереди глазное яблоко защищают верхнее и нижнее веки. Свободные движения глазного яблока обеспечиваются глазодвигательными наружными мышцами, точная и слаженная работа которых позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно.

Постоянное увлажнение всей поверхности глазного яблока обеспечивается слезными железами, которые обеспечивают адекватную продукцию слезы, образующей тонкую защитную слёзную плёнку, а отток слезы происходит через специальные слезоотводящие пути.

Самая наружная оболочка глаза – конъюнктива. Она тонкая и прозрачная и выстилает также и внутреннюю поверхность век, обеспечивая легкое скольжение при движении глазного яблока и моргании век.
Наружная «белая» оболочка глаза – склера, является самой толстой из трёх глазных оболочек, защищает внутренние структуры и поддерживает тонус глазного яблока.

Склеральная оболочка в центре передней поверхности глазного яблока приобретает прозрачность и имеет вид выпуклого часового стекла. Эта прозрачная часть склеры называется роговицей, которая очень чувствительная благодаря наличию в ней множества нервных окончаний. Прозрачность роговицы позволяет свету проникать внутрь глаза, а её сферичность обеспечивает преломление световых лучей. Переходная зона между склерой и роговицей называется лимбом. В этой зоне находятся стволовые клетки, обеспечивающие постоянную регенерацию клеток наружных слоев роговицы.

Следующая оболочка - сосудистая. Она выстилает склеру изнутри. По её названию понятно, что она обеспечивает кровоснабжение и питание внутриглазных структур, а также поддерживает тонус глазного яблока. Сосудистая оболочка состоит из собственно хориоидеи, находящейся в тесном контакте со склерой и сетчаткой, и таких структур как цилиарное тело и радужка, которые располагаются в переднем отделе глазного яблока. Они содержат в себе много кровеносных сосудов и нервов.

Цилиарное тело – это часть сосудистой оболочки и сложный нервно-эндокринно-мышечный орган, играющий важную роль в продукции внутриглазной жидкости и в процессе аккомодации.


Цвет радужки определяет цвет глаза человека. В зависимости от количества пигмента в её наружном слое она имеет цвет от бледно-голубого или зелёноватого до тёмно-коричневого. В центре радужки находится отверстие – зрачок, через который свет попадает внутрь глаза. Важно отметить, что кровоснабжение и иннервация хориоидеи и радужки с цилиарным телом раличные, что отражается на клинике заболеваний такой в общем-то единой структуры, как сосудистая оболочка глаза.

Пространство между роговицей и радужкой является передней камерой глаза, а угол, образованный периферией роговицы и радужки, называется углом передней камеры. Через этот угол происходит отток внутриглазной жидкости сквозь специальную сложную дренажную систему в глазные вены. За радужкой находится хрусталик, который располагается перед стекловидным телом. Он имеет форму двояковыпуклой линзы и хорошо фиксирован множеством тонких связок к отросткам цилиарного тела.

Пространство между задней поверхностью радужки, цилиарным телом и передней поверхностью хрусталика и стекловидного тела называется задней камерой глаза. Передняя и задняя камеры заполнены бесцветной внутриглазной жидкостью или водянистой влагой, которая постоянно циркулирует в глазу и омывает роговицу, хрусталик, при этом питая их, так как собственных сосудов у этих структур глаза нет.

Самой внутренней, самой тонкой и самой важной для акта зрения оболочкой является сетчатка. Она представляет собой высокодифференцированную многослойную нервную ткань, которая выстилает сосудистую оболочку в её заднем отделе. От сетчатки берут начало волокна зрительного нерва. Он несёт всю полученную глазом информацию в виде нервных импульсов через сложный зрительный путь в наш мозг, где она преобразуется, анализируется и воспринимается уже как объективная реальность. Именно на сетчатку в конечном счёте попадает или не попадает изображение и в зависимости от этого, мы видим предметы чётко или не очень. Самой чувствительной и тонкой частью сетчатки является центральная область – макула. Именно макула обеспечивает наше центральное зрение.

Полость глазного яблока заполняет прозрачное, несколько желеобразное вещество – стекловидное тело. Оно поддерживает плотность глазного яблока и прилегает в внутренней оболочке - сетчатке, фиксируя её.

