Головной мозг. Атлас мозга с микронным разрешением появился в открытом доступе

Может сильно меняться в зависимости от условий окружающей среды. Таким образом, транскриптом характеризует функциональную активность одной клетки, группы клеток, определенной ткани или даже целого организма. Специалисты из Института Аллена под руководством Аллана Джонса составили транскриптомный атлас мозга человека, который позволит не только расширить наши знания о функциях отдельных зон мозга, но и лучше понять причины заболеваний центральной нервной системы.

Эта работа заняла первое место в номинации «лучшее новостное сообщение» конкурса « »-2012.

Спонсор конкурса - дальновидная компания Лайф Текнолоджиз .

От простого к сложному

В 2001 Поль Аллен основал в Сиэттле (США) Институт исследования мозга (Allen Brain Institute). Поскольку начинать сразу с мозга человека было бы слишком самонадеянно, первым проектом Института стал Allen Mouse Brain Atlas - атлас транскриптома головного мозга мыши. Проект был начат в 2004 году и завершен за 2 года.

Целью этого исследования было, во-первых, подробное гистологическое изучение морфологии мозга, а во-вторых, исследование транскриптома с помощью гибридизации in situ (см. врезку). Результат представляет собой полноценную базу данных, где собрана информация о том, в каком участке мозга какие гены работают. Данные представлены как в виде фотографий классических срезов мозга, так и в виде цифрового трехмерного изображения (рис. 1).

Важной особенностью проекта Allen Mouse Brain Atlas было решение авторов выложить все результаты в открытый доступ по адресу www.brain-map.org , где любой желающий может найти информацию об экспрессии конкретного гена в конкретной зоне. Все данные доступны для скачивания, а для опытных пользователей был разработан ряд программ, например NeiroBlast, который позволяет находить гены с одинаковым паттерном экспрессии.

За шесть лет Allen Mouse Brain Atlas стал важным источником информации для экспериментальных работ, в том числе при изучении работы дофаминэргической системы мозга , аддиктивного поведения , разработке моделей для исследования заболеваний нервной системы и многих других. Интересно, что атлас использовался не только учеными, работающими с мышами, но и теми, кто использует в своих исследованиях крыс , дрозофил и даже нематод .

Работа над картой мозга мыши позволила оптимизировать экспериментальные методы для автоматизированной потоковой работы, разработать необходимое программное обеспечение и способы обработки больших массивов данных. Благодаря приобретенному опыту Институт Аллена смог приступить к построению транскриптомной карты головного мозга человека.

Раздел для любителей технических деталей

Две основные методики этого исследования Allen Brain Atlas называются гибридизацией in situ и методом РНК-микрочипов (по-английски его обычно называют microarray ). Оба они основаны на принципе комплементарности азотистых оснований.

Гибридизация in situ

Образование водородных связей по принципу комплементарности между первой молекулой РНК (исходно присутствующей в клетке) и второй (созданной экспериментатором) с образованием двуцепочечного комплекса называется гибридизацией. In situ (лат. «на месте») добавляют к названию метода, т.к. гибридизация РНК в этом случае производится непосредственно там, где клетки производят РНК - в образце ткани. Если пометить комплементарную молекулу РНК и обработать раствором таких молекул образец ткани, то можно визуализировать клетки, производящие данную РНК.

См. также ролики:

РНК-микрочипы

Метод микрочипов также основан на способности РНК к гибридизации. Этот метод можно использовать в крупномасштабных скринингах для регистрации малого количества РНК с высокой чувствительностью.

По масштабу проект Алленовского атласа человеческого мозга можно сравнить с проектом «Геном человека»*. Прежде всего, этот атлас дает надежды на успешный поиск новых подходов к лечению заболеваний нервной системы, таких как болезнь Альцгеймера, болезнь Паркинсона, аутизм и т.п. Разработанный метод анализа позволит сравнивать транскриптомы мозга больных со здоровым контролем, что даст возможность понять молекулярные основы заболевания. Сравнение транскриптома мозга человека и приматов позволит разобраться со многими вопросами эволюции человека (например, почему люди так преуспели в вербальной коммуникации и при чем тут печально известный «ген речи» ).

* - Довольно подробный разбор этой программы приводится в статье « ». - Ред.

Большой интерес представляет исследование функций малоизученных генов, экспрессия которых была обнаружена при составлении атласа. Вероятно, они могут пролить свет на ранее неизвестные или малоизученные аспекты работы мозга и его взаимодействия с другими органами, как например, недавнее открытие роли гена COMT в проявлении эффекта плацебо .

Одним словом, сегодня еще рано судить обо всех возможностях, открывающихся с появлением атласа транскриптома мозга человека, однако не будет преувеличением сказать, что нейробиологи получили новый мощный инструмент для своих исследований.

Литература

  1. Lau С. et al. (2008). Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain . BMC Bioinformatics 9, 153;
  2. Alavian K.N., Simon H.H. (2009).

Головной мозг — невероятно сложная и многоуровневая структура. Недавно учёные создали трёхмерную карту важнейшего органа человеческого тела, которую назвали BigBrain .

Атлас содержит мельчайшие детали мозга, которые запечатлены в самом высоком разрешении. Исследователи утверждают, что их работа поможет подробно разобраться в том, как функционируют и взаимодействуют различные отделы нашего мозга. Более того, карте найдётся и практическое применение в нейрохирургии: медикам необходимо знать все подробности, прежде чем вживлять в мозг электроды и другие устройства.

Составление карты человеческого мозга — давняя цель нейробиологии. Ранее учёные уже предпринимали шаги в этом направлении, создавая , а также электронный , но такой высокой чёткостью, как последняя карта, предыдущие исследования не отличались.

