В чем заключается процесс электролиза. Что такое электролизер и как его сделать своими руками? Анод вызывает окисление анионов Cl

Электролиз расплавов и растворов (солей, щелочей)

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).

На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Электролиз расплавленных солей

Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:

$NaCl→Na^{+}+Cl^{-}.$

Под действием электрического тока катионы $Na^{+}$ движутся к катоду и принимают от него электроны:

$Na^{+}+ē→{Na}↖{0}$ (восстановление).

Анионы $Cl^{-}$ движутся к аноду и отдают электроны:

$2Cl^{-}-2ē→{Cl_2}↖{0}$ (окисление).

Суммарное уравнение процессов:

$Na^{+}+ē→{Na}↖{0}|2$

$2Cl^{-}-2ē→{Cl_2}↖{0}|1$

$2Na^{+}+2Cl^{-}=2{Na}↖{0}+{Cl_2}↖{0}$

$2NaCl{→}↖{\text"электролиз"}2Na+Cl_2$

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Электролиз водных растворов электролитов

Более сложный случай — электролиз растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:

1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2$). Катионы металла не восстанавливаются, они остаются в растворе.

1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.

1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.

Катодные процессы

2. Процесс на аноде зависит от материала анода и от природы аниона.

Анодные процессы

2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.

2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:

а) при электролизе растворов солей бескислородных кислот (кроме фторидов ) на аноде идет процесс окисления аниона;

б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2$). Анионы не окисляются, они остаются в растворе;

в) анионы по их способности окисляться располагаются в следующем порядке:

Попробуем применить эти правила в конкретных ситуациях.

Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Суммарное уравнение:

$2H_2O+2Cl^{-}=H_2+Cl_2+2OH^{-}$.

Учитывая присутствие ионов $Na^{+}$ в растворе, составляем молекулярное уравнение:

2) Анод растворимый (например, медный):

$NaCl=Na^{+}+Cl^{-}$.

Если анод растворимый, то металл анода будет окисляться:

$Cu^{0}-2ē=Cu^{2+}$.

Катионы $Cu^{2+}$ в ряду напряжений стоят после ($Н^{+}$), по этому они и будут восстанавливаться на катоде.

Концентрация $NaCl$ в растворе не меняется.

Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде :

$Cu^{2+}+2ē=Cu^{0}|2$

$2H_2O-4ē=O_2+4H^{+}|1$

Суммарное ионное уравнение:

$2Cu^{2+}+2H_2O=2Cu^{0}+O_2+4H^{+}$

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4^{2-}$ в растворе:

Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:

$2H_2O+2ē=H_2+2OH^{-}|2$

$4OH^{-}-4ē=O_2+2H_2O|1$

Суммарное ионное уравнение:

$4H_2O+4OH^{-}=2H_2+4OH^{-}+O_2+2H_2O$

Суммарное молекулярное уравнение:

$2H_2O{→}↖{\text"электролиз"}2H_2+O_2$

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.

Электролиз расплавов и растворов веществ широко используется в промышленности:

  1. Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
  2. Для получения водорода, галогенов, щелочей.
  3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
  4. Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
  5. Для получения металлических копий, пластинок — гальванопластика.

Напомним, что на катоде протекают процессы восстановления, на аноде - процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H 2:
2H 2 O + 2e → H 2 0 + 2OH - .
Например, в случае электролиза растворов NaNO 3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H 2 .
Например, в случае электролиза раствора H 2 SO 4 .

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F -), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl - - 2e → Cl 2 .

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды - почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH - и H + не могут стоять по разные стороны одного уравнения; 2) H 2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H 2), а на аноде протекают только процессы окисления.
4OH - - 4e → O 2 + 2H 2 O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H 2 O - 4e → O 2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO 2 и удвоение остатка углеродной цепи:
2R-COO - - 2e → R-R + 2CO 2 .

Примеры:

1. Раствор NaCl


NaCl → Na + + Cl -

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
А: 2Cl - - 2e → Cl 2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl - + 2H 2 O → H 2 0 + 2Na + + 2OH - + Cl 2 . Соединяем катионы и анионы:
2NaCl + 2H 2 O → H 2 0 + 2NaOH + Cl 2 .

2. Раствор Na 2 SO 4

Расписываем диссоциацию на ионы:
Na 2 SO 4 → 2Na + + SO 4 2-

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H 2 O + 2e → H 2 0 + 2OH -
А: 2H 2 O - 4e → O 2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H 2 O + 4e → 2H 2 0 + 4OH -
А: 2H 2 O - 4e → O 2 0 + 4H + .


6H 2 O → 2H 2 0 + 4OH - + 4H + + O 2 0 .

4OH- и 4H+ соединяем в 4 молекулы H 2 O:
6H 2 O → 2H 2 0 + 4H 2 O + O 2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H 2 O и получаем итоговое уравнение гидролиза:
2H 2 O → 2H 2 0 + O 2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl 2

Расписываем диссоциацию на ионы:
CuCl 2 → Cu 2+ + 2Cl -

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К : Cu 2+ + 2e → Cu 0
A: 2Cl - - 2e → Cl 2


CuCl 2 → Cu 0 + Cl 2 .

