Транспортные белки. Транспорт газов кровью Обмен газов между кровью и тканями

Перенос веществ через клеточную мембрану

Пассивный транспорт обеспечивают также белки-каналы. Каналообразующие белки образуют в мембране водные поры, через которые (когда они открыты) могут проходить вещества. особые семейства каналообразующих белков (коннексины и паннексины) формируют щелевые контакты , через которые низкомолекулярные вещества могут транспортироваться из одной клетки в другую (через паннексины и в клетки из внешней среды).

Также для транспортировки веществ внутри клеток используются микротрубочки - структуры, состоящие из белков тубулинов . По их поверхности могут передвигаться митохондрии и мембранные пузырьки с грузом (везикулы). Этот транспорт осуществляют моторные белки. Они делятся на два типа: цитоплазматические динеины и кинезины. Эти две группы белков различаются тем, от какого конца микротрубочки они перемещают груз: динеины от + -конца к - -концу, а кинезины в обратном направлении.

Перенос веществ по организму

Транспорт веществ по организму в основном осуществляется кровью . Кровь переносит гормоны , пептиды , ионы от эндокринных желез к другим органам, переносит конечные продукты метаболизма к органам выделения, переносит питательные вещества и ферменты , кислород и углекислый газ.

Наиболее известный транспортный белок, осуществляющий транспорт веществ по организму - это гемоглобин . Он переносит кислород и диоксид углерода по кровеносной системе от лёгких к органам и тканям. У человека около 15 % углекислого газа транспортируется к лёгким с помощью гемоглобина. В скелетных и сердечной мышцах перенос кислорода выполняется белком, который называется миоглобин .

В плазме крови всегда находятся транспортные белки - сывороточные альбумины . Жирные кислоты , например, транспортируются альбуминами сыворотки крови. Кроме того, белки группы альбуминов, например, транстиретин, транспортируют гормоны щитовидной железы. Также важнейшей транспортной функцией альбуминов является перенос билирубина, желчных кислот, стероидных гормонов, лекарств (аспирин , пенициллины) и неорганических ионов.

Другие белки крови - глобулины переносят различные гормоны, липиды и витамины . Транспорт ионов меди в организме осуществляет глобулин - церулоплазмин , транспорт ионов железа - белок трансферрин , транспорт витамина B12 - транскобаламин.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Транспортная функция белков" в других словарях:

    У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

    Транспортные белки собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного… … Википедия

    Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

    Жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно желтого цвета) и… … Энциклопедия Кольера

    Высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные… … Большая советская энциклопедия

    МКБ 10 R77.2, Z36.1 МКБ 9 V28.1V28.1 Альфа фетопротеин (АФП) это гликопротеин с молекулярным весом 69 000 Да, состоящий из одной полипептидной цепи, включающей 600 аминокислот и содержащей около 4% углеводов . Образуется при развит … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    - (лат. membrana кожица, оболочка, перепонка), структуры, ограничивающие клетки (клеточные, или плазматические, мембраны) и внутриклеточные органоиды (мембраны митохондрий, хлоропластов, лизосом, эндоплазматич. ретикулума и др.). Содержат в своём… … Биологический энциклопедический словарь

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

Кислород в крови находится в рас­творенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составляет 0.225 мл * л -1 * кПа -1 (0.03 мл-л -1 мм рт.ст. -1), то каждые 100 мл плазмы крови при напряжении кисло­рода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в кро­ви и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Отсюда ясна важность другого механизма переноса кислорода путем его со­единения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.39 мл кислорода и, следовательно, при содержании гемоглобина 150 г/л каждые 100 мл крови могут переносить 20.8 мл кислорода.

Показатели дыхательной функции крови

1. Кислородная емкость гемогло­бина. Величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении, называется кислородной емкостью гемогло­бин а .

2. Со­держание кислорода в крови. Другим показателем дыхательной функции крови является со­держание кислорода в крови, которое отражает истинное количество кислорода, как связанного с гемоглобином, так и физически рас­творенного в плазме.

