Аминогликозиды препараты. Аминогликозиды. Общее описание группы медикаментов


Терапевтический диапазон аминогликозидов узок. Их основные побочные эффекты - нефротоксичность и ототоксичность . Изредка наблюдается угнетение дыхания .

Нефротоксичность обусловлена накоплением аминогликозидов в канальцевых и перитубулярных клетках, повреждением проксимальных канальцев и снижением СКФ . При продолжительном курсе лечения (10-14 сут) нефротоксическое действие (повышение уровня креатинина сыворотки более чем на 0,5% от исходного уровня) отмечается у 5-10% взрослых. Риск нефротоксического действия зависит от многих факторов, например возраста (наиболее часто нефротоксическое действие наблюдается у пожилых, а у детей - редко), сопутствующего медикаментозного лечения, состояния гидратации. Поражение почек проявляется в постепенном повышении сывороточной концентрации креатинина через несколько дней после начала лечения. Концентрация креатинина нормализуется после снижения дозы или отмены препарата. В ходе лечения аминогликозидами концентрацию креатинина необходимо определять каждые 3-5 сут, а при ее повышении - чаще.

Нефротоксичность основных препаратов этой группы ( гентамицина , тобрамицина , амикацина) одинакова. Стрептомицин редко проявляет нефротоксичность.

Ототоксическое действие аминогликозидов проявляется снижением слуха и вестибулярными нарушениями . Так как аминогликозиды повреждают волосковые клетки внутреннего уха, ототоксическое действие может оказаться необратимым. Его риск повышается при длительном лечении, высокой сывороточной концентрации препаратов (особенно у больных с нарушенной функцией почек), гиповолемии , одновременном применении других ототоксичных средств, особенно этакриновой кислоты . Хотя симптомы ототоксического действия редко выявляются при обычном обследовании (менее чем у 1% больных), необходимо контролировать сывороточную концентрацию аминогликозидов и ограничивать продолжительность лечения. С помощью специальных методов исследования, например аудиометрии, бессимптомная тугоухость на звуки высоких частот обнаруживается гораздо чаще.

Все аминогликозиды имеют приблизительно одинаковую ототоксичность.

Подавление нервно-мышечной передачи под влиянием аминогликозидов обусловлено уменьшением выброса ацетилхолина из нервных окончаний и, отчасти, действием на постсинаптическую мембрану. Изредка это приводит к тяжелому угнетению дыхания . К факторам риска относятся гипокальциемия , введение аминогликозидов в брюшную полость, применение миорелаксантов , предшествующее угнетение дыхания. Во избежание данного осложнения аминогликозиды вводят в/в в течение не менее 30 мин или в/м. Введение кальция предотвращает угнетение дыхания, вызванное аминогликозидами.

Не следует отказываться от применения аминогликозидов (если показаны именно они) из страха перед их побочными эффектами: они обычно бывают легкими и обратимыми. Во избежание передозировки или, наоборот, введения недостаточного количества препарата проводят мониторинг сывороточной концентрации аминогликозидов.

Аминогликозиды (аминогликозидные аминоциклитолы) — группа природных и полусинтетических антибиотиков, сходных по химическому строению, спектру противомикробной активности, фармакокинетическим свойствам и спектру побочных эффектов. Общее название «аминогликозиды» соединения этой группы получили в связи с наличием в молекуле аминосахаридов, соединенных гликозидной связью с агликоновым фрагментом — гексозой (аминоциклитолом). Гексоза представлена стрептидином (стрептомицин), либо 2-дезокси-D-стрептамином (остальные аминогликозиды). Количество остатков аминосахаров у различных аминогликозидов разное. Например, у неомицина их 3, у канамицина и гентамицина — 2. В настоящее время группа аминогликозидов насчитывает более 10 природных антибиотиков, продуцируемых лучистыми грибами Actinomyces (неомицин, канамицин, тобрамицин и др.), Micromonospora (гентамицин и др.) и несколько полусинтетических, полученных на их основе (например амикацин — является производным канамицина А и получается из него). К группе аминогликозидов относится также структурно похожий природный аминоциклитольный антибиотик спектиномицин, не содержащий аминосахаридов.

Механизм действия антибиотиков-аминогликозидов связан с необратимым угнетением синтеза белка на уровне рибосом у чувствительных к ним микроорганизмов. В отличие от других ингибиторов синтеза белка аминогликозиды оказывают не бактериостатическое, а бактерицидное действие. Аминогликозиды проникают в клетки бактерий путем пассивной диффузии через поры наружной мембраны и путем активного транспорта. Транспорт аминогликозидов через цитоплазматическую мембрану зависит от переноса электронов в дыхательной цепи, этот этап поступления их в клетку, т.н. энергозависимый этап I, является лимитирующим. Транспорт аминогликозидов через цитоплазматическую мембрану замедляется или полностью блокируется в присутствии ионов Ca 2+ или Mg 2+ , в гиперосмолярной среде, при низких значениях pH и в анаэробных условиях. Так, например, антибактериальная активность аминогликозидов значительно снижается в анаэробной среде абсцессов и в гиперосмолярной кислой моче.

После проникновения в клетку аминогликозиды связываются со специфическими белками-рецепторами на 30S субъединице рибосом бактерий. 30S субъединица состоит из 21 белка и одной молекулы 16S рРНК (рибосомной РНК). Например, в связывании стрептомицина с рибосомами участвуют по крайней мере три белка и, возможно, 16S рРНК. Аминогликозиды нарушают рибосомальный белковый синтез несколькими путями: 1) антибиотики связываются с 30S субъединицей рибосомы и нарушают инициацию синтеза белка, фиксируя комплекс, состоящий из 30S- и 50S- субъединиц, на инициирующем кодоне иРНК; это приводит к накоплению аномальных инициирующих комплексов (т.н. моносомы) и прекращению дальнейшей трансляции; 2) связываясь с 30S субъединицей рибосомы, аминогликозиды нарушают считывание информации с РНК, что приводит к преждевременному окончанию трансляции и отсоединению рибосомного комплекса от белка, синтез которого не завершен; 3) кроме того, аминогликозиды вызывают одиночные аминокислотные замены в растущей полипептидной цепи, в результате чего образуются дефектные белки.

Синтезирующиеся аномальные белки, встраиваясь в цитоплазматическую мембрану, могут нарушать ее структуру, изменять проницаемость и ускорять проникновение аминогликозидов внутрь клетки. Этот этап транспорта аминогликозидов — т.н. энергозависимый этап II. В результате постепенного разрушения цитоплазматической мембраны происходит выход из бактериальной клетки ионов, крупных молекул, белков. Бактерицидный эффект аминогликозидов, возможно, объясняется тем, что образование неполноценных полипептидов и угнетение синтеза нормальных белков в микробной клетке приводит к нарушению важных функций клетки, поддерживающих ее жизнеспособность, в т.ч. к нарушению структуры и функции цитоплазматической мембраны бактерий и, в конечном счете, приводит к гибели клетки.

Историческая справка. Аминогликозиды — одни из первых антибиотиков. Первый аминогликозид — стрептомицин — был выделен З.А. Ваксманом и его коллегами в 1943 г. из лучистого гриба Streptomyces griseus. Стрептомицин явился первым химиотерапевтическим средством, нашедшим широкое применение для лечения туберкулеза, включая и туберкулезный менингит.

В 1949 г. из культуры Streptomyces fradiae Ваксман и Лешевалье выделили неомицин. Канамицин — антибиотик, который продуцируют Streptomyces kanamyceticus, был впервые получен Умэдзавой и его сотрудниками в Японии в 1957 г. Гентамицин — антибиотик, продуцируемый актиномицетами рода Micromonospora , — был впервые изучен и описан М. Вайнштейном и его сотрудниками в 1963 г. Тобрамицин и амикацин были внедрены в клиническую практику в 70-х гг.

Нетилмицин по своим характеристикам напоминает гентамицин и тобрамицин. Однако присоединение этиловой группы к аминогруппе в первом положении 2-дезоксистрептаминового кольца защищает молекулу от ферментативного расщепления. В связи с этим нетилмицин не инактивируется многими гентамицино- и тобрамицино-устойчивыми бактериями. Нетилмицин оказывает менее выраженное ототоксическое действие по сравнению с другими аминогликозидами.