Трудность в моделировании мозга состоит прежде всего в том, что он является одновременно хрупкой и очень сложной структурой. Другим препятствием также являлись гофры и складки, покрывающие поверхность мозга. Нарезка его на слои подразумевает создание двухмерных объектов, и потому не всегда понятно, как функционируют клетки в складках трёхмерно объекта.

Проект по созданию атласа BigBrain Катрин Амунтс (Katrin Amunts) из Исследовательского центра Юлиха (Jülich Research Centre) и её коллеги из Германии и Канады запустили ещё в 2003 году.

Для этого они выбрали мозг 65-летней женщины, не проявлявшей при жизни никаких признаков психических заболеваний. Были исключены и другие факторы, которые могли повлиять на анатомию мозга. На протяжении нескольких месяцев орган "мариновали" в растворе формалина, а затем поместили в жидкий парафин.

После этого мозг нарезали при помощи микротома на более чем 7400 слоёв, ширина каждого из которых не превышала 20 микрометров (пятая часть ширины человеческого волоса). Отметим, что, как правило, мозг для исследований нарезается на гораздо более толстые слои, ширина которых составляет один миллиметр. Затем учёные сделали цифровые снимки слоёв с разрешением в 13 тысяч на 11 тысяч пикселей.

Следующими этапами было изучение каждого слоя с помощью микроскопа и воссоздание трёхмерной структуры мозга из полученных изображений. Этот процесс занял у исследователей более 1000 часов работы на сверхмощном компьютере. Даже если какой-то слой был срезан под углом, компьютерная программа вычисляла изначальную трёхмерную форму правильно, ориентируясь на высокое разрешение снимков.

Как сообщается в пресс-релизе , качество полученной 3D-модели в 50 раз превышало качество предыдущих аналогов, созданных при помощи магнитно-резонансной томографии. Такая карта позволит исследовать функции мозга на клеточном уровне, хотя на ней и не видны абсолютно все межклеточные соединения и нейронные связи.

Так или иначе, проект BigBrain станет крайне полезным для фундаментальной науки и медицины. "К примеру, карту можно использовать при проведении магнитно-резонансной томографии пациенту, который перенёс серьёзную черепно-мозговую травму. Атлас поможет определить, какие именно участки пострадали и требуют лечения", — предлагает Дамьен Галано (Damien Galanaud), нейробиолог из больницы Питье-Сальпетриер в Париже, который не принимал участия в исследовании. Галано занимается изучение последствий черепно-мозговых травм.

Впрочем, карта проекта BigBrain, конечно же, не универсальна, есть у неё и недостатки. "Помимо того, что ещё на этапе нарезания мозга на слои могли быть допущены ошибки, необходимо учитывать, что структура головного мозга у каждого человека индивидуальна и эти погрешности необходимо принимать во внимание. Я считаю, что необходимо объединить данные этого проекта с результатами предыдущих, менее качественных изысканий для создания более универсальной карты человеческого мозга", — говорит нейробиолог Джон Мацциотта (John Mazziotta) из Калифорнийского университета, который не принимал участия в проекте BigBrain.

Хорошо дополнить данные, полученные Амунтс и её командой, может другой . В ходе исследований, проведенных в апреле 2013 года, учёные удалили все липидные оболочки органа и получили полностью прозрачный мозг, изучение которого в дальнейшем стало намного проще.

Добавим, что команда Амунтс понимает важность индивидуальных особенностей структуры мозга и потому нацелена на проведение дальнейшего изучения этого органа. Учёные планируют создать аналогичную модель мозга мужчины и более молодой женщины, чтобы выявить половые и возрастные отличия.

Уоррен Селмен (Warren Selman), председатель факультета нейрохирургии Университетского госпиталя в Кливленде, считает, что ещё одним недостатком атласа BigBrain является тот факт, что он составлен на основе мозга умершего человека. В данном случае невозможно проследить за самым интересным процессом — функционированием и взаимодействиями нейронов. Селмен отмечает, что BigBrain является отличной базой данных, но требует дополнений, чтобы получить полноценные представления о важнейшем органе человеческого тела.

Статью, описывающую работу над проектом и полученные результаты , можно прочитать в журнале Science.

Атлас: анатомия и физиология человека. Полное практическое пособие Елена Юрьевна Зигалова

Головной мозг

Головной мозг

Головной мозг расположен в полости мозгового черепа, форма которого определяется формой мозга. Масса мозга новорожденного мальчика около 390 г (339,25–432,5 г) и девочки 355 г (329,99–368 г). До 5 лет масса мозга увеличивается быстро, в шестилетнем возрасте она достигает 85–90 % окончательной, затем до 24–25 лет возрастает медленно, после чего рост заканчивается и составляет около 1500 г (от 1100 до 2000 г).

Головной мозг подразделяется на три основных отдела: мозговой ствол, мозжечок и конечный мозг (полушария большого мозга). Мозговой ствол включает в себя продолговатый мозг, мост, средний и промежуточный мозг. Именно отсюда выходят черепные нервы. Самая развитая, крупная и функционально значимая часть мозга – это полушария большого мозга . Отделы полушарий, образующие плащ, наиболее важны в функциональном отношении. Поперечная щель большого мозга отделяет затылочные доли полушарий от мозжечка. Кзади и книзу от затылочных долей расположены мозжечок и продолговатый мозг , переходящий в спинной. Головной мозг состоит из переднего мозга, который подразделяется на конечный и промежуточный ; среднего; ромбовидного, включающего задний мозг (к нему относятся мост и мозжечок ) и продолговатый мозг . Между ромбовидным и средним расположен перешеек ромбовидного мозга .