3. Сте­пень насыщения гемоглобина кислородом . В 100 мл артериальной крови в норме содер­жится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл. Отношение количества кислорода, связанного с гемоглоби­ном, к кислородной емкости последнего является показателем сте­пени насыщения гемоглобина кислородом. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кис­лорода крови: при его повышении. Насыщение гемоглобина кисло­родом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемо­глобина, имеющей S-образную форму.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого на­пряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения О 2 до 9.3 кПа (70 мм рт.ст.). По­нижение напряжения О, с 13.3 кПа на 2.0-2.7 кПа (со 100 на 15-20 мм рт.ст.) практически не отражается на насыщении гемоглобина кислородом (НЬО 2 снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряже­ния О 2 с 8.0 до 5.3 кПа (с 60 до 40 мм рт.ст.) насыщение гемог­лобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50% (Р 50). Нормальная величина Р 50 при температуре 37°С и рН 7.40 - около 3.53 кПа (26.5 мм рт.ст.).

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S- образную форму, под влиянием изменения рН, напряжения СО 2 температуры тела, содержания в эритроцитах 2,3-дяфосфоглицерата (2,3-ДФГ), от которых зависит способность гемоглобина связывать кислород. В работающих мышцах в результате интенсивного метаболизма повы­шается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо (рис.8.7), что приводит к более легкому освобождению кислорода из оксиге­моглобина, и возможность потребления тканями кислорода увеличи­вается. При уменьшении температуры, 2,3-ДФГ, снижении напря­жения СО, и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

Гемоглобин F , син. фетальный Г. - нормальный гемоглобин плода человека, отличающийся от гемоглобина А строением одной пары полипептидных цепей, большим сродством к кислороду и большей стабильностью; увеличение содержания гемоглобина F наблюдается при некоторых формах бетта-талассемии, остром лейкозе, апластической анемии и других болезнях.

Гемоглобинурия – появление свободного гемоглобина в моче, обусловленное повышенным внутрисосудистым разрушением эритроцитов.

Гемоглобинурия маршевая – пароксизмальная гемоглобинурия, наблюдающаяся после длительной интенсивной физической работы.

Гемолиз - процесс разрушения эритроцитов, при котором гемоглобин выходит из них в плазму. Кровь после Г. эритроцитов представляет собой прозрачную жидкость красного цвета (лаковая кровь).

Гемолизины – антитела, приводящие к гемолизу эритроцитов в присутствии комплемента.

Гемометр – прибор, предназначенный для определения концентрации гемоглобина крови колориметрическим способом.

Гемопоэтины – образующиеся в организме вещества, стимулирующие кроветворение (гемопоэз).

Геморезистография – графический метод регистрации устойчивости эритроцитов к изменениям осмотического давления.

Гемостаз - сложная система приспособительных механизмов, обеспечивающая текучесть крови в сосудах и свертывание крови при нарушении их целостности.

Гемофилия (-и) – наследственные заболевания, проявляющиеся длительными кровотечениями из поврежденных сосудов, склонностью к образованию гематом при травмах и характеризующиеся нарушением первой фазы свертывания крови вследствие дефицита VIII или IX факторов.

Гепарин – естественный противосвертывающий фактор крови, синтезируемый тучными клетками, тормозящий превращение протромбина в тромбин, фибриногена в фибрин и уменьшающий активность тромбина; препараты Г. используются в качестве лекарственных средств.

Гиперадреналинемия - избыточное содержание адреналина в крови.

Гипергликемия повышенное содержание глюкозы в крови. Г. алиментарная – Г. возникающая после приема пищи, богатой углеводами.

Гиперкапния – состояние организма, вызванное повышением парциального давления углекислого газа в крови.

Гипероксемия – повышенное содержание кислорода в крови.

Гипертонический раствор – раствор, осмотическое давление которого выше осмотического давление плазмы крови.

Гиперхромазия (син. Гиперхромия) – усиленная окраска эритроцитов в связи с увеличенным содержанием в них гемоглобина; характеризуется увеличением цветного показателя (выше 1,05).

Гипогликемия – пониженное содержание глюкозы в крови.

Гипокапния – пониженное парциальное давление углекислого газа в крови.

Гипоксемия - снижение содержания и парциального давления кислорода в крови.

Гипопротеинемия – пониженное содержание общего белка в сыворотке крови.

Гипотонический раствор – раствор осмотическое давление которого ниже нормального осмотического давления плазмы крови.

Гирудин - антикоагулянт прямого действия, выделенный из тканей некоторых кровососущих животных, в том числе медицинских пиявок.