4. Раствор CuSO 4

Расписываем диссоциацию на ионы:
CuSO 4 → Cu 2+ + SO 4 2-

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO 4 2- 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO 4 2- + 2H 2 O → 2Cu 0 + O 2 + 4H + + 2SO 4 2- .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO 4 + 2H 2 O → 2Cu 0 + O 2 + 2H 2 SO 4 .

5. Раствор NiCl 2

Расписываем диссоциацию на ионы:
NiCl 2 → Ni 2+ + 2Cl -

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К : Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
A: 2Cl - - 2e → Cl 2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
Ni 2+ (в растворе)
A: 4Cl - - 4e → 2Cl 2

Замечаем, что согласно формуле NiCl 2 , соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl 2 . Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl - + 2H 2 O → Ni 0 + H 2 0 + 2OH - + Ni 2+ + 2Cl 2 .

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl 2 + 2H 2 O → Ni 0 + H 2 0 + Ni(OH) 2 + 2Cl 2 .

6. Раствор NiSO 4

Расписываем диссоциацию на ионы:
NiSO 4 → Ni 2+ + SO 4 2-

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
A: SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
Ni 2+ (в растворе)
A: 2SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO 4 2- + 2H 2 O + 2H 2 O → Ni 0 + Ni 2+ + 2OH - + H 2 0 + O 2 0 + 2SO 4 2- + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO 4 + 4H 2 O → Ni 0 + Ni(OH) 2 + H 2 0 + O 2 0 + 2H 2 SO 4 .

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH - с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO 4 2- + 2H 2 O + 2H 2 O → Ni 0 + 2OH - + H 2 0 + O 2 0 + SO 4 2- + 4H + .

Ni 2+ + SO 4 2- + 4H 2 O → Ni 0 + H 2 0 + O 2 0 + SO 4 2- + 2H + + 2H 2 O.

Итоговое уравнение:

NiSO 4 + 2H 2 O → Ni 0 + H 2 0 + O 2 0 + H 2 SO 4 .

7. Раствор CH 3 COONa

Расписываем диссоциацию на ионы:
CH 3 COONa → CH 3 COO - + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H 2 O + 2e → H 2 0 + 2OH -
А: 2CH 3 COO - - 2e → CH 3 -CH 3 + CO 2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH 3 COO - + 2H 2 O → 2Na + + 2OH - + H 2 0 + CH 3 -CH 3 + CO 2

Соединяем катионы и анионы:
2CH 3 COONa + 2H 2 O → 2NaOH + H 2 0 + CH 3 -CH 3 + CO 2 .

8. Раствор H 2 SO 4

Расписываем диссоциацию на ионы:
H 2 SO 4 → 2H + + SO 4 2-

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К : 2H + +2e → H 2
A: 2H 2 O - 4e → O 2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К : 4H + +4e → 2H 2
A: 2H 2 O - 4e → O 2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H 2 O → 2H 2 + O 2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H 2 O:
2H 2 O → 2H 2 + O 2 .

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH -

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H 2 O + 2e → H 2 0 + 2OH -
А: 4OH - - 4e → O 2 + 2H 2 O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H 2 O + 4e → 2H 2 0 + 4OH -
А: 4OH - - 4e → O 2 + 2H 2 O

Суммируем левые и правые части процессов:
4H 2 O + 4OH - → 2H 2 0 + 4OH - + O 2 0 + 2H 2 O

Сокращая 2H 2 O и ионы OH - , получаем итоговое уравнение электролиза:
2H 2 O → 2H 2 + O 2 .

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H 2 O → 2H 2 + O 2 .

Первый закон Фарадея: масса вещества, выделившегося или растворившегося на электродах, прямо пропорционально количеству прошедшего через раствор электричества :

m = --------- ; где m - масса вещества, выделившегося на электродах,

FМ Э - молярная масса эквивалента вещества, г/моль,

I - сила тока, А;

t - время электролиза, сек.;

F - постоянная Фарадея (96500 Кл/моль).

Второй закон Фарадея: при определенном количестве электричества, прошедшего через раствор, отношение масс прореагировавших веществ равно отношению молярных масс их химических эквивалентов:

Соnst

МЭ 1 МЭ 2 МЭ 3

Для выделения или растворения 1 моль эквивалента любого вещества необходимо пропустить через раствор или расплав одно и тоже количество электричества, равное 96 500 Кл. Эта величина получила название постоянной Фарадея.

Количество вещества, выделившегося на электроде при прохождении 1Кл электричества, называется его электрохимическим эквивалентом (ε).

ε =. ------- , где ε - электрохимический

F эквивалент

Мэ - молярная масса эквивалента

элемента (вещества); , г/моль

F - постоянная Фарадея, Кл/моль.