Существуют различные классификации аминогликозидов, в т.ч. по последовательности введения препаратов в медицинскую практику, по спектру противомикробной активности, по особенностям развития вторичной резистентности к ним микроорганизмов.

Так, по одной из классификаций, в первую группу объединяют первые природные аминогликозиды, нашедшие применение для лечения инфекционных заболеваний: стрептомицин, неомицин, мономицин (паромомицин), канамицин. Ко второй группе относят более современные природные аминогликозиды: гентамицин, сизомицин, тобрамицин. Третью группу составляют полусинтетические аминогликозиды: амикацин, нетилмицин, изепамицин (в России пока не зарегистрирован).

По классификации, представленной И.Б. Михайловым (в основу положены спектр действия и особенности возникновения резистентности), выделяют четыре поколения аминогликозидов:

I поколение: стрептомицин, неомицин, канамицин, мономицин.

II поколение: гентамицин.

III поколение: тобрамицин, амикацин, нетилмицин, сизомицин.

IV поколение: изепамицин.

Аминогликозидные антибиотики обладают широким спектром противомикробного действия. Они особенно эффективны в отношении аэробной грамотрицательной флоры, в т.ч. семейства Enterobacteriaceae , включая Escherichia coli, Klebsiella spp., Salmonella spp., Shigella spp., Proteus spp., Serratia spp., Enterobacter spp. Активны в отношении грамотрицательных палочек других семейств, в т.ч. Acinetobacter spp., Moraxella spp., Pseudomonas spp. Среди грамположительных бактерий к аминогликозидам чувствительны преимущественно грамположительные кокки — Staphylococcus aureus, Staphylococcus epidermidis .

Отдельные аминогликозиды различаются по активности и спектру действия. Аминогликозиды I поколения (стрептомицин, канамицин) проявляют наибольшую активность в отношении M. tuberculosis и некоторых атипичных микобактерий. Мономицин менее активен по действию на некоторые грамотрицательные аэробы и стафилококки, но активен в отношении некоторых простейших.

Все аминогликозиды II и III поколения, в отличие от аминогликозидов I поколения, активны в отношении Pseudomonas aeruginosa. По степени антибактериального действия в отношении штаммов Pseudomonas aeruginosa одним из наиболее активных аминогликозидов является тобрамицин.

Спектр противомикробного действия сизомицина подобен таковому гентамицина, но сизомицин более активен, чем гентамицин, в отношении разных видов Proteus spp ., Pseudomonas aeruginosa , Klebsiella spp. , Enterobacter spp.

Спектиномицин активен in vitro в отношении многих грамположительных и грамотрицательных микроорганизмов, но клиническое значение имеет его активность в отношении гонококков, включая штаммы, резистентные к пенициллину. В клинической практике спектиномицин используется в качестве альтернативного средства для лечения гонореи у больных, у которых наблюдается гиперчувствительность к пенициллину, или при устойчивости гонококков к пенициллину и другим ЛС.

Одним из наиболее эффективных аминогликозидов является амикацин. Амикацин — производное канамицина А с наиболее широким по сравнению с другими аминогликозидами спектром действия, включая аэробные грамотрицательные бактерии (Pseudomonas aeruginosa , Klebsiella spp. , Escherichia coli и др.) и Mycobacterium tuberculosis . Амикацин устойчив к действию ферментов, инактивирующих другие аминогликозиды, и может оставаться активным в отношении штаммов Pseudomonas aeruginosa , устойчивых к тобрамицину, гентамицину и нетилмицину. По некоторым данным, при эмпирической терапии ургентных состояний амикацин наиболее предпочтителен, т.к. к его действию чувствительны более 70% штаммов грамотрицательных и грамположительных бактерий. В то же время применять другие аминогликозиды при тяжелых состояниях следует только после подтверждения чувствительности выделяемых микроорганизмов к гентамицину и другим ЛС этой группы, иначе терапия может быть неэффективной.

К аминогликозидам умеренно чувствительны или устойчивы Streptococcus spp., большинство внутриклеточных микроорганизмов, устойчивы анаэробы: Bacteroides spp., Clostridium spp . Изепамицин (IV поколение аминогликозидов) дополнительно активен в отношении Aeromonas spp., Citrobacter spp., Listeria spp., Nocardia spp.

Аминогликозиды могут оказывать постантибиотический эффект, который зависит от штамма микроорганизма и концентрации ЛС в очаге инфекции.

Длительное и широкое использование аминогликозидов привело к развитию (примерно в середине 70-х гг.) приобретенной устойчивости многих штаммов микроорганизмов. Установлено три возможных механизма развития лекарственной устойчивости у бактерий:

1) ферментативная инактивация — выработка бактериями ферментов, модифицирующих антибиотики;

2) снижение проницаемости цитоплазматической мембраны (нарушение транспортных систем клетки);

3) модификация мишени действия — 30S субъединицы бактериальной хромосомы (рецепторный белок 30S субъединицы может отсутствовать или быть измененным в результате хромосомной мутации).

Описан четвертый механизм устойчивости к аминогликозидам — т.н. природная устойчивость. Так, факультативные микроорганизмы, существующие в анаэробных условиях, обычно устойчивы к аминогликозидам, т.к. у них отсутствует кислородозависимый транспорт ЛС внутрь клетки.

В основе приобретенной устойчивости чаще лежит инактивация аминогликозида бактериальными ферментами. Это основной тип устойчивости среди грамотрицательных бактерий кишечной группы, который контролируется плазмидами.

Обнаружено три класса ферментов, разрушающих/модифицирующих аминогликозиды (т.н. аминогликозидмодифицирующие ферменты, АГМФ) — ацетилтрансферазы (принятое сокращение AAC), фосфотрансферазы (APH), нуклеотидилтрансферазы (аденилилтрансферазы, ANT). Каждый фермент представлен несколькими типами. Известно более 50 АГМФ. Существует, по крайней мере, 4 типа AAC, не менее 5 типов ANT, более 10 типов APH. Ацетилтрансферазы действуют на аминогруппы, а фосфотрансферазы и нуклеотидилтрансферазы — на гидроксильные группы молекулы аминогликозида. В результате процессов ацетилирования, фосфорилирования и аденилирования меняется структура молекулы антибиотика, что не позволяет ему связываться с бактериальной рибосомой, в результате аминогликозид не ингибирует синтез белка и клетка сохраняет жизнеспособность.

Инактивирующие ферменты кодируются плазмидными генами, которые передаются в основном в ходе конъюгации. Широкое распространение устойчивости, переносимой плазмидами, особенно среди больничных штаммов микроорганизмов, существенно ограничивает использование аминогликозидов. Более устойчивым к действию бактериальных ферментов является амикацин (благодаря наличию боковых радикалов).

АГМФ локализуются преимущественно в периплазматическом пространстве клетки и не экскретируются во внеклеточное пространство. Наибольшее число АГМФ характерно для грамотрицательных бактерий и определяет развитие перекрестной устойчивости в пределах группы аминогликозидов. Число модифицирующих ферментов у грамположительных бактерий значительно меньше.

Считают, что невозможно синтезировать аминогликозид, который не будет подвергаться инактивации бактериальными ферментами, поскольку существует связь между бактериальной активностью антибиотика и наличием в его структуре модифицируемых функциональных групп.

Вторичная резистентность у микроорганизмов к аминогликозидам развивается быстро — «стрептомициновый» тип резистентности. Сочетание аминогликозидов с бета-лактамами может предупреждать развитие устойчивости микроорганизмов в процессе лечения благодаря синергизму антибактериального действия.

Аминогликозиды I поколения подвержены действию 15 ферментов, II поколения — 10 ферментов, на аминогликозиды III и IV поколений могут действовать 3 фермента. В связи с этим, если при лечении инфекционного заболевания оказались неэффективными препараты III поколения, нет смысла назначать аминогликозиды I или II поколений.