Передний мозг – отдел центральной нервной системы, управляющий всей жизнедеятельностью организма. Полушария большого мозга лучше всего развиты у человека разумного, их масса составляет 78 % общей массы головного мозга. Площадь поверхности коры головного мозга человека – около 220 тыс. мм 2 , это зависит от наличия большого количества борозд и извилин. Особого развития у человека достигают лобные доли, их поверхность составляет около 29 % всей поверхности коры, а масса более 50 % массы головного мозга. Полушария большого мозга отделены друг от друга продольной щелью большого мозга, в глубине которой видно соединяющее их мозолистое тело , образованное белым веществом. Каждое полушарие состоит из пяти долей. Центральная борозда (Роландова) отделяет лобную долю от теменной ; латеральная борозда (Сильвиева) – височную от лобной и теменной , теменно-затылочная борозда разделяет теменную и затылочную доли (рис. 67 ). В глубине латеральной борозды располагается островковая доля . Более мелкие борозды делят доли на извилины. Три края (верхний, нижний и медиальный) делят полушария на три поверхности: верхнелатеральную, медиальную и нижнюю.

Верхнелатеральная поверхность полушария большого мозга. Лобная доля. Ряд борозд делят ее на извилины: почти параллельно центральной борозде и кпереди от нее проходит предцентральная борозда , которая отделяет предцентральную извилину . От предцентральной борозды более или менее горизонтально проходят вперед две борозды, разделяющие верхнюю, среднюю и нижнюю лобные извилины . Теменная доля. Постцентральная борозда отделяет одноименную извилину; горизонтальная внутритеменная борозда разделяет верхнюю и нижнюю теменные дольки . Затылочная доля разделена на несколько извилин бороздами, из которых наиболее постоянной является поперечная затылочная. Височная доля. Две продольные борозды верхняя и нижняя височные отделяют три височные извилины: верхнюю, среднюю и нижнюю . Островковая доля. Глубокая круговая борозда островка отделяет ее от других отделов полушария.

Рис. 67. Головной мозг. Верхнелатеральная поверхность полушария. 1 – лобная доля, 2 – латеральная борозда; 3 – височная доля, 4 – листки мозжечка; 5 – щели мозжечка; 6 – затылочная доля; 7 – теменно-затылочная борозда; 8 – теменная доля; 9 – постцентральная извилина; 10 – центральная борозда; 11 – предцентральная извилина

Медиальная поверхность полушария большого мозга. В образовании медиальной поверхности полушария большого мозга принимают участие все его доли, кроме островковой (рис. 68 ). Борозда мозолистого тела огибает его сверху, отделяя мозолистое тело от поясной извилины , направляется книзу и вперед и продолжается в борозду гиппокампа . Над поясной извилиной проходит поясная борозда , которая начинается кпереди и книзу от клюва мозолистого тела, поднимается вверх, поворачивается назад, направляясь параллельно борозде мозолистого тела. На уровне его валика от поясной борозды вверх отходит краевая часть, которая сзади ограничивает околоцентральную дольку, а спереди – предклинье, сама борозда продолжается в подтеменную борозду. Книзу и кзади через перешеек поясная извилина переходит в парагиппокампальную извилину , которая заканчивается спереди крючком и ограничена сверху бороздой гиппокампа . Поясную парагиппокампальную извилину и перешеек объединяют под названием сводчатой . В глубине борозды гиппокампа расположена зубчатая извилина . Медиальная поверхность затылочной доли отделена теменно-затылочной бороздой от теменной доли. От заднего полюса полушария до перешейка сводчатой извилины проходит шпорная борозда , которая ограничивает сверху язычную извилину . Между теменно-затылочной бороздой спереди и шпорной сзади располагается клин , обращенный острым углом кпереди.

Рис. 68. Головной мозг. Медиальная поверхность полушария. 1 – парацентральная долька, 2 – поясная извилина, 3 – поясная борозда, 4 – прозрачная перегородка, 5 – верхняя лобная борозда, 6 – межталамическое сращение, 7 – передняя спайка, 8 – таламус, 9 – гипоталамус, 10 – четверохолмие, 11 – зрительный перекрест, 12 – сосцевидное тело, 13 – гипофиз, 14 – IV желудочек, 15 – мост, 16 – ретикулярная формация, 17 – продолговатый мозг, 18 – червь мозжечка, 19 – затылочная доля, 20 – шпорная борозда, 21 – ножка мозга, 22 – клин, 23 – водопровод среднего мозга, 24 – затылочно-височная борозда, 25 – сосудистое сплетение, 26 – свод, 27 – предклинье, 28 – мозолистое тело

Нижняя поверхность полушария большого мозга имеет наиболее сложный рельеф (рис. 69 ). Спереди расположена нижняя поверхность лобной доли, позади нее височный полюс и нижняя поверхность височной и затылочной долей, между которыми нет четкой границы. На нижней поверхности лобной доли параллельно продольной щели проходит обонятельная борозда, к которой снизу прилежит обонятельная луковица и обонятельный тракт, продолжающийся в обонятельный треугольник. Между продольной щелью и обонятельной бороздой расположена прямая извилина. Латеральнее от обонятельной борозды лежат глазничные извилины. Язычная извилина затылочной доли ограничена коллатеральной бороздой, которая переходит на нижнюю поверхность височной доли, разделяя парагиппокампальную и медиальную затылочно-височную извилины. Кпереди от коллатеральной находится носовая борозда, ограничивающая передний конец парагиппокампальной извилины крючок.