Таблица 4 - Электрохимические эквиваленты некоторых элементов

катион Мэ, г/моль ε , мг Анион Мэ, г/моль ε , мг
Ag + Al 3+ Au3+ Ba 2+ Ca 2+ Cd 2+ Cr 3+ Cu 2+ Fe 2+ Fe 3+ H + K + Li + Mg 2+ Mn 2+ Na + Ni 2+ Pb 2+ Sn 2+ Sr 2+ Zn 2+ 107,88 8,99 65,70 58,70 20,04 56,20 17,34 31,77 27,92 18,61 1,008 39,10 6,94 12,16 27,47 22,90 29,34 103,60 59,40 43,80 32,69 1,118 0,93 0,681 0,712 0,208 0,582 0,179 0,329 0,289 0,193 0,0105 0,405 0,072 0,126 0,285 0,238 0,304 1,074 0,616 0,454 0,339 Br - BrO 3 - Cl - ClO 3 - HCOO - СН 3 СОО - CN - CO 3 2- C 2 O 4 2- CrO 4 2- F - I - NO 3 - IO 3 - OH - S 2- SO 4 2- Se 2- SiO 3 2- 79,92 127,92 35,46 83,46 45,01 59,02 26,01 30,00 44,50 58,01 19,00 126,42 174,92 62,01 17,00 16,03 48,03 39,50 38,03 0,828 1,326 0,368 0,865 0,466 0,612 0,270 0,311 0,456 0,601 0,197 1,315 1,813 0,643 0,177 0,170 0,499 0,411 0,395

Процессы окисления и восстановления лежат в основе работы таких химических источников тока, как аккумуляторы.

Аккумуляторами называются гальванические элементы, в которых возможны обратимые процессы зарядки и разрядки, совершаемые без добавления участвующих в их работе веществ.

Для восстановления израссходованной химической энергии аккумулятор заряжают, пропуская ток от внешнего источника. При этом на электродах протекают электрохимические реакции, обратные тем, что имели место при работе аккумулятора в качестве источника тока.

Наиболее распространенными в настоящее время являются свинцовые аккумуляторы, в которых положительным электродом служит диоксид свинца PbO 2 , а отрицательным - металлический свинец Pb.

В качестве электролита применяют 25-30% раствор серной кислоты, поэтому свинцовые аккумуляторы называют еще кислотными.

Процессы, протекающие при разрядке и зарядке аккумулятора, суммарно могут быть представлены: разрядка

Pb 0 + Pb +4 O 2 + 4Н + + 2SO 4 2- « 2Pb 0 +2SO 4 2- + 2H 2 O

Помимо свинцового аккумулятора в практике находят применение щелочные аккумуляторы: никель-кадмиевые, никель-железные.

Электродные процессы. Двойной электрический слой.

Существует тесная связь электрических и химических явлений, при которых происходят взаимопревращения электрической и химической форм энергии. Процессы, протекающие на поверхностях разделе фаз, способных обмениваться заряженными частицами, изучает электрохимия. Чаще всего одной из контактирующих фаз является металл, другой - раствор электролита. Механизм проводимости в этих фазах неодинаков. Металл - проводник первого рода, носители электричества электроны. Электрическая проводимость раствора электролита обеспечивается движением ионов. Это проводник второго рода.

Разность электрических потенциалов, возникающая за счет химических реакций, лежит в основе работы химических источников тока - электрохимических элементов и аккумуляторов.

Электрод - участок электрической цепи, служащий для гальванической связи с внешней цепью.

При опускании электрода в раствор возникают электродные процессы.

К электродным процессам относят две группы процессов связанных между собой.

1. Возникновение разности электрических потенциалов, а следовательно электрического тока в результате протекания химической реакции в гальванический элемент).

2. Обратные им химические процессы, возникающие при пропускании Эл. тока через раствор (электролиз).

Эти две группы процессов во многих случаях являются взаимно обратимыми (свинцовый аккумулятор) и всегда связаны с изменением заряда атомов (ионов) или атомных групп, т.е. представляют собой окислительно-восстановительные реакции.

Рассмотрим механизм возникновения разности электрических потенциалов между металлом и раствором его соли. Из металла, опущенного в раствор, часть ионов кристаллической решетки, обладающих высокой энергией теплового движения, выходит из нее и переходит в раствор. Этому процессу способствует взаимодействие ионов с молекулами растворителя, находящимися вблизи поверхности твердого тела. Одновременно происходит обратный процесс, т.е. разрушение сольватной оболочки ионов, находящихся в растворе, и их включение в кристаллическую решетку металла.

Первоначально преобладает растворение металла, переходящие в раствор катионы уносят с собой положительный электрический заряд. Раствор при этом заряжается положительно, а металл отрицательно. Ионы раствора, несущие избыточный положительный заряд, и оказавшиеся нескомпенсированными свободные электроны металла притягиваются друг к другу и располагаются вблизи поверхности разделе фаз по обе стороны от нее, образуя так называемый двойной электрический слой, в пределах которого электрический потенциал резко изменяется. Возникающее при этом электрическое поле затрудняет растворение металла и усиливает обратный процесс. В дальнейшем устанавливается динамическое равновесие, обусловленное взаимной компенсацией этих процессов, и определенная разность потенциалов между металлом и раствором.

Характер изменения потенциала в двойном электрическом слое позволяет выделить в нем плотную и диффузную части. Плотная часть двойного электрического слоя (слой Гельмгольца) образована ионами, находящимися на минимальном расстоянии от поверхности раздела фаз. Такой слой подобен конденсатору с металлическими обкладками. Потенциалы в нем меняются линейно.