Устойчивость микроорганизмов к аминогликозидам, обусловленная изменением строения рибосом, встречается относительно редко (исключение — стрептомицин). Модификация рибосом лежит в основе устойчивости к стрептомицину у 5% штаммов Pseudomonas aeruginosa и у половины устойчивых к нему штаммов Enterococcus spp . На такие штаммы энтерококков комбинация стрептомицина с пенициллинами не оказывает синергичного действия in vitro, но эти микроорганизмы обычно чувствительны к комбинации гентамицина с пенициллинами, поскольку для гентамицина не характерен такой механизм развития устойчивости.

Существуют стрептомицин-зависимые бактерии, которые используют это вещество для своего роста. Это явление связано с мутацией, приводящей к изменениям рецепторного белка Р12.

Фармакокинетика у всех аминогликозидов примерно одинаковая. Молекулы аминогликозидов являются высокополярными соединениями, в связи с чем плохо растворяются в липидах и поэтому при приеме внутрь практически не всасываются из ЖКТ (в системный кровоток поступает менее 2%). Однако при инфекционных заболеваниях ЖКТ всасывание увеличивается, поэтому длительный прием внутрь может привести к накоплению аминогликозида и возникновению токсической концентрации. Основными путями введения аминогликозидов при их системном использовании являются в/м и в/в. Связывание аминогликозидов с белками крови низкое и колеблется для разных ЛС этой группы от 0 до 30% (например тобрамицин практически не связывается с белками). Время достижения C max при в/м введении аминогликозидов — 1-1,5 ч. У больных в тяжелом состоянии, особенно при шоке, всасывание после в/м инъекции может замедляться из-за плохого кровоснабжения тканей. Время сохранения терапевтической концентрации в крови при введении каждые 8 ч — примерно 8-10 ч. Объем распределения (0,15-0,3 л/кг) близок к объему внеклеточной жидкости и составляет 25% безжировой массы тела. Вследствие своей полярности аминогликозиды не проникают в большинство клеток. Они распределяются в основном в плазме крови и во внеклеточной жидкости (включая жидкость абсцессов, плевральный выпот, асцитическую, перикардиальную, синовиальную, лимфатическую и перитонеальную жидкости), кроме ликвора. В терапевтических концентрациях у взрослых аминогликозиды не проходят через ГЭБ, при воспалении мозговых оболочек проницаемость увеличивается. Так, например, в отсутствии воспаления концентрация аминогликозида в спинно-мозговой жидкости может составлять менее 10% от сывороточной, тогда как при менингите может достигать 20-50% от содержания в крови. У новорожденных достигаются более высокие концентрации в ликворе, чем у взрослых. Однако есть ткани организма, в которые антибиотики-аминогликозиды проникают хорошо и где они накапливаются внутриклеточно. К ним относятся органы с хорошим кровоснабжением — печень, почки (накапливаются в корковом веществе), ткани внутреннего уха. Так, концентрации аминогликозидов во внутреннем ухе и почках могут в 10 и более раз превышать их уровень в плазме. В полиморфно-ядерных лейкоцитах аминогликозиды обнаруживаются в концентрациях, составляющих примерно 70% от внеклеточных концентраций. Аминогликозиды практически не подвергаются биотрансформации. Выводятся почками путем клубочковой фильтрации в неизмененном виде, создавая высокие концентрации в моче. В тех случаях, когда аминогликозиды принимают внутрь, 80-90% выводится с фекалиями в неизмененном виде. Низкие концентрации отмечаются в желчи, грудном молоке, бронхиальном секрете. T 1/2 из крови у взрослых при нормальной функции почек составляет примерно 2-2,5 ч; у детей это время больше (в связи с незрелостью механизмов экскреции). Так, у новорожденных первых дней жизни T 1/2 может составлять до 15-18 ч, укорачиваясь к 21 дню жизни до 6 ч. T 1/2 увеличивается при почечной недостаточности (в 7 и более раз). При передозировке или кумуляции аминогликозидов эффективны гемодиализ и перитонеальный диализ.

Основными показаниями к применению аминогликозидов являются тяжелые системные инфекции, вызываемые главным образом аэробными грамотрицательными бактериями и стафилококками (гентамицин, нетилмицин, амикацин, тобрамицин и др.). Аминогликозиды иногда назначают эмпирически в виде монотерапии, чаще — при подозрении на смешанную этиологию — они применяются в сочетании с бета-лактамами и ЛС, активными в отношении анаэробов (например линкозамиды).

Аминогликозиды имеют узкий терапевтический диапазон и являются более токсичными соединениями, чем антибиотики других групп, поэтому их следует назначать только при тяжелых заболеваниях, и только в тех случаях, когда менее токсичные антибактериальные средства оказываются неэффективными или по каким-либо причинам противопоказаны.

Аминогликозиды могут быть показаны при лечении госпитальных (внутрибольничных, нозокомиальных, от греч. nosokomeo — ухаживать за больным) инфекций различной локализации, эффективны при бактериемии, сепсисе, при подозрении на сепсис у больных с нейтропенией, при эндокардите, остеомиелите, осложненных внутрибрюшных инфекциях (перитонит, абсцесс в брюшной полости). В урологии эти ЛС применяют (главным образом в условиях стационара) при лечении осложненных инфекций мочевыделительной системы (тяжелые формы пиелонефрита, паранефрит, уросепсис, карбункул почки). Аминогликозиды используются при лечении послеоперационных гнойных осложнений, после операций на костях и суставах, для профилактики инфекций у больных с нейтропенией.

Аминогликозиды показаны для лечения опасных инфекционных заболеваний, в т.ч. чумы и туляремии (прежде всего стрептомицин).

Применяют аминогликозиды в комбинированной терапии туберкулеза: стрептомицин — относится к группе основных противотуберкулезных средств, его применяют также для лечения некоторых редких инфекций; канамицин и амикацин — являются резервными противотуберкулезными средствами.

По особым показаниям (кишечные инфекции, селективная деконтаминация кишечника) аминогликозиды назначают внутрь (неомицин, канамицин).

Обязательными условиями для назначения аминогликозидов являются:

Строгий расчет дозы с учетом массы тела, возраста пациента, функции почек, локализации и тяжести инфекции;

Соблюдение режима дозирования;

Мониторинг концентрации вещества в крови;

Определение уровня креатинина в плазме крови (в связи с увеличением T 1/2 при почечной недостаточности);

Проведение аудиометрии до и после лечения.

В офтальмологии аминогликозиды (амикацин, гентамицин, неомицин, нетилмицин, тобрамицин) применяют местно в виде инстилляций, субконъюнктивальных и интравитреальных инъекций, а также системно. Растворы для местного применения готовят ex tempore. Аминогликозиды довольно хорошо проходят через гематоофтальмический барьер. При системном применении терапевтическая концентрация во влаге передней камеры и в стекловидном теле достигается медленно (1-2 ч). При закапывании в конъюнктивальный мешок они практически не подвергаются системной абсорбции, обнаруживаются в терапевтической концентрации в строме роговицы, влаге передней камеры и стекловидном теле в течение 6 ч.

Показаниями для назначения аминогликозидов в офтальмологической практике являются следующие инфекционно-воспалительные заболевания: блефарит, конъюнктивит, кератоконъюнктивит, бактериальный кератит, дакриоцистит, увеит и др. Применяют аминогликозиды также для профилактики послеоперационных и посттравматических инфекционных осложнений. Стрептомицин наиболее эффективен для лечения туберкулезных поражений глаз.

Для местного применения в офтальмологии и оториноларингологии при гнойной бактериальной инфекции разработаны специальные лекарственные формы гентамицина, тобрамицина и неомицина. При инфекциях с выраженным воспалительным и аллергическим компонентом эффективны лекформы, в т.ч. мази, с дополнительным содержанием дексаметазона или бетаметазона.

Все антибиотики-аминогликозиды обладают характерными токсическими свойствами — ототоксичностью (кохлеарной и вестибулярной), нефротоксичностью и, реже — нейротоксичностью с развитием нейро-мышечной блокады.