Рис. 69. Управление органов черепными нервами, схема. I – обонятельный нерв; II – зрительный нерв; III – глазодвигательный нерв; IV – блоковый нерв; V – тройничный нерв; VI – отводящий нерв; VII – лицевой нерв; VIII – преддверно-улитковый нерв; IX – языкоглоточный нерв; X – блуждающий нерв; XI – добавочный нерв; XII – подъязычный нерв

Строение коры большого мозга. Кора большого мозга образована серым веществом, которое лежит по периферии (на поверхности) полушарий большого мозга. Толщина коры различных участков полушарий колеблется от 1,3 до 5 мм. Впервые киевский ученый В.А. Бецпоказал, что строение и взаиморасположение нейронов неодинаково в различных участках коры, что определяет нейроцитоархитектонику коры. Клетки более или менее одинаковой структуры располагаются в виде отдельных слоев (пластинок). В новой коре большинство нейронов образуют шесть пластинок. В различных отделах варьирует их толщина, характер границ, размеры клеток, их количество и т. д.

Снаружи расположена первая молекулярная пластина, в которой залегают мелкие мультиполярные ассоциативные нейроны и множество волокон отростков нейронов нижележащих слоев. Вторая наружная зернистая пластинка образованная множеством мелких мультиполярных нейронов. Третья, самая широкая, пирамидная пластинка содержит нейроны пирамидной формы, тела которых увеличиваются в направлении сверху вниз. Четвертая внутренняя зернистая пластинка образована мелкими нейронами звездчатой формы. В пятой внутренней пирамидной пластинке , которая наиболее хорошо развита в предцентральной извилине, залегают очень крупные (до 125 мкм) пирамидные клетки, открытые В.А. Бецем в 1874 г. В шестой мультиформной пластинке расположены нейроны различной формы и размеров.

Количество нейронов в коре достигает 10–14 млрд. В каждой клеточной пластинке помимо нервных клеток располагаются нервные волокна. К. Бродман в 1903–1909 гг. выделил в коре 52 цитоархитектонических поля. О. Фогт и Ц. Фогт (1919–1920 гг.) с учетом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков.

Локализация функций в коре полушарий большого мозга. В коре большого мозга происходит анализ всех раздражений, которые поступают из внешней и внутренней среды.

В коре постцентральной извилины и верхней теменной дольки залегают ядра коркового анализатора проприоцептивной и общей чувствительности (температурной, болевой, осязательной) противоположной половины тела. При этом ближе к продольной щели мозга расположены корковые концы анализатора чувствительности нижних конечностей и нижних отделов туловища, а наиболее низко у латеральной борозды проецируются рецепторные поля верхних частей тела и головы (рис. 70А ). Ядро двигательного анализатора находится, главным образом, в предцентральной извилине и парацентральной дольке на медиальной поверхности полушария («двигательная область коры»). В верхних участках предцентральной извилины и парацентральной дольки расположены двигательные центры мышц нижних конечностей и самых нижних отделов туловища. В нижней части у латеральной борозды находятся центры, регулирующие деятельность мышц лица и головы (рис. 70Б ). Двигательные области каждого из полушарий связаны со скелетными мышцами противоположной стороны тела. Мышцы конечностей изолировано связаны с одним из полушарий; мышцы туловища, гортани и глотки связаны с двигательными областями обоих полушарий. В обоих описанных центрах величина проекционных зон различных органов зависит не от их величины, а от функционального значения. Так, зоны кисти в коре полушария большого мозга значительно больше, чем зоны туловища и нижней конечности, вместе взятых.

На обращенной к островку поверхности средней части височной извилины находится ядро слухового анализатора. К каждому из полушарий подходят проводящие пути от рецепторов органа слуха как левой, так и правой сторон.

Ядро зрительного анализатора располагается на медиальной поверхности затылочной доли полушария большого мозга по обеим сторонам («по берегам») шпорной борозды. Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза; левого с латеральной половиной сетчатки левого и медиальной половиной сетчатки правого глаза.

Рис. 70. Расположение корковых центров. А – Корковый центр общей чувствительности (чувствительный «гомункулус») (из В. Пенфилда и И. Расмуссена). Изображения на поперечном срезе мозга (на уровне постцентральной извилины) и относящиеся к ним обозначения показывают пространственное представительство поверхности тела в коре большого мозга. Б – Двигательная область коры (двигательный «гомункулюс»; (из В. Пентфилда и И. Расмуссена). Изображение двигательного «гомункулюса» отражает относительные размеры областей представительства отдельных участков тела в коре предцентральной извилины большого мозга

Корковый конец обонятельного анализатора – это крючок, а также старая и древняя кора. Старая кора располагается в области гиппокампа и зубчатой извилины, древняя – в области переднего продырявленного пространства, прозрачной перегородки и обонятельной извилины. Благодаря близкому расположению ядер обонятельного и вкусового анализаторов чувства обоняния и вкуса тесно связаны. Ядра вкусового и обонятельного анализаторов обоих полушарий связаны проводящими путями с рецепторами как левой, так и правой сторон.

Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляющих первую сигнальную систему действительности (И.П. Павлов). В отличие от первой, вторая сигнальная система имеется только у человека и тесно связана с развитием членораздельной речи.

Речь и мышление человека осуществляются при участии всей коры полушарий большого мозга. В то же время в коре имеются зоны, являющиеся центрами целого ряда специальных функций, связанных с речью. Двигательные анализаторы устной и письменной речи располагаются в областях коры лобной доли, прилежащих к предцентральной извилине вблизи ядра двигательного анализатора. Анализаторы зрительного и слухового восприятия речи находятся вблизи ядер анализаторов зрения и слуха. При этом речевые анализаторы у правшей локализуются лишь в левом полушарии, а у левшей только в правом.