Оптическая система глаза

По своей сущности и предназначению, человеческий глаз – это сложная оптическая система. В этой системе можно выделить несколько наиболее важных структур. Это роговица, хрусталик и сетчатка. В основном, именно от состояния этих пропускающих, преломляющих и воспринимающих свет структур, степени их прозрачности зависит качество нашего зрения.
  • Роговица сильнее всех других структур преломляет световые лучи, далее проходяие через зрачок, который выполняет функцию диафрагмы. Образно говоря, как в хорошем фотоаппарате диафрагма регулирует поступление световых лучей и в зависимости от фокусного расстояния позволяет получать качественное изображение, так и зрачок функционирует в нашем глазу.
  • Хрусталик также преломляет и пропускает световые лучи далее на световоспринимающую структуру – сетчатку, своеобразную фотоплёнку.
  • Жидкость глазных камер и стекловидное тело также обладают преломляющими свет свойствами, но не такими значительными. Тем не менее, состояние стекловидного тела, степень прозрачности водянистой влаги глазных камер, наличие в них крови или других плавающих помутнений тоже может влиять на качество нашего зрения.
  • В норме световые лучи, пройдя через все прозрачные оптические среды, преломляются так, что попадая на сетчатку формируют уменьшенное, перевернутое, но реальное изображение.
Окончательный анализ и восприятие полученной глазом информации, происходит уже в нашем головном мозгу, в коре его затылочных долей.

Таким образом, глаз устроен очень сложно и удивительно. Нарушение в состоянии или кровоснабжении, любого структурного элемента глаза может отрицательно сказаться на качестве зрения.

В сетчатке выделяют две функционально различные части – зрительную (оптическую) и слепую (ресничную). Зрительная часть сетчатой оболочки глаза – это большая часть сетчатки, которая свободно прилегает к сосудистой оболочке и прикрепляется к подлежащим тканям только в области диска и у зубчатой линии. Свободнолежащая часть сетчатки, непосредственно соприкасающаяся с сосудистой оболочкой, удерживается за счет давления, создаваемого стекловидным телом, а также за счет тонких связей пигментного эпителия. Ресничная часть сетчатки покрывает заднюю поверхность ресничного тела и радужки, доходя до зрачкового края.

Наружная часть сетчатки называется пигментной, внутренняя – светочувствительной (нервной) частью. Сетчатка состоит из 10 слоев, в состав которых входят разные типы клеток. Сетчатка на срезе представлена в виде трех радиально расположенных нейронов (нервных клеток): наружного – фоторецепторного, среднего – ассоциативного, и внутреннего – ганглионарного. Между этими нейронами располагаются т.н. плексиформные (от лат. plexus - сплетение) слои сетчатой оболочки, представленные отростками нервных клеток (фоторецепторов, биполярных и ганглиозных нейронов), аксонами и дендритами. Аксоны проводят нервный импульс от тела данной нервной клетки к другим нейронам или иннервируемым органам и тканям, дендриты же проводят нервные импульсы в обратном направлении - к телу нервной клетки. Помимо этого в сетчатке расположены интернейроны, представленные амакриновыми и горизонтальными клетками.

Слои сетчатки

Сетчатка имеет 10 слоев:

1. Первый слой сетчатки – это пигментный эпителий, который прилежит непосредственно к мембране Бруха сосудистой оболочки глаза. Его клетки окружают фоторецепторы ( и ), частично заходя между ними в виде пальцевидных выпячиваний, благодаря чему площадь контакта между слоями увеличивается. Под действием света включения пигмента перемещаются из тела пигментных клеток к их отросткам, что предотвращает рассеивание света между соседними фоторецепторными клетками (колбочками или палочками). Клетки этого слоя фагоцитируют отторгающиеся сегменты фоторецепторов, а также обеспечивают доставку кислорода, солей, метаболитов от к фоторецепторам и в обратном направлении, тем самым регулируя баланс электролитов в сетчатке и определяя ее биоэлектрическую активность и степень антиоксидантной защиты. Клетки пигментного эпителия удаляют жидкость из субретинального пространства, способствуют максимально плотному прилеганию зрительной сетчатки к сосудистой оболочке глаза, принимают участия в процессах рубцевания при заживлении очага воспаления.

2. Второй слой сетчатки представлен наружными сегментами светочувствительных клеток, колбочек и палочек – специализированных высокодифференцированных нервных клеток. Колбочки и палочки имеют цилиндрическую форму, в которой различают наружный сегмент, внутренний сегмент, а также пресинаптическое окончание, к которому подходят нервные отростки (дендриты) горизонтальных и биполярных клеток. Строение палочек и колбочек различно: наружный сегмент палочек представлен в виде тонкого палочкоподобного цилиндра, содержащего зрительный пигмент родопсин, в то время как наружный сегмент колбочек конически расширен, он короче и толще, чем у палочек, и содержит зрительный пигмент иодопсин.