Чаще нефро- и ототоксичность проявляются у детей, пожилых пациентов, при исходно нарушенной функции почек и слуха. Однако развитие нефротоксичности у детей до трех месяцев жизни менее вероятно, чем у взрослых, поскольку механизм захвата антибиотика-аминогликозида щеточной каемкой эпителия почек еще недостаточно развит.

Согласно данным исследований на животных и у человека, нефро- и ототоксичность антибиотиков-аминогликозидов обусловлена тем, что они накапливаются в высоких концентрациях в корковом веществе почек, а также в эндолимфе и перилимфе внутреннего уха.

Ототоксичность аминогликозидов — тяжелое проявление их побочного действия. Накопление вещества в наружных и внутренних волосковых клетках кортиевого органа приводит к их изменениям. Обратная диффузия вещества в кровоток происходит медленно. T 1/2 аминогликозидов из жидкостей внутреннего уха в 5-6 раз больше, чем T 1/2 из крови. При высокой сывороточной концентрации аминогликозида в крови риск ототоксичности возрастает.

Выраженность стойких слуховых и вестибулярных нарушений зависит от количества поврежденных волосковых клеток и возрастает при увеличении длительности лечения. При повторном применении аминогликозидов гибнет все больше волосковых клеток, в конечном итоге это может привести к глухоте. Количество волосковых клеток уменьшается с возрастом, поэтому ототоксическое действие более вероятно у пожилых пациентов.

Хотя все аминогликозиды способны вызывать и слуховые, и вестибулярные расстройства, ототоксическое действие отдельных препаратов является частично избирательным. Так, стрептомицин и гентамицин обычно вызывают вестибулярные нарушения; амикацин, канамицин и неомицин — слуховые, тобрамицин — и те и другие. Частоту ототоксического действия оценить трудно. По данным аудиометрии она составляет в среднем 10-25%. Кохлеарные расстройства у детей могут проявляться глухотой, а у детей до 1 года — глухонемотой. При развитии ототоксического действия вначале нарушается восприятие высоких частот (более 4000 Гц), которое можно обнаружить с помощью аудиометрии, затем наступает необратимое снижение слуха, заметное для пациента.

Поскольку начальные проявления ототоксичности обратимы, за больными, принимающими антибиотики-аминогликозиды в высоких дозах и/или длительное время, необходимо вести тщательное наблюдение. Однако тугоухость может развиться и через несколько недель после отмены антибиотика.

При парентеральном использовании наиболее ототоксичны: неомицин> мономицин> канамицин> амикацин.

Вестибулярные расстройства могут проявляться головокружением, нарушением координации движений, изменением походки и др. Риск вестибулярных расстройств особенно велик при применении стрептомицина: по данным исследований, клинически выраженные необратимые вестибулярные расстройства возникали у 20% больных, принимавших стрептомицин по 500 мг 2 раза в сутки в течение 4 недель.

Нефротоксичность аминогликозидов обусловлена тем, что они избирательно накапливаются в эпителиальных клетках коркового слоя почек и могут вызывать структурные и функциональные изменения в проксимальных канальцах. При умеренных дозах происходит набухание эпителия канальцев, при высоких возможно развитие острого канальцевого некроза. Нефротоксическое действие приводит к повышению уровня креатинина в сыворотке крови или к снижению клиренса креатинина. Легкое и обычно обратимое нарушение функции почек отмечается у 8-26% больных, получающих аминогликозиды дольше нескольких суток. Нефротоксичность зависит от общей дозы и, следовательно, чаще возникает при длительном лечении. Нефротоксическое действие усиливается, если C min в крови превышает порог токсического действия. Отдельные аминогликозиды различаются по степени нефротоксичности, которая, по данным экспериментов на животных, зависит от концентрации препарата в корковом веществе почек. Неомицин в большей степени, чем другие аминогликозиды, накапливается в почках и обладает высокой нефротоксичностью, его применяют в основном местно. Наименьшая нефротоксичность у стрептомицина и нетилмицина. В сравнении с гентамицином амикацин менее нефротоксичен, но несколько более ототоксичен (слуховая часть VIII пары черепно-мозговых нервов поражается чаще вестибулярной). Вероятность проявления ототоксичности выше при нарушении функции почек и дегидратации, в т.ч. ожоговой. Однократное введение суточной дозы (80-100% стандартной) позволяет уменьшить риск токсических эффектов при сохранении аналогичной клинической эффективности. Степень нефротоксичности уменьшается в ряду: гентамицин> амикацин> канамицин> тобрамицин. Предполагают, что факторами риска нефротоксического действия служат пожилой возраст, болезни печени и септический шок. Наиболее опасным последствием поражения почек является замедление выведения вещества, что еще более усиливает токсичность. Поскольку клетки проксимальных канальцев способны к регенерации, нарушение функции почек, как правило, носит обратимый характер, если у пациента не было предшествующей почечной патологии.

Аминогликозиды могут ухудшать нервно-мышечную передачу, вызывая нервно-мышечную блокаду. В результате возникновения слабости диафрагмальной и других дыхательных мышц возможен паралич дыхания. По данным экспериментов на животных, аминогликозиды тормозят высвобождение ацетилхолина из пресинаптических окончаний и снижают чувствительность к нему н-холинорецепторов на постсинаптических мембранах.

Риск возникновения этого осложнения повышается в следующих случаях: возникновение токсической концентрации ЛС в крови (в 8-10 раз выше терапевтической); наследственная или приобретенная предрасположенность к нарушению нервно-мышечной передачи (например паркинсонизм, миастения); период новорожденности, особенно у недоношенных детей (у новорожденных запасы ацетилхолина малы и при возникновении возбуждения в синаптическую щель его высвобождается меньше; кроме того, у детей выше активность ацетил- и бутирилхолинэстеразы, которые разрушают ацетилхолин); одновременное назначение миорелаксантов и других ЛС, влияющих на нервно-мышечную передачу.

Действие аминогликозидов на нервно-мышечное проведение нивелируется кальцием, поэтому для лечения этого осложнения пациенту в/в вводят соли кальция.

К другим неврологическим нарушениям, которые могут вызвать аминогликозиды, относятся энцефалопатия и парестезия. Стрептомицин может вызвать поражение зрительного нерва.

Аминогликозиды не являются сильными аллергенами, поэтому кожная сыпь, зуд, отек наблюдаются нечасто. Местнораздражающее действие при правильной технике введения проявляется редко.

Проявление токсического действия аминогликозидов возможно и при местном применении (особенно на фоне почечной недостаточности). Так, при длительном наружном использовании, особенно на больших участках поврежденной кожи (обширные раны, ожоги), происходит всасывание ЛС в системный кровоток. Аминогликозиды быстро всасываются при введении в серозные полости, при этом возможна блокада нервно-мышечной передачи.

Применение при беременности. Все аминогликозиды проходят через плаценту, иногда создавая значительные концентрации в пуповинной крови и/или околоплодных водах, и могут оказывать нефротоксическое действие на плод (концентрация аминогликозидов в крови плода составляет 50% уровня в крови матери). Кроме того, имеются сообщения о том, что некоторые аминогликозиды (стрептомицин, тобрамицин) вызывали снижение слуха, вплоть до полной необратимой двухсторонней врожденной глухоты у детей, матери которых получали аминогликозиды в период беременности. Данных о применении других аминогликозидов во время беременности недостаточно, адекватных и строго контролируемых исследований применения у человека не проведено. В связи с этим применение аминогликозидов при беременности возможно только по жизненным показаниям, когда антибиотики других групп не могут быть использованы или оказались неэффективны.

Применение в период грудного вскармливания. Аминогликозиды проникают в грудное молоко в различных, но небольших количествах (например до 18 мкг/мл для канамицина). Однако аминогликозиды плохо всасываются из ЖКТ и связанных с ними осложнений у детей не зарегистрировано. Тем не менее на время лечения следует прекратить грудное вскармливание, поскольку велика вероятность развития у ребенка дисбактериоза.