Базальные (подкорковые центральные) ядра и белое вещество конечного мозга. В толще белого вещества каждого полушария большого мозга имеются скопления серого вещества, образующего отдельно лежащие ядра, которые залегают ближе к основанию мозга. Эти ядра называются базальными (подкорковыми центральными). К ним относятся полосатое тело, ограда и миндалевидное тело. Ядра полосатого тела образуют стриопаллидарную систему, которая, в свою очередь, относится к экстрапирамидной системе, участвующей в управлении движениями, регуляции мышечного тонуса.

К белому веществу полушария относятся внутренняя капсула и волокна, проходящие через спайки мозга (мозолистое тело, передняя спайка, спайка свода) и направляющиеся к коре и базальным ядрам; свод, а также системы волокон, соединяющих участки коры и подкорковые центры в пределах одной половины мозга (полушария).

Боковой желудочек. Полостями полушарий большого мозга являются боковые желудочки (I и II), расположенные в толще белого вещества под мозолистым телом. Каждый желудочек состоит из четырех частей: передний рог залегает в лобной, центральная часть в теменной, задний рог в затылочной и нижний рог в височной доле.

Промежуточный мозг, расположенный под мозолистым телом, состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса. Таламус (зрительный бугор) парный, образованный главным образом серым веществом, является подкорковым центром всех видов чувствительности. Медиальная поверхность правого и левого таламусов, обращенных друг к другу, образует боковые стенки полости промежуточного мозга III желудочка. Эпиталамус включает в себя шишковидное тело (эпифиз), поводки и треугольники поводков. Шишковидное тело, являющееся железой внутренней секреции, как бы подвешен на двух поводках, соединенных между собой спайкой и связанный с таламусом посредством треугольников поводков . В треугольниках поводков заложены ядра, относящиеся к обонятельному анализатору. Метаталамус образован парными медиальным и латеральным коленчатым телами, лежащими позади каждого таламуса. Медиальное коленчатое тело наряду с нижними холмиками пластинки крыши среднего мозга (четверохолмия) – подкорковый центр слухового анализатора. Латеральное коленчатое тело вместе с верхними холмиками пластинки крыши среднего мозга является подкорковым центром зрительного анализатора . Ядра коленчатых тел связаны с корковыми центрами зрительного и слухового анализаторов.

Гипоталамус находится кпереди от ножек мозга и включает в себя ряд структур: расположенную кпереди зрительную часть (зрительный перекрест, зрительный тракт, серый бугор, воронка, нейрогипофиз) и обонятельную часть (сосцевидные тела и собственно подталамическая область подбугорье). Функциональная роль гипоталамуса очень велика (см. раздел «Эндокринные железы», с. ХХ). В нем расположены центры вегетативной части нервной системы. В медиальном гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т. д.). Медиальный гипоталамус связан также с латеральным гипоталамусом. Последний не имеет ядер, но обладает двусторонними связями с вышележащими и нижележащими отделами мозга. Медиальный гипоталамус является связующим звеном между нервной и эндокринной системами. В последние годы из гипоталамуса выделены энкефалины и эндорфины, обладающие морфиноподобным действием. Они участвуют в регуляции поведения и вегетативных процессов. Гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений, которые регулируются продолговатым мозгом.

Сосцевидные тела , образованные серым веществом, покрытым тонким слоем белого, являются подкорковыми центрами обонятельного анализатора. Кпереди от сосцевидных тел расположен серый бугор , в котором залегают ядра вегетативной нервной системы. Они также оказывают влияние на эмоциональные реакции человека. Часть промежуточного мозга, расположенная ниже таламуса и отделенная от него гипоталамической бороздой, составляет собственно гипоталамус . Сюда продолжаются покрышки ножек мозга, здесь заканчиваются красные ядра и черное вещество среднего мозга.

Полость промежуточного мозга – III желудочек – представляет собой узкое, расположенное в сагиттальной плоскости щелевидное пространство, ограниченное с боков медиальными поверхностями таламусов, снизу гипоталамусом, сверху сводом, над которым располагается мозолистое тело. Полость III желудочка кзади переходит в водопровод среднего мозга, а спереди по бокам через межжелудочковые отверстия сообщается с боковыми желудочками.

К среднему мозгу относятся ножки мозга и крыша среднего мозга. Ножки мозга – это белые округлые (довольно толстые) тяжи, выходящие из моста и направляющиеся вперед к полушариям большого мозга. Каждая ножка состоит из покрышки и основания, границей между ними является черное вещество (цвет зависит от обилия меланина в его нервных клетках), относящееся к экстрапирамидной системе, которая участвует в поддержании мышечного тонуса и автоматически регулирует работу мышц. Основание ножки образовано нервными волокнами, идущими от коры большого мозга в спинной и продолговатый мозг и мост. Покрышка ножек мозга содержит главным образом восходящие волокна, направляющиеся к таламусу, среди которых залегают ядра. Самыми крупными являются красные ядра , от которых начинается двигательный красноядерно-спинномозговой путь. Кроме того, в покрышке располагаются ретикулярная формация и ядро дорсального продольного пучка (промежуточное ядро).

В крыше среднего мозга различают пластинку крыши (четверохолмие ), состоящую из четырех беловатых холмиков двух верхних (подкорковые центры зрительного анализатора) и двух нижних (подкорковые центры слухового анализатора). В углублении между верхними холмиками лежит шишковидное тело. Четверохолмие – это рефлекторный центр различного рода движений, возникающих, главным образом, под влиянием зрительных и слуховых раздражений. От ядер этих холмиков берет начало проводящий путь, заканчивающийся на клетках передних рогов спинного мозга.

Водопровод среднего мозга (Сильвиев водопровод) – узкий канал (длиной 2 см), который соединяет III и IV желудочки. Вокруг водопровода располагается центральное серое вещество , в котором заложены ретикулярная формация, ядра III и IV пар черепных нервов и др. ядра.