Диффузная часть двойного электрического слоя (слой Гюи) соответствует конденсатору, одна из обкладок которого как бы размыта. Этой обкладке отвечают ионы, отошедшие в глубь раствора вследствие их теплового движения. С удалением от поверхности раздела фаз количество избыточных ионов быстро убывает, а раствор становится нейтральным. Межфазный скачок потенциала представляет собой сумму скачков в плотной части двойного слоя и Ψ- потенциала, равного скачку потенциала в слое Гюи. Ввиду того, что общая толщина двойного электрического слоя остается незначительной, изменение потенциала при переходе от одной фазы к другой всегда носит скачкообразный характер.

Первоначально преобладает переход ионов из раствора в металл, то металл заряжается положительно, а раствор отрицательно. Электрический потенциал меняется скачком в пределах двойного электрического слоя, но знак заряда в нем меняется на противоположный.

Другой причиной образования разности потенциалов между фазами служит адсорбция различных частиц на поверхности раздела фаз.

Существует множество теорий, объясняющих механизм формирования скачка потенциала на границе раствор-металл. Наиболее признанной является сольватационная теория электродного потенциала, основы которой были заложены Л.В. Писаржевским (1912-1914). Согласно ей скачок потенциала на границе раствор-металл обусловлен двумя процессами: 1) диссоциацией атомов металла на ионы внутри металла; 2) сольватацией ионов металла, находящихся на поверхности металла, при соприкосновении его с раствором, содержащим молекулы растворителя.

В качестве примера рассмотрим медный электрод, погруженный в водный раствор сульфата меди. Химический потенциал ионов меди в металле при данной температуре можно считать постоянным, тогда как химический потенциал ионов меди в растворе зависит от концентрации соли. В общем случае эти химические потенциалы неодинаковы. Пусть концентрация сульфата меди такова, что химический потенциал ионов меди, окруженных сольватной оболочкой, в растворе меньше химического потенциала этих ионов в металле. Тогда при погружении металла в раствор возникнет движущая сила для перехода ионов меди из кристаллической решетки металла в раствор, реализации которого препятствует химическая связь ионов с решеткой.

Дипольные молекулы растворителя, ориентируясь в поле поверхности металла, наоборот, способствуют выходу ионов из кристаллической решетки. В результате часть ионов меди покинет нейтральную кристаллическую решетку и гидратируется, а поверхность электрода окажется заряженной отрицательно. Этот заряд будет препятствовать дальнейшему переходу ионов меди в раствор. Возникает двойной электрический слой и устанавливается электрохимическое равновесие, при котором химические потенциалы ионов в металле и в растворе будут отличаться на величину разности потенциалов двойного электрического слоя.

Электрохимическое равновесие носит динамический характер, ионы, образующие двойной электрический слой, постоянно обновляются, однако поток катионов из раствора в металл равен потоку катионов из металла в раствор, поэтому потенциал электрода при неизменных условиях сохраняет свое значение. Его величина зависит от природы материала электрода и растворителя, от концентрации ионов в растворе, составляющих двойной электрический слой, и от температуры.

Другой вид равновесия, который устанавливается между фазами, содержащими несколько ионов, один из которых легко проходит через межфазную границу, а для других такой переход затруднен в силу пространственных или химических причин, на границах стекло-раствор или ионообменная смола (ионит) - раствор. Такой вид равновесия получил название мембранного равновесия. На границе раздела двух подобных фаз также образуется электрический слой и возникает соответствующий скачок потенциала - мембранный потенциал.

Двойной электрический слой возникает в результате окислительно-восстановительных процессов и отражает способность материала электрода к окислению. Чем легче материал электрода окисляется, тем большее количество ионов, при прочих равных условиях, выходит из кристаллической решетки электрода в раствор и тем отрицательнее его потенциал. Поэтому потенциал электрода, измеренный в н.у., получил название окислительно-восстановительного потенциала.

Экспериментально измерить потенциал какой-либо точки невозможно, но можно измерить его величину относительно какой-нибудь точки, т.е. разность потенциалов. При измерении окислительно-восстановительных потенциалов вкачестве точки отсчета используют стандартный водородный электрод (СВЭ). Потенциал СВЭ формируется на основе процессов окисления-восстановления, подобных процессам на медном электроде, но его потенциал приняли за ноль. Потенциал электрода считается положительным, если электрод заряжается более положительно, чем СВЭ, и отрицательным, ели он заряжен более отрицательно, чем стандартный водородный электрод.

Окислительно-восстановительные способности материалов сравнивают по стандартным электродным потенциалам.

Стандартным электродным потенциалом называют разность потенциалов между данным электродом и стандартным водородным электродом при условии, что активности всех участвующих в реакции веществ равны единице .

Все электроды можно расположить в ряд по их стандартным электродным потенциалам. При записи электродов используют последовательность ион-электрод. Электродная реакция записывается как реакция восстановления, т.е. присоединения электронов.

Величина стандартного электродного потенциала характеризует стремление электродной реакции протекать в направлении восстановления иона. Чем ниже расположена электродная реакция, тем больше тенденция к тому. что окисленная форма присоединит электроны и перейдет в восстановленную форму. И наоборот, че выше в таблице находится электродная реакция, тем больше стремление восстановленной формы отдать электроны и перейти в окисленную форму. Например, активные металлы натрий и калий имеют очень большие отрицательные стандартные электродные потенциалы и. следовательно, проявляют сильную тенденцию к потере электронов.