Взаимодействие с другими ЛС. Антибиотики-аминогликозиды фармацевтически несовместимы с пенициллинами, цефалоспоринами, гепарином натрия, хлорамфениколом (выпадают в осадок). Нельзя назначать одновременно, а также в течение 2-4 недель после терапии аминогликозидами, ототоксичные (фуросемид, этакриновая кислота, полимиксины, гликопептиды, ацетилсалициловая кислота и др.) и нефротоксичные (метициллин, уреидо- и карбоксипенициллины, полимиксины, ванкомицин, цефалоспорины I поколения, ацикловир, ганцикловир, амфотерицин В, препараты платины и золота, декстраны — Полиглюкин, Реополиглюкин, индометацин и др.) средства. Миорелаксанты усиливают вероятность паралича дыхания. Индометацин, фенилбутазон и другие НПВС, нарушающие почечный кровоток, могут замедлять выведение аминогликозидов из организма. При одновременном и/или последовательном применении двух и более аминогликозидов (неомицин, гентамицин, мономицин и тобрамицин, нетилмицин, амикацин) их антибактериальное действие ослабляется (конкуренция за один механизм «захвата» микробной клеткой), а токсические эффекты усиливаются. При одновременном применении со средствами для ингаляционного наркоза, в т.ч. метоксифлураном, курареподобными препаратами, опиоидными анальгетиками, магния сульфатом и полимиксинами для парентерального введения, а также при переливании больших количеств крови с цитратными консервантами усиливается нервно-мышечная блокада.

Наличие реакций повышенной чувствительности к одному из аминогликозидов в анамнезе является противопоказанием к назначению других препаратов этой группы в связи с наличием перекрестной гиперчувствительности. При системном применении антибиотиков-аминогликозидов необходимо сопоставлять риск и пользу при наличии следующих медицинских проблем: дегидратация, тяжелая почечная недостаточность с азотемией и уремией, поражения VIII пары черепно-мозговых нервов, заболевания слухового и вестибулярного аппарата, неврит слухового нерва, миастения, паркинсонизм и ботулизм (в связи с тем, что аминогликозиды могут вызвать нарушение нервно-мышечной передачи, что приводит к дальнейшему ослаблению скелетной мускулатуры), период новорожденности, недоношенность детей, пожилой возраст.

Следует учитывать, что условиями, способствующими возникновению ототоксичности и нефротоксичности, являются: длительное превышение (даже в незначительной степени) терапевтической концентрации препарата в крови; заболевания почек и сердечно-сосудистой системы, приводящие к кумуляции; заболевания, облегчающие проникновение аминогликозида в ликвор внутреннего уха (отит, менингит, родовая травма, гипоксия в родах и др.), одновременный прием ото- и нефротоксичных ЛС.

Для предупреждения нефротоксичности аминогликозидов необходим постоянный контроль функции почек: анализ мочи, анализ крови с определением креатинина и расчет клубочковой фильтрации каждые три дня (при снижении этого показателя на 50% необходима отмена препарата), мониторинг концентрации ЛС в крови. Следует иметь в виду, что у больных с почечной недостаточностью аминогликозиды кумулируют и возрастает риск нефротоксического действия, в связи с чем необходима коррекция дозы.

Для профилактики ототоксичности необходимо не реже двух раз в неделю проводить аудиометрический и лабораторный контроль и также тщательный мониторинг концентраций аминогликозида в крови.

В связи с возможностью нарушения нервно-мышечной передачи при терапии аминогликозидами эти ЛС не должны назначаться пациентам с миастенией, на фоне и после введения миорелаксантов.

В связи с тем, что фармакокинетика аминогликозидов вариабельна и возможно превышение терапевтических концентраций, необходимо в процессе лечения проводить мониторинг концентрации ЛС в крови. Значения пиковых концентраций в крови варьируют у разных пациентов и зависят от объема распределения. Величина объема распределения связана с массой тела, объемом жидкости и жировой ткани, состоянием пациента. Так, например, объем распределения повышен у пациентов с обширными ожогами, асцитом и, наоборот, снижен при мышечной дистрофии.

Для аминогликозидов T 1/2 из внутреннего уха и почек может достигать 350 ч и более. Следовые концентрации антибиотиков в крови определяются на протяжении двух и более недель после отмены терапии. В связи с этим нельзя проводить повторный курс лечения аминогликозидами в течение 2-4 недель после последнего приема препарата данной группы из-за высокой вероятности развития побочных эффектов.

Современная фармацевтика производит большое разнообразие различных антибиотиков. Некоторые из них на рынке появились относительно недавно, а какие-то работают и спасают жизни людей много десятилетий подряд.

С далекого 1943 года в медицине стали применяться препараты из группы аминогликозидов, многие из них не потеряли своей актуальности и сейчас.

Общее описание группы медикаментов

Аминогликозиды – это класс антибиотиков получаемых либо природным путем из дрожжевых грибов, либо полусинтетическим, сочетая природные части с компонентами химического производства. Названы из-за того, что в их химическом строении молекулы есть аминосахариды.

Сейчас класс аминогликозидов насчитывает около десятка чисто природных антибиотиков, полученных из гриба актиномицета, а также несколько полусинтетических препаратов, произведенных из природных, путем их химического совершенствования.

Основа влияния на патоген у всех антибиотиков этой группы одинаковая – они ингибируют белковый синтез в рибосомах бактерий, тем самым делая возможность существования клетки микроорганизма невозможной. Итогом является полное разрушение микроба, то есть бактерицидный эффект.

В настоящее время известно 4 поколения аминогликозидов.

  1. К первому относятся: Канамицин, Мономицин, Стрептомицин и Неомицин.
  2. Второе поколение представлено только одним препаратом – Гентамицином.
  3. Третье поколение включает: Тобрамицин, Сизомицин, Нетилмицин и Амикацин.
  4. Четвертое самое новое поколение имеет в составе только один Изепамицин.

Все аминогликозидные антибиотики имеют широкую активность в отношении возбудителей. В большей степени от их воздействия гибнет грамотрицательная флора.

Представители этой флоры, которые высокочувствительны к аминогликозидам, представлены ниже:


Список можно продолжить менее известными и более редко встречающимися энтеробактериями, протеусом и многими другими. Имеют чувствительность, но в меньшей степени и грамположительные кокки – стафилококки и стрептококки.

Основные фармакокинетические особенности

Фармакокинетические особенности у всех препаратов группы аминогликозидов сходные. При приеме внутрь они не всасываются и создают бактерицидные концентрации только в просвете кишки. В большинстве случаев их применяют парентерально.

Средняя продолжительность действия лекарств около 10-12 часов, в связи с чем их нужно применять не менее двух раз в сутки.

Основные органы и ткани, где создаются наиболее активные концентрации лекарств, представлены ниже:


В организме аминогликозиды практически не трансформируются, выводятся с почками в неизмененном виде. При этом в моче определяются высокие концентрации лекарств. Аминогликозиды практически не поступают в желчь, бронхиальный секрет и грудную железу. Там не создаются эффективные дозы препаратов, в связи с чем, использование при бактериальных процессах в этих органах, представляется нецелесообразным.

Побочные проявления при приеме

Все антибиотики данной группы оказывают значительное токсическое действие. Главные органы, страдающие от воздействия этой группы препаратов, представлены ниже:

Остальные нежелательные явления выражены в меньшей степени. Гораздо реже, чем пенициллины, могут вызвать аллергические реакции. Все лекарства группы аминогликозидов проникают через плаценту и могут нанести вред развивающемуся плоду в виде необратимой глухоты. Поэтому при беременности данные лекарства не используются. Так же обстоит ситуация и с кормлением грудью.

Во избежание развития проблем с жизненно важными органами ребенка, при лактации аминогликозиды запрещены.

Какие лекарства применяются наиболее часто?

Названия наиболее часто используемых препаратов и их краткая характеристика приведены ниже.

Канамицин

Препарат первого поколения, регулярно применяется и в настоящее время.

Вводится либо внутривенно, либо внутрь полостей. Основные показания к применению препарата следующие:

  • туберкулез легких;
  • гнойные осложнения после операций;
  • абсцесс легкого;
  • сепсис;
  • тяжелая ожоговая инфекция.