К заднему мозгу относятся мост, расположенный вентрально, и лежащий позади моста мозжечок. Мост (Варолиев мост), хорошо развитый у человека, выглядит в виде лежащего поперечно утолщенного валика, от латеральной стороны которого справа и слева отходят средние мозжечковые ножки . Задняя поверхность моста, прикрытая мозжечком, участвует в образовании ромбовидной ямки, передняя (прилежащая к основанию черепа) граничит с продолговатым мозгом внизу и ножками мозга вверху. Мост состоит из множества нервных волокон, образующих проводящие пути и связывающие кору большого мозга со спинным мозгом и с корой полушарий мозжечка. Между волокнами залегают ретикулярная формация, ядра V, VI, VII, VIII пар черепных нервов.

Мозжечок играет основную роль в поддержании равновесия тела и координации движений. Мозжечок хорошо развит у человека в связи с прямохождением и трудовой деятельностью рук, особенно развиты полушария мозжечка . В мозжечке различают два полушария и непарную срединную часть – червь . Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие, длинные листки мозжечка. Благодаря этому его поверхность у взрослого человека составляет в среднем 850 см 2 , а масса -120–160 г. Мозжечок состоит из серого и белого веществ. Белое вещество, проникая между серым, как бы ветвится, образуя белые полоски, напоминая на срединном разрезе фигуру ветвящегося дерева – «древо жизни» мозжечка (см. рис. 68 ). Кора мозжечка состоит из серого вещества толщиной 1–2,5 мм. Кроме того, в толще белого вещества имеются скопления серого четыре пары ядер. Нервные волокна, связывающие мозжечок с другими отделами, образуют три пары мозжечковых ножек: нижние направляются к продолговатому мозгу, средние к мосту, верхние к четверохолмию.

В коре мозжечка различают три слоя: наружный молекулярный, средний слой грушевидных нейронов (ганглионарный) и внутренний зернистый. В молекулярном и зернистом слоях залегают в основном мелкие нейроны. Крупные грушевидные нейроны (клетки Пуркинье) размерами до 40 мкм, расположенные в среднем слое в один ряд – это эфферентные нейроны коры мозжечка. Их аксоны, отходящие от основания тел, образуют начальное звено эфферентных путей. Они направляются к нейронам ядер мозжечка, а дендриты располагаются в поверхностном молекулярном слое. Остальные нейроны коры мозжечка являются вставочными (ассоциативными), они передают нервные импульсы грушевидным нейронам.

ВНИМАНИЕ

Все нервные импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов.

К моменту рождения мозжечок менее развит по сравнению с конечным мозгом (особенно полушария), но на первом году жизни он развивается быстрее других отделов мозга. Выраженное увеличение мозжечка отмечается между пятым и одинннадцатым месяцами жизни, когда ребенок учится сидеть и ходить.

Продолговатый мозг является непосредственным продолжением спинного мозга. Длина его около 25 мм, форма приближается к усеченному конусу, обращенному основанием вверх. Передняя поверхность разделена передней срединной щелью , по бокам которой располагаются пирамиды , образованные частично перекрещивающимися пучками нервных волокон пирамидных проводящих путей. Задняя поверхность продолговатого мозга разделена задней срединной бороздой , по бокам от нее расположены продолжения задних канатиков спинного мозга, которые кверху расходятся, переходя в нижние мозжечковые ножки . Последние ограничивают снизу ромбовидную ямку . Продолговатый мозг построен из белого и серого вещества, последнее представлено ядрами IX–XII пар черепных нервов, олив, центрами дыхания и кровообращения, ретикулярной формацией. Белое вещество образовано длинными и короткими волокнами, составляющими соответствующие проводящие пути. Центры продолговатого мозга – кровяное давление сердечный ритм и спонтанные дыхательные движения. Волокна пирамидных путей соединяют кору большого мозга с ядрами черепных нервов и передними рогами спинного мозга.

Ретикулярная формация представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных в стволе мозга (продолговатый мозг, мост и средний мозг) и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спинным мозгом. Ретикулярная форма регулирует уровень возбудимости и тонуса различных отделов ЦНС, включая кору большого мозга, участвует в регуляции сознания, эмоций, сна и бодрствования, вегетативных функций, целенаправленных движений.

IV желудочек – это полость ромбовидного мозга, продолжающаяся книзу в центральный канал спинного мозга. Дно IV желудочка благодаря своей форме называется ромбовидной ямкой . Она образована задними поверхностями продолговатого мозга и моста, верхними сторонами ямки служат верхние, а нижними нижние мозжечковые ножки. В толще ромбовидной ямки залегают ядра V, VI, VII, VIII, IX, X, XI и XII пар черепных нервов.

Из книги Неврология и нейрохирургия автора Евгений Иванович Гусев

1.4. Головной мозг 1.4.1. Продолговатый мозг Продолговатый мозг (medulla oblongata) является продолжением спинного мозга. Спинной мозг переходит в продолговатый мозг постепенно, без резкой границы. Условной границей перехода спинного мозга в продолговатый является перекрест

Из книги Марихуана: мифы и факты автора Линн Циммер

7. Марихуана и головной мозг МИФМарихуана убивает клетки головного мозга. Длительное употребление марихуаны вызывает стойкие нарушения структуры и функций головного мозга, приводя к потере памяти, когнитивным нарушениям, расстройствам личности и снижению

Из книги Нервные болезни: конспект лекций автора А. А. Дроздов

1. Головной мозг и его структура Головной мозг состоит из двух полушарий, которые разделены между собой глубокой бороздой, доходящей до мозолистого тела. Мозолистое тело представляет собой массивный слой нервных волокон, которые соединяют оба полушария головного мозга.