Глобин – белковая часть молекулы гемоглобина.

Горяева счетная камера –прибор для подсчета клеток крови, изготовленный по типу счетной камеры Бюркера и снабженный сеткой Горяева.

Гранулоциты – лейкоциты, в цитоплазме которых при окрашивании выявляется зернистость, но не азурофильная, которая в небольшом количестве присутствует а агранулоцитах – моноцитах и лимфоцитах.

Группы крови – совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий.

Давление онкотическое - часть осмотического давления, создаваемая высокомолекулярными соединениями в растворах. В биологических системах (плазма крови) давление онкотическое создается главным образом белкам (например, альбумины).

Давление осмотическое - давление производимое веществом в растворе. Возникает в результате тенденции к снижению концентрации раствора при соприкосновении с чистым растворителем за счет встречной диффузии молекул растворенного вещества и растворителя. Давление осмотическое определяют как избыточное гидростатическое давление на раствор, отделенный от растворителя полупроницаемой мембраной, достаточное для прекращения диффузии растворителя через мембрану.

Дезоксигемоглобин – форма гемоглобина, в которой он способен присоединять кислород или другие соединения, например воду, окись углерода.

Депо крови – орган или ткань, обладающие способностью задерживать в своих сосудах часть объема циркулирующей крови, которое при необходимости может быть использовано организмом. Основную роль кровяного депо выполняют селезенка, печень, сосуды кишечника, легкие, кожа, поскольку сосуды этих органов способны задерживать большое количество дополнительной резервной крови, используемой в случае острой необходимости другими органами и тканями.

Изотонический раствор – раствор, осмотическое давление которого равно осмотическому давлению плазмы крови.

Иммунитет – способность организма защищаться от генетически чужеродных тел и веществ.

Карбоксигемоглобин - соединение гемоглобина с окисью углерода, образующееся при отравлении ею и не способное участвовать в переносе кислорода.

Кислородная емкость крови – количество кислорода, которое может быть связано кровью до полного насыщения гемоглобина. Кислородная емкость крови в норме составляет 0,19 мл кислорода в 1 мл крови (при содержании гемоглобина 8,7 ммоль /л или 14 гр%) при температуре 0 С и барометрическом давлении 760 мм. рт. ст (101,3 кПа).Кислородная емкость крови определяется содержанием гемоглобина; так, 1 г гемоглобина связывает 1,36-1,34 мл кислорода, а в 1 мл плазме растворено 0,003 мл кислорода.

Коагулология - раздел гематологии, посвященный изучению биохимии, физиологии и патологии системы свертывания крови.

Костный мозг – содержимое костных полостей; различают «красный» костный мозг, где происходит процесс кроветворения (у взрослых он располагается в губчатом веществе костей – в эпифизе трубчатых костей и плоских костях; у новорожденных он занимает и диафиз) и жировой костный мозг (диафизов трубчатых костей), который превращается в кроветворный лишь при резком усилении гемопоэза.

Кристмаса фактор (IX фактор) – профермент, синтезируемый в печени (витамин К-зависимый синтез) вместе с фактором 3 пластинок, активным VIII и Са ++ активирует фактор Х во внутренней системе.

Лейкопения – содержание лейкоцитов в периферической крови ниже 4000 в 1 мкл

Лейкопоэз – процесс образования лейкоцитов

Лейкоцит форменный элемент крови, имеющий ядро, не образующий гемоглобин

Лейкоцитарная формула – количественное (процентное) соотношение отдельных видов лейкоцитов в периферической крови

Лейкоцитоз – повышенное содержание лейкоцитов в единице объема периферической крови

Лейкоцитоз пищевой – нормальная физиологическая реакция иммунной системы организма на поступление пищи, заключающаяся в перераспределении лейкоцитов и предупреждающая проникновение пищевого материала во внутреннюю среду организма.

Лимфоцит – лейкоцит (агранулоцит) небольшого размера (6-13 мкм) с компактным, округлым глыбчатой структуры ядром с небольшими просветлениями и базофильной цитоплазмой; принимает участи в иммунологических реакциях. Лимфоциты подразделяются на три основных группы - Т- , В- и 0 лимфоциты.