Из-за высокой токсичности и наличия более качественных препаратов, применяется ограниченно. Средняя разовая доза 500 мг, суточная 1.5 грамма. Кратность введения не менее двух раз.

Помимо повреждения органов слуха и почек, может негативно воздействовать на систему кроветворения, вызывая нарушение выработки всех форменных элементов крови, а также на желудочно-кишечный тракт. Абсолютные противопоказания для препарата следующие:

  • любая патология слухового нерва;
  • беременность;
  • тяжелая патология почек;
  • непереносимость действующего вещества.

Препарат применяется парентерально и наружно. Парентеральное применение ограничено, так его вытеснил менее токсичный и более эффективный Амикацин. Монотерапия Гентамицином не применяется.

В сочетании с антибиотиками, влияющими на грамположительную флору, используется для лечения пневмонии, гнойных процессов в плевральной полости.

Кроме того, возможно использование при воспалительных процессах почек и остеомиелитах.

Вводится лекарство в суточной дозе 240 мг для взрослого пациента. Желательная кратность применения – не менее трех раз, но допустимо введение всей дозы однократно. При местном применении используется в виде мазей и капель для офтальмологического лечения, и мазей для лечения инфицированных ран.

Помимо противопоказаний, характерных для канамицина, лекарство нельзя применять при миастении.

В пожилом возрасте, у детей до года, особенно родившихся недоношенными и беременных лучше воздержаться от применения лекарства, так как влияние на почки и слух у этих категорий людей особенно негативное.

Это самый популярный препарат из группы аминогликозидов. Его спектр активности более широк за счет влияния на грамположительную флору.

Его используют при многих гнойных инфекциях, включая:

  • перитонит;
  • менингит;
  • сепсис;
  • эндокардит;
  • пневмонию;
  • абсцесс легкого.

Удобная внутривенная дозировка в виде однократного введения в сутки (1.5 грамм) обеспечивает стойкий 24-часовой эффект. Можно применять и внутримышечно.

По сравнению с другими аминогликозидными препаратами, оказывает меньше токсических влияний на организм. Не влияет на систему крови. Гораздо реже вызывает повреждение слуха и почек, процессы в большинстве случаев обратимы. Нельзя применять при беременности и любой патологии слухового нерва.

Тобрамицин имеет широкое применение только в офтальмологии. Системное его использование сопряжено с дороговизной лекарства и отсутствием преимуществ перед Амикацином. Тем не менее, у больных муковисцидозом он является препаратом выбора.

Изепамицин в России в настоящее время только проходит регистрацию. Препарат имеет более стойкий эффект в отношении синегнойной палочки и, вероятно, будет антибиотиком резерва при неэффективности других препаратов.

Таким образом, препараты группы аминогликозидов широко представлены в современной фармакологии. Имея широкий спектр активности, они могут быть полезны при тяжелых гнойных процессах в организме пациента.

Тем не менее, лекарства токсичные, бесконтрольное их применение, особенно в домашних условиях, недопустимо.

Аминогликозиды представляют обширную группу антибиотиков, которые используются для этиотропной терапии (лечение, направленное на уничтожение возбудителя) бактериальных инфекций, вызванных чувствительными к ним микроорганизмами.

Аминогликозиды являются достаточно ранним видов антибактериальных лекарственных средств. Они были открыты в 1944 году после получения пенициллина.

Механизм действия

Данная группа антибактериальных средств обладает бактерицидным действием. Это означает, что соединения приводят к гибели бактериальной клетки, а не только подавляют ее рост и размножение (бактериостатическое действие). Механизм бактерицидного эффекта заключается в том, что после проникновения внутрь клетки аминогликозиды необратимо связываются с субъединицей 30S рибосом (органеллы клетки, отвечающие за синтез белковых соединений). Это приводит к нарушению передачи информации из генетического материала (происходит посредством транспортной РНК), синтеза необходимых для нормальной жизнедеятельности бактерий белков с ее последующей гибелью. Также данные антибиотики частично подавляют активность субъединицы 50S рибосомы, что дополнительно усугубляет нарушение метаболических синтетических процессов в бактериальной клетке.

Спектр действия

Аминогликозиды обладают максимальным бактерицидным действием в отношении аэробных грамотрицательных бактерий, к которым относятся энтеропатогенная кишечная палочка, клебсиеллы, протей, энтеробактер, ацинетобактер, синегнойная палочка. Антибиотики этой группы неактивны в отношении грамположительных стрептококков и стафилококков. В связи с особенностями спектра действия аминогликозиды преимущественно применяются для этиотропной терапии нозокомиальных инфекций, вызванных патогенной (болезнетворной) и условно-патогенной микрофлорой.

Представители группы антибиотиков аминогликозиды стрептомицин и канамицин обладают активностью в отношении микобактерий, поэтому применяются в качестве препаратов второй линии для этиотропного лечения туберкулеза.

Основные показания

Медицинским показанием для применения аминогликозидов является этиотропная терапия инфекционных процессов различной локализации в организме, вызванных чувствительными к данным антибиотикам микроорганизмами:

Также антибиотики группы аминогликозиды могут использоваться для профилактики инфекционных осложнений перед и после выполнения хирургических вмешательств, травматических манипуляций, включая лечебные или диагностические процедуры.

Негативные реакции

В отличие от других групп антибактериальных лекарственных средств аминогликозиды являются достаточно токсическими соединениями, поэтому на фоне их системного применения не исключается развитие негативных патологических эффектов со стороны различных систем организма:

Также редко может развиваться локальная негативная патологическая реакция при внутривенном введении раствора для парентерального применения в виде флебита (воспаление стенки вен). Для минимизации развития негативных побочных эффектов аминогликозиды должны использоваться с учетом принципов рациональной антибиотикотерапии .

Правильное применение

Аминогликозиды являются достаточно токсичным антибактериальным средством, поэтому они должны обязательно использоваться с учетом нескольких особенностей, к которым относятся:

В связи с достаточно высокой токсичностью, аминогликозиды являются антибиотиками второго ряда, они используются только по строгим показаниям. К данным антибиотикам относится неомицин, стрептомицин, тобрамицин, канамицин, гентамицин.

Группа аминогликозидов объединяет препараты, родственные по химическому строению, антимикробному спектру, фармакокинетическим свойствам. Общее название “аминогликозиды” обусловлено наличием в их молекуле аминосахаров, соединенных гликозидной связью. Аминогликозиды характеризуются широким спектром антибактериального действия, особенно на стафилококки и грамотрицательную флору.

Выделяют аминогликозиды 1-го, 2-го и 3-го поколений. К аминогликозидам 1-го поколения относятся стрептомицин, неомицин, мономицин, канамицин. Внедрение в практику гентамицина (2-е поколение) связано с возникновением устойчивых штаммов микроорганизмов к аминогликозидам 1-го поколения и высокой активностью этого препарата по отношению к синегнойной палочке.

Аминогликозиды 3-го поколения (тобрамицин, сисомицин, амикацин, дидезоксиканамицин В, нетилмицин и т.д.) созданы в то время, когда были раскрыты молекулярные механизмы резистентности, обнаружены и выделены специфические ферменты, инактивирующие данные антибиотики. Аминогликозиды 2-го и 3-го поколений отличаются более высокой антибактериальной активностью, более широким спектром антимикробного действия; они постепенно вытесняют препараты 1-го поколения из традиционных областей их применения.

По степени убывания силы антимикробного действия аминогликозиды располагаются в следующем порядке: нетилмицин > сисомицин > гентамицин > тобрамицин > неомицин > канамицин > мономицин.

Устойчивость к аминогликозидам у клинических штаммов микроорганизмов частично перекрестная. Стрептомицинустойчивые штаммы стафилококков и грамотрицательных микроорганизмов в большинстве случаев чувствительны ко всем другим аминогликозидам. Резистентные к канамицину возбудители чаще всего устойчивы к мономицину, но многие из них чувствительны к неомицину. Микроорганизмы, устойчивые к аминогликозидам 1-го поколения, чувствительны к гентамицину и другим новым аминогликозидам. Однако гентамицинустойчивые штаммы в большинстве случаев резистентны к препаратам 1-го поколения. Аминогликозиды 3-го поколения активно действуют на микроорганизмы, устойчивые к гентамицину.