Из книги Новейшая книга фактов. Том 1 автора Анатолий Павлович Кондрашов

Из книги Новейшие победы медицины автора Гуго Глязер

Глава VI Головной мозг и нервы Успехи мозговой хирургии Человечеству много тысяч лет назад была известна операция трепанации черепа. При раскопках древнейших могил и захоронений в глубоких пластах земли находили и теперь находят черепа с хорошо зажившими

Из книги Гомеопатическое лечение кошек и собак автора Дон Гамильтон

Из книги Кинезитерапия суставов и позвоночника автора Леонид Витальевич Рудницкий

ГОЛОВНОЙ МОЗГ В головном мозге различают серое вещество и белое вещество. Серое вещество – это скопление нервных клеток, которое находится в коре головного мозга. Каждый участок коры представляет собой нервный центр, который контролирует ту или иную функцию

Из книги Грыжа позвоночника. Безоперационное лечение и профилактика автора Алексей Викторович Садов

Головной мозг В головном мозге различают серое и белое вещество. Серое вещество – это скопление нервных клеток, которое находится в коре головного мозга. Каждый участок коры представляет собой нервный центр, который контролирует ту или иную функцию организма.От нервных

Из книги Гистология автора В. Ю. Барсуков

23. Нервная система. Головной мозг В головном мозге также выделяют серое и белое вещество, но распределение этих двух составных частей здесь более сложное, чем в спинном мозге.Ствол мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нервных клеток. На

Из книги Алкоголизм автора Александр Витальевич Мельников

Головной мозг Поражение головного мозга у пьющих людей обусловливается двумя факторами:1) алкоголь обладает собственно нейротоксическим действием, то есть непосредственно вызывает гибель клеток коры головного мозга;2) нарушение мозговых функций вызывается недостатком

Из книги До смерти здоров. Результат исследования основных идей о здоровом образе жизни автора Эй Джей Джейкобс

Глава 11 Головной мозг Цель: стать умнееВ истории не было лучшего времени для дураков. Никогда еще столько людей не верили, что, поработав как следует и применив правильные методики, можно усовершенствовать мозг и поумнеть.Десятилетиями считалось, что ум дается от природы,

Из книги Пять шагов к бессмертию автора Борис Васильевич Болотов

Головной мозг Двоение в глазах, заторможенность речи, нарушение координации движения, эпилепсия, паркинсонизм, рассеянный склероз, шизофрения, пятнистая окраска кожи.Исходный растительный материал: пион уклоняющийся, дурнишник (нетреба), мандрагора, мак, конопля, табак,

Из книги Полный медицинский справочник диагностики автора П. Вяткина

Из книги Здоровый мужчина в вашем доме автора Елена Юрьевна Зигалова

Из книги автора

Из книги автора

Головной мозг Головной мозг расположен в полости мозгового черепа. Масса мозга не превышает 2 % от общей массы тела. В среднем головной мозг взрослого мужчины весит 1375–1400 г. При этом относительная масса мозга мужчин меньше, чем у женщин. Так, у мужчин на 1 кг массы тела

Головной мозг, encephalon, является высшим органом нервной системы, регулирующим взаимоотношения организма и среды, а также управляющим функциями организма.

С анатомо-функциональных позиций выделяют несколько уровней:

I уровень - высший, осуществляющий высшее управление чувствительной и двигательной сферами, процессами логического мышления, памяти, воображения (кора головного мозга);

II уровень - управление непроизвольными движениями и регуляция мышечного тонуса (базальные ядра полушарий большого мозга);

III уровень - центр эмоционального контроля и эндокринной регуляции - представлен лимбической системой (гиппокамп, гипофиз, гипоталамус, поясная извилина, миндалевидное ядро);

IV уровень - низший, управляющий вегетативными функциями организма и передающий сигналы в различные центры (ретикулярная формация и некоторые другие центры ствола мозга).

Большой мозг, cerebrum;
вид сверху.

Головной мозг залегает в полости черепа. Форма внутренней поверхности черепа повторяет форму и рельеф головного мозга.

У взрослого человека головной мозг (без твердой мозговой оболочки) имеет массу в среднем 1375 г , сагиттальный размер составляет 16 - 17 см, поперечный - 13-14 см, вертикальный - 10,5-12,5 см; средний объем - 1200 м3.

Прямая связь массы мозга и одаренности человека не подтверждается.

Головной мозг подразделяют на ствол головного мозга, мозжечок и большой мозг.

Большой мозг покрывает мозжечок и ствол мозга, так что обе эти части головного мозга видны лишь со стороны его нижней поверхности, окруженные лобными и височными долями большого мозга.

На нижних поверхностях лобных долей расположены обонятельные луковицы и обонятельные тракты , задние концы которых переходят в обонятельные треугольники . Эти образования входят в состав обонятельного мозга, составляющего часть большого мозга.

Позади обонятельных треугольников находится зрительный перекрест , продолжающийся кзади и латерально в зрительные тракты . Сзади к зрительному перекресту прилежит серый бугор , позади которого лежат сосцевидные тела . Эти образования относятся к промежуточному мозгу.
Латеральнее и кзади от сосцевидных тел видны ножки мозга (части среднего мозга ). Далее кзади виден мост , глубокой бороздой отделенный от продолговатого мозга. По бокам от моста и продолговатого мозга выступают полушария мозжечка .

Мост и мозжечок составляют задний мозг . Последний вместе с продолговатым мозгом представляют ромбовидный мозг . Продолговатый мозг, мост, средний и промежуточный мозг вместе образуют ствол мозга .