Т - лимфоциты подразделяются на Т-киллеры, осуществляющие лизис клеток-мишеней, Т-Т хелперы, усиливающие клеточный иммунитет, Т-В хелперы, облегчающие течение гуморального иммунитета, Т-амплифайеры – усиливают функции Т-и В- лимфоцитов, Т-Т - супрессоры, подавляют клеточный иммунитет, Т-В- супрессоры, угнетают гуморальный иммунитет, Т-дифференцирующие, регулируют функцию стволовых клеток, Т- контр-супрессоры, препятствуют действию Т-супрессоров, Т-клетки иммунной памяти

В-лимфоциты переходят в плазматические клетки, которые вырабатывают антитела, обеспечивая гуморальный иммунитет и В-клетки иммунной памяти

0-лимфоциты – предшественники Т-и В-клеток, естественные киллеры.

Макрофаг (и) – клетки опорно-трофического происхождения, размерами от 20 до 60. мкм с небольшим округлым ядром (иногда двумя- тремя ядрами) и цитоплазмой, содержащей, включения в виде фрагментов, поврежденных ядер, липидов, бактерий, реже целых клеток. Макрофаги обладают выраженной фагоцитарной активностью, секретируют лизоцим, интерферон, нейтральные протеазы, кислые гидролазы, компоненты системы комплемента, ингибиторы ферментов, (ингибитор плазминогена), биоактивные липиды (метаболиты арахидонта, простагландин Е2, тромбоксан), факторы, активирующие тромбоциты, факторы, стимулрующие синтез белка в других клетках, эндогенные пирогены, интерлейкин I, факторы, ингибирующие размножение.

Метгемоглобин – производное гемоглобина, лишенное способности переносить кислород в связи с тем, что железо гема находится в трехвалентной форме, образуется в повышенном количестве при некоторых гемоглобинопатиях, и отравлениях нитратами, сульфонамидами.

Микрофаг – нейтрофильный лейкоцит.

Миоглобин – пигмент красного цвета, содержащийся в клетках поперечно-полосатой мускулатуры и в кардиомиоцитах; состоит из белковой части - глобина и небелковой группы – гема, идентичного гему гемоглобина; выполняет функции переносчика кислорода и обеспечивает депонирование кислорода в тканях.

Моноцит – зрелый лейкоцит диаметром 12-20 мкм с бобовидным полиморфным ядром, имеющим неравномерную, петлистую хроматиновую сеть ядра. Цитоплазма равномерна, имеет черты ячеистого строения, иногда содержит скудную азурофильную зернистость.Это чрезвычайно активный фагоцит, распознает антиген и переводит его в иммуногенную форму, образует монокины, действующие на лимфоциты, принимает участие в формировании противоинфекционного и противопухолевого иммунитета, синтезирует отдельные компоненты системы комплемента и факторы, принимающие участие в гемостазе.

Нейтрофил - обладает фагоцитарной активностью, содержит ферменты, разрушающие бактерии, способен адсорбировать антитела и переносить их к очагу воспаления, участвует в обеспечении иммунитета, вещества, выделяемые им, усиливают митотическую активность клеток, ускоряют процессы репарации, стимулируют гемопоэз и растворение фибринового сгустка.

Нормоцит – эритрокариоциты разных стадий созревания.

Оксигемоглобин – соединение гемоглобина с кислородом, обеспечивающее перенос последнего кровью от легких к тканям.

Оксигемометрия – измерение насыщения гемоглобина крови кислородом. Осуществляется фотометрическим методом: прямым (кровавым) способом (в проточных кюветах) и непрямым бескровным (с помощью ушных, лобных, пальцевых датчиков).

В норме при дыхании воздухом насыщение кислородом гемоглобина крови составляет около 97 %

Осмос – односторонняя диффузия растворителя через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или раствора более низкой концентрации. Осмос всегда направлен от чистого растворителя к раствору или от разбавленного (осмотического) раствора к концентрированному.

Осмотическая стойкость – способность клеток выдерживать (не разрушаясь) снижение осмотического давления среды.

Панцитопения – уменьшение в периферической крови элементов всех трех ростков кроветворения – эритроцитов, лейкоцитов, тромбоцитов.

Плазма - жидкая часть крови, остающаяся после удаления ее форменных элементов.

Плазменный предшественник тромбопластина (фактор Розенталя) вместе с Са ++ активирует IX фактор.