Восстановленная форма любого элемента или иона при активности, равной единице, будет восстанавливать окисленную форму элемента или иона, имеющую менее отрицательный стандартный электродный потенциал.

Рассмотрим систему, состоящую из двух электродов, например цинкового и медного. Каждый из них опущен в раствор своей соли, а растворы соединены электролитическим ключом. Ключ обеспечивает электрический контакт растворов, но не позволяет ионам из одной части ячейки переходить в другую.

Каждый из металлов в такой системе выделит в раствор то количество ионов, которое отвечает его равновесию с раствором. Однако равновесные потенциалы этих металлов неодинаковы. Цинк обладает боле высокой способностью выделять ион в раствор, чем медь, и поэтому приобретет более высокий отрицательный заряд. В нем избыточных электронов оказывается больше, чем в меди. Если теперь электроды соединить проволокой (внешняя цепь), то избыточные электроны потекут по внешней цепи из цинка в медь и тем нарушат равновесие двойного слоя на обоих электродах. На цинковом электроде заряд уменьшится и часть ионов вновь покинет электрод, а на медном электроде электродов станет больше равновесного и поэтому некоторая часть ионов из раствора разрядится на электроде. Снова возникнет разность в зарядах электродов. Вновь произойдет переход электронов по внешней цепи с цинка на медь. Это снова инициирует переход ионов, и так до тех пор, пока весь цинковый электрод не растворится.

Таким образом, возникает самопроизвольный процесс, при котором цинковый электрод растворяется, а на медном разряжаются ионы меди и выделяется металлическая медь. Переход электронов по проволоке от цинковой пластинки к медной создает электрический ток. Его можно использовать для проведения различных процессов. такое устройство называется гальваническим элементом.

Гальваническим элементом называется любое устройство, дающее возможность получать электрический ток за счет проведения той или иной химической реакции.

Разность электродных потенциалов гальванического элемента зависит от условий, в которых она определяется. Наибольшая разность потенциалов гальванического элемента называется электродвижущей силой. (ЭДС) .

В основе всякой гальванической цепи лежит окислительно-восстановительная реакция, проводимая так, что на одном из электродов (отрицательном) происходит окисление, в данном случае растворение цинка, а на другом (положительном) - восстановление, т.е. выделение меди.

Электрохимический элемент Даниэля-Якоби состоит из медной и цинковой пластинок, опущенных в сернокислые растворы их солей. Эти растворы разделены пористой перегородкой, не позволяющей растворам перемешиваться. Такая система - источник тока. Положительный полюс - медная пластинка, отрицательный - цинковая. При работе этого элемента цинковая пластинка растворяется, а на медной из раствора осаждается медь.

В растворе медь и цинк существуют в виде ионов. На цинковом электроде протекает реакция окисления:

В результате цинк переходит в раствор в виде катионов, а оставшиеся электроны придают ему отрицательный заряд. На медном электроде совершается реакция восстановления ионов меди, подходящих к медной пластинке из раствора и осаждающихся на ней:

В результате этой реакции расходуется некоторое количество свободных электронов медной пластинки и она приобретает положительный заряд. Суммарная реакция:

Zn + Cu 2+ = Zn 2+ + Cu или Zn + CuSO 4 = ZnSO 4 + Cu

Эта реакция в обычных условиях может протекать самопроизвольно. Но тогда процессы окисления и восстановления совмещены, а движение электронов происходит на коротком пути и электрический ток не возникает. Это пример гальванического элемента, действующего за счет неодинаковой химической природы электродов.

Концентрационные гальванические элементы состоят из одинаковых по природе электродов, а концентрация растворов различна. Например, элемент, содержащий две серебряные пластинки, опущенные в растворы нитрата серебра неодинаковой концентрации. Пластинка, погруженная в менее концентрированный раствор, является отрицательным полюсом, а другая - положительным. При работе элемента отрицательная пластинка растворяется, а на положительной осаждается серебро.

Отрицательный электрод:

Положительный электрод:

Электродвижущая сила электрохимического элемента.

Условная запись гальванического элемента:

(-) Zn | ZnSO 4 ||CuSO 4 | Cu (+)

Вертикальные черточки обозначают поверхности раздела фаз. В случае положительной ЭДС слева располагают, справа - положительный. На каждой межфазной границе существует скачок потенциала. Электрод вместе с раствором, в который он погружен - полуэлемент. ЭДС гальванического элемента равна разности потенциалов полуэлементов: из потенциала правого полуэлемента, вычитают потенциал левого полуэлемента. При такой записи ЭДС цепи всегда будет положительна.

Концентрационный гальванический элемент, состоящий из двух серебряных электродов, погруженных в раствор нитрата серебра разных концентраций:

(-) Ag | AgNO 3 (c1) || AgNO 3 (c2) | Ag (+)

Если с 1 < с 2 , то левый электрод посылает в раствор ионы серебра и заряжается отрицательно. На правом электроде ионы серебра разряжаются, сообщая электроду положительный заряд.