Для всех аминогликозидов характерно избирательное нейро- и нефротоксическое действие, что определяет необходимость четкого обоснования показаний к их назначению и тщательного контроля концентрации их в крови, почечной функции и снятия аудиограммы не реже одного раза в неделю. По степени снижения общей токсичности препараты можно расположить следующим образом: сисомицин > гентамицин > тобрамицин > нетилмицин > неомицин > стрептомицин > мономицин > канамицин.

СТРЕПТОМИЦИН подавляет рост бруцелл, микобактерий, сальмонелл, шигелл, H.influenzae, стафилококков, Y.pestis, клебсиеллы и других грамотрицательных бактерий. Антибиотик не обладает действием на анаэробы, почти на все грибы, простейшие, риккетсии и вирусы. Активен по отношению не только к размножающимся, но и находящимся в стадии покоя возбудителям (в отличие от пенициллина). Для проявления антимикробного эффекта стрептомицина необходим активный метаболизм в бактериальной клетке. Препарат действует на микроорганизмы, расположенные только вне клеток организма. В лечебной практике наиболее часто применяют сернокислую соль, кристаллический хлоркальциевый комплекс и сернокислую соль дигидрострептомицина.

Хлоркальциевый комплекс вводят в спинномозговой канал, остальные препараты - парентерально. Стрептомицин получил наиболее широкое применение не только во фтизиатрии, но и в лечебной практике терапевтических отделений. Внутрь препарат не принимают, так как он плохо всасывается из желудочно-кишечного тракта.

По сравнению с пенициллином стрептомицин при внутримышечном введении всасывается медленнее, а терапевтическая концентрация его в крови поддерживается в течение 8 ч и более. В вену антибиотик вводят медленно капельно, так как при создании очень высокой концентрации в крови могут возникнуть токсические реакции. Стрептомицин проникает в плевральную полость (до 50%), в перитонеальную жидкость (50-100% уровня в крови), в почки, сердце, легкие, печень (концентрация в 2 раза выше, чем в крови), в желчь печеночных ходов. При нарушении функции печени в желчь поступает незначительное количество препарата, а при холецистите - 70-80% его уровня в крови. Стрептомицин быстро выводится из организма, однако после повторного введения больших доз, даже при нормальной функции почек, отмечается кумуляция препарата. Основное количество его (60%) выводится почками в течение 12-24 ч путем клубочковой фильтрации. Средний дефицит выведения (при нормальной выделительной функции почек) - 20-30%. Однако продукты инактивации и метаболизма препарата не обнаруживаются, что является свидетельством депонирования антибиотика в различных органах. В частности, имеются сведения о накоплении стрептомицина в перилимфе. При повторном введении 2% дозы препарата выделяется с калом. При нарушенной функции почек выведение стрептомицина резко замедляется. У больных с анурией Т1/2 составляет 110 ч. В этих условиях даже введенные небольшие дозы антибиотика могут вызывать тяжелые нейро- и нефротоксические реакции. Поскольку стрептомицин, так же как и другие аминогликозиды, распределяется главным образом во внеклеточной жидкости, необходимо учитывать накопление препарата у больных с отеками; лихорадящие и анемизированные больные имеют более короткий Т1/2 Возраст и пол больного также влияют на фармакокинетику препарата. Серьезной проблемой стрептомицинотерапии является быстрое появление устойчивой микрофлоры, в связи с чем в лечебной практике он практически вытеснен другими, более эффективными антибиотиками, и утратил свое значение.

Стрептомицин применяют преимущественно при лечении туберкулеза и инфекций, вызванных чувствительными к стрептомицину возбудителями. В сочетании с бензилпенициллином или ампициллином стрептомицин используется при лечении септического эндокардита, вызванного S.viridans или S.faecalis. Антибиотик следует назначать осторожно при функциональных расстройствах слухового и вестибулярного аппарата и при нарушении выделительной функции почек. Необходим тщательный контроль функции VIII пары черепных нервов, состояния выделительной функции почек, гематологических показателей. У больных с нарушенной функцией почек суточная доза препарата не должна превышать 0,5 г при клиренсе эндогенного креатинина 50-60 мл/мин и 0,4 г при снижении клубочковой фильтрации до 40 мл/мин.

ГЕНТАМИЦИН (гарамицин) обладает широким спектром антимикробной активности. По характеру действия близок к аминогликозидам 1-го поколения, однако эффективность действия на стафилококки, бруцеллы и другие микроорганизмы у него выше. В отличие от аминогликозидов 1-го поколения гентамицин активно действует на синегноиную палочку. Существует различие в концентрациях гентамицина, действующих бактериостатически и бактерицидно, но оно не так уж велико: при его дозах, приближенных к максимальным значениям, возможен бактерицидный эффект, что дает основание применять его при сепсисе в фазе напряжения и катаболической фазе как один из основных антибиотиков. Не действует он на стрептококки и энтерококки.

По основным фармакокинетическим параметрам гентамицин мало отличается от аминогликозидов 1-го поколения. Терапевтическая концентрация его в крови (5-8 мкг/мл) поддерживается в течение 6-8 ч. При повторных инъекциях через 8 ч отмечена тенденция к кумуляции антибиотика, которая увеличивается при почечной недостаточности. Распределение гентамицина по органам и тканям подвержено значительным индивидуальным колебаниям и зависит как от величины вводимой дозы, так и от других факторов. Характерно, что 20-50% гентамицина проникает в норме через ГЭБ, а также в кости, мокроту, ткани предстательной железы, где концентрация препарата равняется его уровню в крови. Он проходит через плаценту, и его концентрация в сыворотке плода составляет 50-100% содержания препарата в крови матери. В бронхиальном секрете накапливается до 25-50% сывороточной концентрации; при этом накопление происходит медленно, а элиминация из бронхиального дерева осуществляется быстро. Гентамицин не метаболизируется в организме и выделяется почками путем клубочковой фильтрации в течение 24 ч. Выводится с мочой 40-100% суточной дозы. Антибиотик в небольших количествах выделяется с желчью. При деструктивной пневмонии доза препарата достигает 2,4-3,2 мг/кг в сутки и более (до 5 мг/кг). Увеличение дозы должно сопровождаться контролем концентрации гентамицина в крови и функции почек, повторными аудиометрическими исследованиями. Не рекомендуется применять препарат более 10-14 сут без тщательного контроля за побочными эффектами. Терапевтическая концентрация гентамицина в крови 5-12 мкг/мл.

Гентамицин показан при сепсисе, вызванном устойчивыми штаммами стафилококков, синегнойной палочкой, группой протея, сочетанием этих возбудителей. Токсичность его относительно низкая. Однако необходимо помнить, что гентамицин - антибиотик “резерва”, и назначение его без строгих показании может привести в дальнейшем к “бессилию врача перед возбудителем инфекции”. Другие показания - инфекции дыхательного тракта, хирургические заболевания, менингит, кожные заболевания и т.д. Его назначают только при тяжелом течении инфекционного заболевания, вызванного, в частности, смешанной микрофлорой до определения антибиограммы возбудителей.

ТОБРАМИЦИН (обрацин, тобрамицетин, небцин, обрамицин) по спектру антимикробного действия аналогичен гентамицину. По отношению к Р.aeruginosa тобрамицин в 2-4 раза эффективнее гентамицина, но уступает ему в активности при действии на стафилококки, клебсиеллу, серрацию и протей.

Белками сыворотки крови тобрамицин не связывается. По основным фармакокинетическим характеристикам он похож на гентамицин. При внутримышечном введении хорошо всасывается. Пик концентрации тобрамицина в крови фиксируется через 30 мин - 1 ч и составляет 2,5-2,7 мкг/мл (при введенной дозе 50 и 75 мг соответственно). Т1/2 - 2-2,5 ч. При повторных введениях препарата через 8 ч в дозах 25 и 50 мг или по 100 мг через 12 ч кумуляции его в организме не наблюдается. Дозу от 2 до 4-5 мг/кг вводят 3-4 раза в сутки в течение 7-10 дней.