Плазмин – протеолитический фермент, лизирующий нити нерастворимого фибрина, превращая его в растворимые продукты.

Пойкилоцитоз – наличие в периферической крови эритроцитов разной необычной формы (круглые сфероциты, серповидные эритроциты).

Полицитемия, (син. эритремия) – повышение содержания эритроцитов в кровеносном русле, увеличение объема циркулирующих эритроцитов.

Проакцелерин - образующийся в печени растворимый бетта-глобулин, связывающийся с мембраной тромбоцитов; активная форма (акцелерин) служит компонентом активатора протромбина.

Проконвертин – синтезируемый в печени профермент в активной форме вместе с III и Cа активирует фактор X во внешней системе.

Протеинемия – нормальное содержание в крови протеинов (альбуминов и глобулинов).

Противосвертывающая система крови - обязательная составная часть системы свертывания крови, препятствующая образованию кровяного сгустка или растворяющая его.

Протромбин - образующийся в печени профермент плазмы крови, являющийся предшественником тромбина.

Протромбиновое время (син. Квика время) – метод исследования внешнего механизма формирования тромбиновой активности, в котором участвуют плазменные факторы VII, X, V и II; определяется продолжительностью (в секундах) образования сгустка в исследуемой плазме крови в присутствии тромбопластина и солей кальция

Резус-фактор – система из шести изоантигенов эритроцитов человека, обусловливающая их фенотипические различия.

Ретикулоцит – незрелый полихроматофильный эритроцит, содержащий базофильную субстанцию, которая выпадает в виде гранул и нитей при специальной прижизненной окраске, с частности бриллиантовым, крезиловым синим.

Ретракция сгустка – сокращение сгустка крови или плазмы, сопровождающееся выделением сыворотки (заключительный этап формирования тромба).

Рингера раствор изотонический по отношению к крови водный раствор, применяемый, например, как кровезаменитель в экспериментах на хладнокровных животных. Состав на 1 л воды NaCl - 6г, KCl – 0,01г, Ca Cl 2 – 0,02г, NaHCO 3 – 0,01г.

Рингера-Локка раствор – изотонический по отношению к крови водный раствор, применяемый, например, как кровезаменитель в экспериментах на теплокровных животных. Состав на 1 л воды NaCl - 9г, KCl – 0,3 г, Ca Cl 2 – 0,2г, NaHCO 3 – 0,2 , глюкоза – 10 г.

Свертывание крови – механизм, обеспечивающий образование кровяного сгустка.

Свертывающая система крови – сложная система, обеспечивающая остановку кровотечения путем формирования фибринных тромбов, поддержание целости кровеносных сосудов и жидкого состояния крови.

Сгусток кровяной – продукт свертывания крови, представляющий собой эластичное с гладкой поверхностью образование темнокрасного цвета; состоит из нитей фибрина и клеточных элементов крови.

Скорость оседания эритроцитов – показатель, отражающий изменение физико-химических свойств крови и измеряемый величиной столба плазмы, освобождающейся от эриторцитов при их оседании из цитратной смеси в специальной пипетке (как правило за 1 час)

Стюарта-Прауэра фактор (Х фактор) - профермент, синтезируемый в печени (витамин К-зависимый синтез) – профермент, служит компонентом активтора протромбина.

Сыворотка крови – жидкость, отделяющаяся от сгустка крови после его ретракции.

Тромбин – протеолитический фермент, образующийся в крови из протромбина; превращает растворимый фибриноген в нерастворимый фибрин.

Тромбопения (тромбоцитопения) – пониженное (менее 15010 9 /л) содержание тромбоцитов в периферической крови.

Тромбопластин тканевой– фосфолипопротеид, содержащийся в тканях организма и участвующий в процессе свертывания крови в качестве катализатора превращения протромбина в тромбин.

Тромбопластин кровяной – фосфолипид, синтезируемый в тромбоцитах, участвующий в превращении протомбина в тромбин.

Тромбопоэтины – вещества стимулирующие тромбоцитопоэз.

Тромбоцит – участвующий в свертывании крови форменный элемент, необходимый для поддержания целостности сосудистой стенки, обладает фагоцитарной активностью.

Тромбоцитопоэз – процесс образования тромбоцитов.

Хагемена фактор (XII) - контактчувствительный профермент, активируется калликреином.