Наружный сегмент фоторецепторов имеет важное значение: именно здесь происходят сложные фотохимические процессы, в ходе которых происходит первичная трансформация энергии света в физиологическое возбуждение. Функциональное назначение колбочек и палочек также различно: колбочки отвечают за цветоощущение и центральное зрение, обеспечивают периферическое зрение в условиях высокой освещенности; палочки обеспечивают зрение в условиях низкой освещенности (сумеречное зрение). В темноте периферическое зрение обеспечивается совместными усилиями колбочек и палочек.

3. Третий слой сетчатки представлен наружной пограничной мембраной, или окончатой мембраной Верхофа, это так называемая полоса межклеточных сцеплений. Сквозь эту мембрану в субретинальное пространство проходят наружные сегменты колбочек и палочек.

4. Четвертый слой сетчатки называется наружным ядерным слоем, поскольку образован ядрами колбочек и палочек.

5. Пятый слой – наружный плексиформный слой, его также называют сетчатым слоем, он отделяет наружный ядерный слой от внутреннего.

6. Шестой слой сетчатой оболочки – это внутренний ядерный слой, он представлен ядрами нейронов второго порядка (биполярных клеток), а также ядрами горизонтальных, амакриновых и мюллеровских клеток.

7. Седьмой слой сетчатки – внутренний плексиформный слой, он состоит из клубка переплетенных отростков нервных клеток и отделяет внутренний ядерный слой от слоя ганглиозных клеток. Седьмой слой разделяет внутреннюю сосудистую часть сетчатой оболочки и наружную бессосудистую, которая всецело зависит от поступления кислорода и питательных веществ из прилежащей сосудистой оболочки.

8. Восьмой слой сетчатки образован нейронами второго порядка (ганглиозными клетками), по направлению от центральной ямки к периферии его толщина отчетливо уменьшается: непосредственно в области вокруг ямки данный слой представлен как минимум пятью рядами ганглиозных клеток, к периферии число рядов нейронов постепенно уменьшается.

9. Девятый слой сетчатки представлен аксонами ганглиозных клеток (нейронов второго порядка), которые образуют зрительный нерв.

10. Десятый слой сетчатки – последний, он покрывает поверхность сетчатой оболочки изнутри и представляет собой внутреннюю пограничную мембрану. Это основная мембрана сетчатки, образованная основаниями нервных отростков клеток Мюллера (нейроглиальных клеток).

Клетки Мюллера представляют собой гигантские высокоспециализированные, которые проходят чрез все слои сетчатой оболочки, выполняя изолирующую и опорную функции. Клетки Мюллера принимают участие в генерировании биоэлектрических электрических импульсов, активно транспортируя метаболиты. Мюллеровские клетки заполняют узкие щели между нервными клетками сетчатки и разделяют их рецептивные поверхности.

Палочковый путь проведения нервного импульса представлен палочковым фоторецептором, биполярными и ганглиозными клетками, амакриновыми клетками нескольких видов (промежуточными нейронами). Палочковые фоторецепторы контактируют только с биполярными клетками, которые под действием света деполяризуются.

Колбочковый путь проведения нервных импульсов характеризуется тем, что уже в пятом слое (наружный плексиформный слой) синапсы колбочек связывают их с биполярными нейронами различных типов, образуя как световой, так и темновой путь проведения импульса. Благодаря этому колбочки области формируют каналы контрастной чувствительности. По мере удаления от области макулы количество фоторецепторов, соединенных с множеством биполярных клеток, уменьшается, в то же время число биполярных нейронов, соединенных с одной биполярной клеткой, увеличивается.

Световой импульс активирует превращение зрительного пигмента, запуская возникновение рецепторного потенциала, который распространяется вдоль аксона к синапсу, где вызывает нейромедиатора. Этот процесс приводит к возбуждению нейронов сетчатки, которые осуществляют первичную обработку зрительной информации. Далее эта информация предается по зрительному нерву в зрительные центры головного мозга.

В процессе передачи нервного возбуждения по нейронам сетчатки важное значение имеют соединения из группы эндогенных трансмиттеров, к которым относятся аспартат (специфичен для палочек), глутамат, ацетилхолин (является трансмиттером амакриновых клеток), допамин, мелатонин (синтезируется в фоторецепторах), глицин, серотонин. Ацетилхолин является трансмиттером возбуждения, а гамма-аминомасляная кислота (ГАМК) – торможения, оба эти соединения содержатся в амакриновых клетках. Тонкий баланс указанных веществ обеспечивает функционирование сетчатки, а нарушение такового может приводить к развитию различных патологий сетчатки (пигментный , лекарственная ретинопатия и т.п.)