При внутривенном введении тобрамицина его Т1/2 равен 1,6 ч. Пик концентрации при этом составляет не более 12 мкг/мл. Внутривенно капельно вводят 100 мг препарата в течение часа, при этом концентрация его в крови достигает 5 мкг/мл. Через 2 ч после окончания инфузии концентрация снижается до 3,6 мкг/мл.

При нарушении функции почек выведение препарата замедляется, а концентрация его в крови возрастает. При клиренсе креатинина менее 2 мл/мин Т1/2 может составлять 56 ч, при 5-10 мл/мин - 20-36 ч. Тобрамицин хорошо проникает в большинство тканей; наибольшее количество его обнаруживается в почках, наименьшее - в тканях мозга. У больных кистозным фиброзом его концентрация достигает 5-10 мкг/мл. С почками выводится за сутки 90% препарата в биологически активной форме. При приеме внутрь он не всасывается. При гемодиализе, периодически проводимом у больных, концентрация антибиотика в крови снижается в среднем на 50%. Терапевтическая безопасная концентрация препарата в крови 5-12 мкг/мл.

Показания к применению тобрамицина те же, что для гентамицина. Антибиотик используют как резервный препарат при лечении инфекций, вызванных устойчивыми штаммами P.aeruginosa. При тяжелом течении инфекционного процесса и необходимости немедленного химиотерапевтического вмешательства тобрамицин в комбинации с бета-лактамными антибиотиками можно назначать до установления бактериологического диагноза и определения антибиограммы возбудителя.

СИСОМИЦИН (в медицинской практике применяют сульфат сисомицина) по фармакодинамическим особенностям аналогичен гентамицину, но превосходит его в активности при действии на штаммы Proteus, особенно индолотрицательные, а также синегнойную палочку, Klebsiella и Enterobacter.

Белками сыворотки сисомицин связывается на 25%, при приеме внутрь препарат всасывается плохо. После внутримышечного введения поступает в кровь быстро, его максимальная концентрация в крови достигается через 30 мин. Т1/2 составляет 2-2,5 ч. Однократно введенная доза 1 мг/кг создает пик концентрации в крови 5 мкг/мл, доза 2 мг/кг - 8 мкг/мл. Суточную дозу сисомицина делят на 2 приема, в тяжелых случаях - на 3-4 приема. Концентрация сисомицина в крови снижается медленно - в течение 8 ч. При внутривенном быстром введении препарата в дозе 1 мг/кг максимальная концентрация его в крови достигает 5,8 мкг/мл. В тяжелых случаях в первые 2-3 дня назначают максимальную дозу препарата, затем ее снижают и переходят на внутримышечное введение. Кумуляции сисомицина в организме не происходит. При нарушении функции почек необходима коррекция дозы. По характеру распределения в тканях и средах организма препарат близок к гентамицину. Он плохо проникает через ГЭБ. Выводится из организма почками в неизменном виде (80-84%).

Показания к применению сисомицина те же, что для гентамицина. Его назначают также при лечении гнойно-септических состояний у больных лейкозами, злокачественными новообразованиями, возникшими на фоне цитостатической терапии, - при применении иммунодепрессантов.

АМИКАЦИН (амикин, биклин) обладает широким спектром действия, как и другие новые аминогликозиды, но не действует на большинство анаэробов. Превосходит по активности гентамицин и другие аминогликозиды по воздействию на Klebsiella и Providencia. Гентамицин- и тобрамицинустойчивые штаммы грамотрицательных бактерий, в том числе P.aeruginosae, чувствительны к амикацину.

При приеме внутрь амикацин не всасывается из желудочно-кишечного тракта, при внутримышечном введении всасывается медленнее, чем гентамицин. Пик концентрации в крови наблюдается через 1 ч при вводимых дозах 0,5 и 0,25 г и составляет 20 и 11,3 мкг/мл соответственно. Суточную дозу 15 мг/кг делят на 2- 3 приема. Т1/2 - 2-2,4 ч. Назначают по 7,5 мг/кг каждые 12 ч или 5 мг/кг каждые 8 ч. В мокроте амикацин накапливается плохо: до 2,3-8,4 мкг/мл, хотя в плевральную жидкость проникает до 80% сывороточной концентрации. Продолжительность курса лечения 7-10 дней, а при необходимости и дольше. При внутривенном введении препарата максимальная суточная доза составляет 15 мг/кг. Терапевтическая безопасная концентрация в крови составляет 15-25 мкг/мл.

Амикацин показан при тяжелых инфекционных заболеваниях, вызванных преимущественно грамотрицательными бактериями. Высокая чувствительность к амикацину большинства возбудителей гнойной инфекции обусловливает возможность применения препарата до выделения возбудителя и определения его чувствительности к препарату. Антибиотик активен при инфекциях, вызванных гентамицин- и тобрамицинустойчивыми штаммами грамотрицательных бактерий. Амикацин целесообразно назначать и как средство первоначальной терапии при подозрении на смешанную инфекцию, вызываемую стафилококками и грамотрицательными бактериями, а также при стафилококковой инфекции в случае непереносимости других антибиотиков.

НЕТИЛМИЦИН (нетиллин) по антимикробному спектру действия аналогичен сисомицину, амикацину, гентамицину. Известны случаи, когда возбудители, устойчивые к амикацину, были чувствительны к нетилмицину. Нетилмицин активно действует главным образом на возбудителей, которые инактивируют аминогликозиды путем фосфорилирования или аденилирования. Преимуществом над другими аминогликозидами является меньшая ото- и нефротоксичность препарата.

Нетилмицин вводят только парентерально. При сравнении его с другими аминогликозидами по основным параметрам не выявляется особенных различий, дозы при лечении инфекций мочевого тракта должны быть ниже, а для системных заболеваний - выше. При массе тела пациента 40-60 кг вводят по 100 мг через каждые 12 ч. Концентрация препарата в сыворотке крови не должна быть выше 16 мкг/мл. Нетилмицин не метаболизируется в организме. Экскретируется преимущественно путем клубочковой фильтрации. После многократного приема количество нетилмицина, экскретируемое мочой, приближается к ежедневно вводимой дозе препарата. После введения препарата небольшие его количества определяются в моче в течение недели. У пациентов с нарушенной функцией почек снижается концентрация нетилмицина в моче. Константа скорости элиминации коррелирует с клиренсом эндогенного креатинина, T1/2 в сыворотке - с концентрацией сывороточного креатинина.

Распределение по тканям и жидкостям в организме нетилмицина аналогично распределению аминогликозидов 3-го поколения. Безопасная концентрация препарата в крови - 5-12 мкг/мл.

Показания к применению нетилмицина очень широки:

  • при бактериемиях и септицемии, включая сепсис новорожденных, инфекциях урогенитального тракта, тяжелых инфекциях дыхательного тракта, кожи и связочного аппарата, остеомиелите, раневой, предоперационной и внутрибрюшинной инфекциях, инфекционных заболеваниях желудочно-кишечного тракта;
  • для лечения предполагаемой инфекции, вызванной грамотрицательными микробами;
  • в случаях, когда возбудитель неизвестен, нетилмицин лучше вводить в комбинации с пенициллинами или цефалоспоринами до получения результатов бактериологического исследования;
  • новорожденным при серьезной стафилококковой (сепсис или пневмония) инфекции рекомендуют вводить нетилмицин с пенициллином;
  • при наличии факторов риска у хирургических больных для профилактики послеоперационной инфекции.

Противопоказания к применению нетилмицина те же, что и для всей группы аминогликозидов . Нетилмицин нельзя назначать (или надо назначать с большой осторожностью) одновременно с препаратами конкурентного действия и усиливающими его токсические свойства: полимиксином В, колистином, цефалоридином и цефалотином, ванкомицином и всеми аминогликозидами , этакриновой кислотой и фуросемидом, нейромышечными блокаторами, анестетиками и при массивных трансфузиях цитратной крови, с курареподобными средствами. Влияние нетилмицина на беременных не изучено.