Фагоцит - общее название клеток организма, способных захватывать и переваривать разрушенные клетки, инородные частицы.

Фагоцитоз – процесс активного захватывания и поглощения микроорганизмов, разрушенных клеток и инородных частиц одноклеточными организмами или фагоцитами.

Фибрин – нерастворимый в воде белок, образующийся из фактора I (фибриногена) под действием на него тромбина в процессе свертывания крови.

Фибриноген –(син. фактор I) образующийся в клетках печени белок плазмы крови, превращающийся в фибрин под действием тромбина.

Фибрин-стабилизирующий фактор – профермент, вызывает переплетение нитей фибрина

Физиологический раствор – общее название изотонических водных растворов, близких к сыворотке крови не только по осмотическому давлению но и активной реакции среды и буферным свойствам.

Фитцджеральда фактор – белок, способствующий контактной активации факторов XII и XI

Флетчера фактор (прекалликреин) профермент активируется активным XI, калликреин способствует активации факторов XII и XI

Цветовой показатель – индекс, отражающий отношение уровня гемоглобина к количеству эритроцитов в 1 мкл крови

Щелочной резерв крови – показатель функциональных возможностей буферной системы крови; представляет собой количество двуокиси углерода (в мл), которое может быть связано 100 мл плазмы крови, предварительно приведенной в равновесие с газовой средой, в которой парциальное давление двуокиси углерода составляет 40 мм рт. ст..

Эозинофил – лейкоцит, в цитоплазме которого при окрашивании выявляется зернистость, обладает фагоцитарной активностью, захватывает гистамин и разрушает его с помощью гистаминазы, разрушает токсины белкового происхождения, чужеродные белки и иммунные комплексы, осуществляет цитотоксический эффект в борьбе с гельминтами, их яйцами и личинками, фагоцитирует и инактивирует продукты, выделяемые базофилами, содержит катионные белки, которые активируют компоненты калликреин-кининовой системы, влияют на свертывание крови.

Эозинофилия – увеличение числа эозинофилов в периферической крови.

Эритрон – система красной крови, включающая периферическую кровь, органы эритропоэза и эритроциторазрушения.

Эритропоэз – процесс образования эритроцитов в организме

Эритроцит – безъядерный форменный элемент крови, содержащий гемоглобин, выполняет транспортную (дыхательную), защитную и регуляторную функции.

Кислород в крови находится в растворенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода, каждые 100 мл плазмы крови при напряжении кислорода (100 мм рт. ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в крови и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Важен другой механизм переноса кислорода путем его соединения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, - кислородная емкость крови (18,76 мл или 19 об%). Кислородная емкость гемоглобина - величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении. Другой показатель дыхательной функции крови - содержание кислорода в крови, который отражает истинное количество кислорода, как связанного с гемоглобином, так и физически растворенного в плазме.

В 100 мл артериальной крови в норме содержится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл.

Показатель степени насыщения гемоглобина кислородом – отношение количества кислорода, связанного с гемоглобином, к кислородной емкости последнего. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кислорода крови: при его повышении насыщение гемоглобина кислородом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемоглобина, имеющей S-образную форму.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого напряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения 0 2 до 70 мм рт.ст.



Понижение напряжения О 2 со 100 на 15-20 мм рт. ст. практически не отражается на насыщении гемоглобина кислородом (НЬО; снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряжения 0 2 с 60 до 40 мм рт. ст. насыщение гемоглобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50%. Нормальная величина Р50 при температуре 37°С и рН 7.40 - около 26.5 мм рт. ст..

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S-образную форму, под влиянием изменения:

3. температуры тела,

В работающих мышцах в результате интенсивного метаболизма повышается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо, что приводит к более легкому освобождению кислорода из оксигемоглобина, и возможность потребления тканями кислорода увеличивается.

При уменьшении температуры, 2,3-ДФГ, снижении напряжения СО 2 и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

6. Транспорт углекислого газа кровью . Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).

Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС0 2 = 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС0 2 . В плазме крови углекислый газ реагирует с водой с образованием Н + и HCO 3 . Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO 3 , например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.