Если электрод не обменивает ионы с раствором, то его символ заключается в скобки. Например, электрод из платины, насыщенный водородом, погруженный в раствор соляной кислоты (водородный электрод), обозначают:

ЭДС любого гальванического элемента равна разности его электродных потенциалов. ЭДС гальванического элемента, составленного из двух разных электродов, но с одинаковой концентрацией (активностью) их солей равна разности стандартных потенциалов этих элементов.

Работа гальванического элемента оценивается электродвижущей силой. ЭДС наибольшая разность потенциалов гальванического элемента. Она складывается из контактного потенциала - между двумя металлами (цинк и медь), электродных - между электродом и раствором электролита (цинка и сульфата цинка, меди и сульфата меди), диффузионного - между двумя растворами (сульфата цинка и сульфата меди).

Контактный потенциал возникает на границе соприкосновения проводников, идущих от цинкового к медному электроду. Причина его появления связана с переходом электронов из одного металла в другой. Зачастую этот потенциал незначителен и не оказывает существенного влияния на ЭДС гальванического элемента.

Электродные потенциалы, которые возникают на границе металла с электролитом. Их возникновение обязано переходу ионов из металла в раствор и из раствора в металл. Электродный потенциал определяется разностью потенциала между электродом и находящимся с ним в контакте раствором электролита.

Мнемоническое правило: окисление на аноде (слова начинаются с гласных), восстановление на катоде.

Диффузионный потенциал возникает на границе соприкосновения разных электролитов или одного электролита разной концентрации (активности). Вследствие разной подвижности катионов или анионов происходит их диффузия из более концентрированного в менее концентрированный раствор. По мере удаления от границы раздела между двумя растворами электролитов происходит выравнивание концентрации ионов вследствие их теплового движения, при этом диффузионный потенциал уменьшается, а затем исчезает.

Диффузионный потенциал невелик не превышает сотых долей вольта.

Отсюда ЭДС равна:

Е= Е Cu - Е Zn + Е к + Е д

Если пренебречь диффузионным и контактным потенциалами, которые очень малы, то формула выглядит так:

ЭДС = Е Cu - Е Zn

ЭДС количественная характеристика работы гальванического элемента - она показывает, насколько полно осуществляется процесс перехода химической энергии в электрическую.

ЭДС гальванического элемента можно рассчитать по уравнению Нернста:

Величина постоянная при данной температуре.

Температура, С
0,0542 0,0578 0,0591 0,0621

Е 0 - стандартная ЭДС гальванического элемента, z - число элементарных зарядов, которые участвуют в реакции, а- активности реагирующих веществ и продуктов реакции при заданных условиях.

В выражение ЭДС для концентрационного элемента не входит значение стандартной ЭДС, т.к оба электрода одинаковы, а значит и их стандартные потенциалы тоже.

Электроды водородный 1-го и 2-го рода.

Основное уравнение потенциала электрода .

Химическую реакцию, протекающую в гальваническом элементе, можно разбить на две сопряженные, проходящие на полуэлементах:

ν 1 А 1 - zе = ν 3 А 3

ν 2 А 2 + ν 4 А 4

Тогда выражения для потенциалов отдельных электродов могут быть:

На металлических электродах обычно протекает реакция типа М z + + zе = М. Для нее с учетом того, что активность твердого вещества при данной температуре постоянна и равна единице, получим уравнение потенциала электрода, обратимого относительно катиона металла:

Термин «обратимый относительно катиона металла» означает, что потенциал электрода формируется катионами М + .

Если в потенциалопределяющем процессе участвуют анионы согласно реакции А + zе = А z - , получим выражение для потенциала электрода, обратимого относительно аниона:

Общее уравнение выглядит так:

Оно показывает, что потенциал электрода зависит от его природы (характеризуется стандартным потенциалом), температуры и активности ионов в растворе.

Чтобы экспериментально определить электродный потенциал (φ), необходимо составить гальванический элемент, содержащий исследуемый электрод и измерить его ЭДС. Гальванический элемент кроме исследуемого электрода, должен содержать электрод сравнения, потенциал которого точно известен и хорошо воспроизводим.

Необратимые гальванические элементы включают в себя необратимые процессы, так что в них невозможно изменить направление химической реакции на противоположное, изменяя на бесконечно малую величину приложенное внешнее напряжение. Электроды, образующие такие элементы, называют необратимыми.

Обратимые электроды подразделяют на индикаторные и электроды сравнения.

Индикаторными (рабочими) называют электроды, потенциал которых однозначно меняется с изменением концентрации определяемых ионов.

Электродами сравнения называют такие электроды, потенциал которых точно известен, точно воспроизводим и не зависит от концентрации определяемых ионов, т.е.постоянен во время измерений.

По свойствам и по устройству обратимые электроды делят на следующие группы:

1. Электроды первого рода.

2. Электроды второго рода.

3. Окислительно-восстановительные электроды

4. Ионоселективные (мембранные) электроды.

Электроды первого рода . Электроды с активной твердой или газообразной фазой, обратимые либо только относительно катионов, либо только относительно анионов.