На нижней поверхности головного мозга видны места выхода 12 пар черепных нервов .
I пара - обонятельные нервы; проходят через продырявленную пластинку решетчатой кости и вступают в обонятельную луковицу.
II пара - зрительные нервы; выходят из зрительных каналов и образуют зрительный перекрест.
III пара - глазодвигательные нервы; выходят из медиальной поверхности ножек мозга.

IV пара - блоковые нервы; огибают латеральную поверхность ножек мозга.
V пара - тройничные нервы, выходят из боковых участков моста.
VI пара - отводящие нервы,

VII пара - лицевые нервы,

VIII пара - преддверно-улитковые нервы; все выходят из заднего края моста (VI пара - ближе к срединной линии).
IX пара - языкоглоточные нервы,

X пара - блуждающие нервы,

XI пара - добавочные нервы; все выходят из продолговатого мозга, ближе к его задней поверхности.
XII пара - подъязычные нервы; принадлежат продолговатому мозгу, но их корешки выходят ближе к его передней поверхности.

Выпуклая поверхность головного мозга полностью образована полушариями большого мозга.

На сагиттальном разрезе головного мозга видны все его отделы и их крупные части. Значительную часть разреза занимает медиальная поверхность полушарий большого мозга, ограниченная снизу мозолистым телом . Еще ниже виден свод мозга. Под затылочной долей полушарий большого мозга находится мозжечок .

Остальные образования, видные на разрезе, принадлежат стволу мозга : таламус и гипоталамус (промежуточный мозг), крыша среднего мозга и ножки мозга (средний мозг), мост и продолговатый мозг.

Гловной мозг, encephalon ; вид снизу.

В эксперименте приняло участие семь добровольцев, говорящих на английском языке (включая самого Гута). Каждый из них пролежал два часа в томографе… слушая радио. Да-да, самые обычные радиопередачи The Most Radio Hour, где разные люди рассказывают о своей жизни. В два часа укладывалось примерно полтора десятка таких историй.

15 рассказов, 25 000 слов. Из них 3000 уникальных – неплохой словарный запас для начала. Томограф, в котором испытуемые проводили по 120 минут, был весьма мощным, а программное обеспечение – настолько качественным, что удалось вычленить реакцию мозга на каждое отдельное произнесенное слово. «Вишенкой на торте» стало «контрольное измерение» реакции на набор из 985 самых распространенных слов в английском языке.

Оказалось, что мозг реагирует именно на значение слова, а не на его звучание , когда слышит связную речь. То есть на слова с похожими значениями реагируют одинаковые зоны коры головного мозга. Но нет одного конкретного места, где бы обрабатывалась речь. Более того, на слова, имеющие несколько разных значений, реагируют несколько разных зон мозга.

Результат работы представлен в виде карты мозга, на которую нанесены слова. Все эти слова сгруппированы в семантические категории: визуальное, тактильное, цифровое, пространственное, абстрактное, временное, профессиональное, насильственное, общее, ментальное, эмоциональное и социальное.

Что интересно, семантические поля головного мозга располагались примерно там же, где и функциональные. Ну, например, слова из «визуальной» группы – «красный», «круглый» и тому подобное, расположились примерно там, где мозг обрабатывает визуальные изображения.

Еще один важный результат: конечно, у каждого из нас есть различия. Однако, несмотря на них, общая схема «атласа слов головного мозга» у всех испытуемых оказалась более-менее схожей.

Зачем это нужно?

Конечно, читать мысли таким образом мы не сможем (как и в результате январского исследования, когда ученые научились различать по электроэнцефалограмме, на что смотрит человек – на дом или на лицо). Но эта работа открывает возможности коммуникации с людьми, которые уже совсем не могут говорить. Это пациенты с боковым амиотрофическим склерозом, с «синдромом запертого тела» и так далее. Более того, эта работа открывает новые перспективы для изучения языка – его устройства и происхождения.

Как это было сделано

Но как мы узнаём, какая область мозга «работает» в какой момент? Сказать «томограф видит» – означает не сказать ничего. Тем более что каждый из нас, ложась в МРТ, получает на выходе набор срезов мозга или другого участка тела без какой-либо активности. Что же для этого надо?

Для этого нужна еще одна маленькая буква «ф» перед аббревиатурой МРТ, превращающая метод в функциональную магнитно-резонансную томографию. Если быть точным, нам нужна BOLD-функциональная магнитно-резонансная томография (BOLD – blood oxygenation level dependent contrast, или контрастность, зависящая от степени насыщения крови кислородом).

Все мы знаем, что для того, чтобы улучшить картинку МРТ, иногда применяют контрастные препараты. Обычно это сложные органические вещества с включением парамагнитного атома гадолиния, который прекрасно «светится» на МРТ. Но, оказывается, таким контрастом может служить… кровь!

Дело в том, что чем активнее работает та или иная область мозга, тем больше приток крови к ней и тем больше требуется оксигенированной (насыщенной кислородом) крови. Где оксигенированной крови больше – там сигнал сильнее, где меньше – там он слабее. В итоге, настроив определенным образом томограф и его программы, можно видеть на МРТ активность головного мозга.

Британские ученые и зона любви

Когда МРТ попало в руки нейроученых и людей, занимающихся когнитивными науками, наступил расцвет «новой френологии». Подобно тому, как в XVIII-XIX веках делали выводы о характере по строению черепа человека, последние 10-15 лет научную печать захлестнула область работ типа «Британские ученые нашли зону мозга, отвечающую за любовь!»

Хотя на самом деле, конечно, нужно помнить, что такой заголовок в прессе означает только то, что ученые зафиксировали, какие области мозга активизируются, когда влюбленный испытуемый смотрит на портрет любимой или любимого. Не меньше, но и не больше.

Алексей Паевский, главный редактор портала «Нейротехнологии.РФ», специально для “Православие и мир”