В крови капилляров тканей организма напряжение углекислого газа составляет 5,3 кПа (40 мм рт. ст.), а в самих тканях - 8,0-10,7 кПа (60-80 мм рт. ст.). В результате С0 2 диффундирует из тканей в плазму крови, а из нее - в эритроциты по градиенту парциального давления С0 2 . В эритроцитах С0 2 образует с водой угольную кислоту, которая диссоциирует на Н + и HCO 3 . (С0 2 + Н 2 0 = Н 2 СО 3 = Н + + HCO 3). Эта реакция протекает быстро, поскольку С0 2 + Н 2 0 = Н 2 СО 3 катализируется ферментом карбоангидразой мембраны эритроцитов, которая содержится в них в высокой концентрации.

В эритроцитах диссоциация углекислого газа продолжается постоянно по мере образования продуктов этой реакции, поскольку молекулы гемоглобина действуют как буферное соединение, связывая положительно заряженные ионы водорода. В эритроцитах по мере освобождения кислорода из гемоглобина его молекулы будут связываться с ионами водорода (С0 2 + Н 2 0 = Н 2 С0 3 = = Н + + HCO 3), образуя соединение (Нb-Н +). В целом это называется эффектом Холдена, который приводит к сдвигу кривой диссоциации оксигемоглобина вправо по оси х, что снижает сродство гемоглобина к кислороду и способствует более интенсивному освобождению его из эритроцитов в ткани. При этом в составе соединения НЬ-Н + транспортируется примерно 200 мл С0 2 в одном литре крови от тканей к легким. Диссоциация углекислого газа в эритроцитах может быть лимитирована только буферной емкостью молекул гемоглобина. Образующиеся внутри эритроцитов в результате диссоциации С0 2 ионы НСОз с помощью специального белка-переносчика мембраны эритроцитов выводятся из эритроцитов в плазму, а на их место из плазмы крови закачиваются ионы Сl - (феномен «хлорного» сдвига). Основная роль реакции С0 2 внутри эритроцитов заключается в обмене ионами Сl - и НСОз между плазмой и внутренней средой эритроцитов. В результате этого обмена продукты диссоциации углекислого газа Н + и НСОз будут транспортироваться внутри эритроцитов в виде соединения (Нb-Н +), а плазмой крови - в виде бикарбонатов.

Эритроциты участвуют в транспорте углекислого газа от тканей к легким, поскольку С0 2 образует прямую комбинацию с - NН 2 -группами белковых субъединиц гемоглобина: С0 2 + Нb -> НbС0 2 или карбаминовое соединение. Транспорт кровью С0 2 в виде карбаминового соединения и ионов водорода гемоглобином зависит от свойств молекул последнего; обе реакции обусловлены величиной парциального давления кислорода в плазме крови на основе эффекта Холдена.

В количественном отношении транспорт углекислого газа в растворенной форме и в форме карбаминового соединения является незначительным, по сравнению с его переносом С0 2 кровью в виде бикарбонатов. Однако при газообмене С0 2 в легких между кровью и альвеолярным воздухом эти две формы приобретают основное значение.

Когда венозная кровь возвращается от тканей к легким, С0 2 диффундирует из крови в альвеолы и РС0 2 в крови снижается с 46 мм рт. ст. (венозная кровь) до 40 мм рт.ст. (артериальная кровь). При этом в величине общего количества С0 2 (6 мл/100 мл крови), диффундирующего из крови в альвеолы, доля растворенной формы С0 2 и карбаминовых соединений становится более значительной относительно бикарбонатной. Так, доля растворенной формы составляет 0,6 мл/100 мл крови, или 10 %, карбаминовых соединений - 1,8 мл/100 мл крови, или 30%, а бикарбонатов - 3,6 мл/100 мл крови, или 60 %.

В эритроцитах капилляров легких по мере насыщения молекул гемоглобина кислородом начинают освобождаться ионы водорода, диссоциировать карбаминовые соединения и НСОз вновь превращается в С0 2 (Н+ + НСОз = = Н 2 С0 3 = С0 2 +Н 2 0), который путем диффузии выводится через легкие по градиенту его парциальных давлений между венозной кровью и альвеолярным пространством. Таким образом, гемоглобин эритроцитов играет основную роль в транспорте кислорода от легких к тканям, и углекислого газа в обратном направлении, поскольку способен связываться с 0 2 и Н + .