Сюда относят металлические электроды, обратимые относительно катионов, металлоидные электроды, обратимые относительно анионов, и газовые, обратимые или по отношению к катионам, или по отношению к анионам.

Металлические электроды, обратимые относительно катионов - это электроды, у которых металл опущен в раствор хорошо растворимой соли этого металла. Потенциалы электродов, обратимых относительно катиона, становятся более положительны с увеличением концентрации раствора.

Электроды второго рода - сложные многофазные электроды, формально обратимые как относительно катионов, так и относительно анионов. Они состоят из металла, труднорастворимой соли этого металла и второго соединения, хорошо растворимого и содержащего тот же анион, что и трудно растворимая соль.

Представители хлорсеребряный и каломельные электроды. Их широко используют в качестве электродов сравнения.

Хлорсеребряный представляет собой серебряную проволоку, покрытую слоем хлорида серебра, опущенную в насыщенный раствор хлорида калия, находящейся в сосуде с микрощелью для контакта с исследуемым раствором. Он обратим относительно хлорид ионов.

Каломельный электрод (Pt)Hg 0 |Hg 2 Cl 2 |KCl Представляет собой смесь ртути и каломели, помещенную в сосуд, в дно которой впаяна платина, приваренная к медному проводнику.

Окислительно-восстановительные электроды .

Все потенциалопределяющие электроды формируют потенциал на основе окислительно- восстановительных процессов, поэтому любой электрод может быть назван окислительно-восстановительным. Но условилисьОВ называть такие электроды, металл которых не принимает участия в окислительно-восстановительной реакции, а является только переносчиком электронов, процесс же окисления-восстановления протекает между ионами, находящимися в растворе.

Такие электроды получают опусканием инертного металла в раствор смеси электролитов , содержащих ионы разной степени окисления.

Схема электрода ОВ:

(Pt)|Ох, Red;Ox + ze = Red

Пример ОВ электродов: (Pt)|FeCl 3 ; FeCl 2 (Pt)|SnCl 4 ; SnCl 2 .

Широко применяют хингидронный электрод: (Pt)|Х, Н 2 Х, Н + . Он состоит из платиновой пластинки опущенной в раствор хингидрона. Это комплексное соединение из хинона и его восстановленной формы гидрохинона.

На электроде протекает реакция:

С 6 Н 4 О 2 + 2Н +2е = С 6 Н 4 (ОН) 2

Его нельзя использовать при анализе щелочных сред, т.к. гидрохинон реагирует с ионами гидроксила. Достоинство низкая погрешность результатов.

Ионообменные (ионоселективные) электроды . Электроды, состоящие из ионита и раствора, потенциал на границе раздела фаз которых возникает за счет избирательного ионообменного процесса между фазами.

Стеклянный электрод Ag|AgCl|HCl. Это тонкостенный шарик из специального токопроводящего стекла (мембраны), наполненной раствором соляной кислоты 0,1 моль/л. В раствор HCl погружен вспомогательный хлоридсеребрянный электрод.

Принцип действия основан на том, что в структуре стекла катионы калия, натрия и лития могут обмениваться с катионами раствора (Н +). Обмен катионами между стеклом и раствором происходит в соответствии с законом распределения третьего компонента между двумя фазами. Из-за различия активностей катионов в растворе и в мембране на обеих сторонах мембраны возникают граничные потенциалы φ 1 и φ 2 . Чувствительностью к ионам водорода обладает только хорошо вымоченная мембрана. Поэтому перед использованием стеклянные электроды готовят. Вначале гидратируют стекло. Выдерживают несколько часов в воде, а затем в 0,1 М растворе HCl.

Стеклянный электрод имеет высокое сопротивление, ограничение диапазона измерения рН (-1-12). Его потенциал изменяется во времени, поэтому его градуируют по стандартным буферным растворам. Достоинство - индифферентность к окислителям и восстановителям. Изменяя состав стекла, можно получить мембраны, обладающие пониженной селективностью к ионамводорода и высокой к ионам металла (натрия, калия).

Неравновесные электродные процессы . Электролиз - процесс, в котором химические реакции протекают при пропускании электрического тока.

Схема электролиза:

Ионы электролита, достигая соответствующих электродов (катионы-катода, анионы-анода), в результате взаимодействия с ними уменьшают свой заряд, превращаясь в нейтральные атомы, которые оседают на электроде, или вступают во вторичную реакцию. Электролиз - ОВР.

Анод (+) обладает меньшим числом электронов, чем его материал в нейтральном состоянии. Поэтому он должен интенсивно отнимать электроны, т.е. идет окисление.

Катод (-) имеет избыточные электроды по сравнению с его материалом в электронейтральном состоянии. Поэтому он легко отдает электроны, т.е идет реакция восстановления.

Оба эти процесса - основа электролиза. Существует определенные соотношения между количеством электричества и количеством выделившегося при электролизе вещества. m = Эq

Электролиз не может протекать самопроизвольно. Энергия необходимая для ее пртекания поступает от внешнего источника тока.

При электролизе химическая рекция осуществляется за счет энергии электрического тока. А при работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическую энергию.