В состоянии покоя через легкие из организма человека за минуту удаляется примерно 300 мл С0 2: 6 мл/100 мл крови х 5000 мл/мин минутного объема кровообращения.

7. Регуляция дыхания. Дыхательный центр, его отделы. Автоматия дыхательного центра.

Хорошо известно, что внешнее дыхание постоянно изменяется в различных условиях жизнедеятельности организма.

Дыхательная потребность. Деятельность функциональной системы дыхания всегда подчинена удовлетворению дыхательной потребности организма, которая в значительной степени определяется тканевым метаболизмом.

Так, при мышечной работе по сравнению с покоем возрастает потребность в кислороде и удалении двуокиси углерода. Для компенсации повышенной дыхательной потребности увеличивается интенсивность легочной вентиляции, что выражается в увеличении частоты и глубины дыхания. Роль двуокиси углерода. Эксперименты на животных показали, что избыток двуокиси углерода в воздухе и крови (гиперкапния) стимулирует легочную вентиляцию за счет учащения и углубления дыхания, создавая условия для удаления из организма ее избытка. Напротив, снижение парциального давления двуокиси углерода в крови (гипокапния) вызывает уменьшение легочной вентиляции вплоть до полной остановки дыхания (апноэ). Это явление наблюдается после произвольной или искусственной гипервентиляции, во время которой из организма в избытке удаляется двуокись углерода. В результате сразу же после интенсивной гипервентиляции возникает остановка дыхания - постгипервентиляционное апноэ.

Роль кислорода. Недостаток кислорода в атмосфере, снижение его парциального давления при дыхании на большой высоте в условиях разреженной атмосферы (гипоксия) также стимулируют дыхание, вызывая увеличение глубины и особенно частоты дыхания. В результате гипервентиляции недостаток кислорода частично компенсируется.

Избыток кислорода в атмосфере (гипероксия), наоборот, снижает объем легочной вентиляции.

Во всех случаях вентиляция изменяется в направлении, способствующем восстановлению измененного газового состояния организма. Процесс, называемый регуляцией дыхания, заключается в стабилизации дыхательных показателей у человека.

Под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

Дыхательный центр управляет двумя основными функциями; двигательной, которая проявляется в виде сокращения дыхательных мышц, и гомеостатической, связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 0 2 и С0 2 Двигательная, или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

(у одноклеточных организмов), так и между различными клетками многоклеточного организма. Транспортные белки могут быть как интегрированными в мембрану, так и водорастворимыми белками, секретируемыми из клетки, находящимися в пери- или цитоплазматическом пространстве, в ядре или органеллах эукариот.

Основные группы транспортных белков:

  • хелатирующие белки;
  • белки-транспортёры.

Транспортная функция белков

Транспортная функция белков - участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.

Есть разные виды транспорта, которые осуществляются при помощи белков.

Перенос веществ через клеточную мембрану

Пассивный транспорт обеспечивают также белки-каналы. Каналообразующие белки образуют в мембране водные поры, через которые (когда они открыты) могут проходить вещества. особые семейства каналообразующих белков (коннексины и паннексины) формируют щелевые контакты , через которые низкомолекулярные вещества могут транспортироваться из одной клетки в другую (через паннексины и в клетки из внешней среды).

Также для транспортировки веществ внутри клеток используются микротрубочки - структуры, состоящие из белков тубулинов . По их поверхности могут передвигаться митохондрии и мембранные пузырьки с грузом (везикулы). Этот транспорт осуществляют моторные белки. Они делятся на два типа: цитоплазматические динеины и кинезины. Эти две группы белков различаются тем, от какого конца микротрубочки они перемещают груз: динеины от + -конца к - -концу, а кинезины в обратном направлении.

Перенос веществ по организму

Транспорт веществ по организму в основном осуществляется кровью . Кровь переносит гормоны , пептиды , ионы от эндокринных желез к другим органам, переносит конечные продукты метаболизма к органам выделения, переносит питательные вещества и ферменты , кислород и углекислый газ.

Наиболее известный транспортный белок, осуществляющий транспорт веществ по организму - это гемоглобин . Он переносит кислород и диоксид углерода по кровеносной системе от лёгких к органам и тканям. У человека около 15 % углекислого газа транспортируется к лёгким с помощью гемоглобина. В скелетных и сердечной мышцах перенос кислорода выполняется белком, который называется