При катодных процессах надо учитывать величину потенциала восстановления ионов водорода. В нейтральной среде: Е н = = 0,059*(-?) = -0,41 В

Правила:

1) Если электролит образован металлом, электродный потенциал которого значительно боьше, чем -0,41 В, то из нейтрального раствора у катода будет выделяться металл (вправо от олова).

2) В случае электролитов, металл которых имеет потенциал, значительно более отрицательный, чем -0,41 В будет выделяться водород (от начала до)

3) Если потенциал металла близок к -0,41 В (цинк, хром, железо, кобальт, никель), то может выделяться и водород и металл)

Направление окислительных-восстановительных реакций.

Для определения направления рассчитывают ЭДС реакции:

ЭДС = Е окисл - Е восст

1) Если ЭДС больше нуля, то реакция прямая.

2) Если ЭДС меньше нуля, то реакция обратная.

3) Если ЭДС=0, то наступило химическое равновесие.

Интенсивность: Если ЭДС больше 0,1 В, то реакция интенсивна.

Если ЭДС меньше 0,01 В, то реакция малоинтенсивна

Потенциометрическое определение рН

Различают два вида потенциометрического измерения:

1. Прямое потенциометрическое определение;

2. Методы потенциометрического титрования.

1. Прямое потенциометрическое измерение применяют для определения водяных растворах концентрации ионов металлов: кальция, магния, натрия, калия и др. Особенно широко оно применяется для определения ионов водорода, т. е. рН растворов.

(рН = - lg а н+)

Этот метод требует селективных электродов.

2. Потенциаметрическое титрование также преследует прикладную роль определение концентрации веществ в растворе, но путем титрование его стандартным раствором соответствующего реагента. Но точку эквивалентности здесь определяют не по химическому индикатору, а по величине потенциала на индикаторном электроде, опущенном в исследуемый раствор. Этот метод не требует специфических электродов. И в качестве индикаторных здесь могут применяться различные металлические, серебренные, илатиновые, вольфрамовые, графитовые электроды.

Этот метод дает возможность определить вещества в мутных и сильно окрашенных растворах, а так же дифференцированно (раздельно) титровать компоненты смеси веществ в одной и той же порции раствора.

Для любого вида потенциометрии в исследуемый раствор помещают два электрода.

Один индикаторный - второй электрод сравнения, который служит для определения потенциала возникшего на индикаторном электроде.

1. Электроды сравнения (полу элементы), потенциал их определяется концентрацией ионов Cl - . При насыщенной концентрации Cl - потенциал их постоянен

Hg {Hg 2 Cl 2 } HCl - каломельный электрод.

Ag {Ag Cl} KCl - хлорсеребряный электрод (II рода).

2. Металлические электроды (I рода):

Cu 0 /Cu +2 ; Hg 0 /Hg +2 ; Ag 0 /Ag +

3. Измерительные мембранные электроды - состояn из пластинок (оченьтонких) способных обеспечить в растворе взаимодействие только с определенными ионами K +; Na +; Hg +2 ; Ka +2 ; NH 4 + ; Na - ; Cl - ; I - ; и т.д. К мембранным относится и широко известный стеклянный электрод для определении pH. Это стеклянная трубка на конце которой тонкостенный шарик, внутри шарика налита кислота и опущена платиновая проволока

φ = φ 0 + 0,059 pH

При = φ 0 = 0,7044, но применять хингидронный электрод можно лишь до рН - 8,5 т. к. в сильно щелочной среде гидроксильная группа сильно диссоциирует и результаты искажаются. Искажаются также и ионы окислители Fe + Sn +3 Ti +3

Сурьмяный электрод - это металлический электрод второго рода. Здесь металл Sb покрыт Sb 2 О 3 (гидроксидом Sb(OH) 3 , плохо растворим.

Потенциал электрода Sb/Sb 2 О 3 зависит от концентрации и от процессов происходящих на нем:

Sb 2 0 3 + 3H 2 O = 2Sb(OH) 3

Sb(OH) 3 ↔ Sb +3 + 3OH -

φ = φ 0 + 0.059 lg

Но это уравнение Нернста для этого электрода выполняется не строго, т.к. не полностью обратимы реакции на электроде, влияют и на состояние поверхности электрода и метод его приготовления.

Преимущества, этот электрод прост по устройству и его можно приготовить. Устойчив к присутствию многих веществ. Окислители ему не мешают.

Основы химической термодинамики.

Первый закон (начало) термодинамики - следствие закона сохранения энергии. Этот закон выполняется во всех явлениях природы и подтверждается всем опытом человечества.

Термодинамика преимущественно рассматривает две формы, в виде которых совершается превращение энергии, - теплоту и работу. Первый закон термодинамики устанавливает соотношение между тепловой энергией Q и работой А при изменении внутренней энергии системыΔU.

Из постоянства запаса внутренней энергии изолированной системы непосредственно вытекает: в любом процессе изменение внутренней энергии какой - нибудь системы равно разности между количеством сообщенной системе теплоты и количеством работы, совершенной системой:

ΔU = Q - А, отсюда

Это уравнение - математическое выражение первого закона термодинамики.

В этом случае первый закон термодинамики формулируется: подведенное к системе тепло Q идет на увеличение внутренней энергии системы ΔU и на совершение внешней работы А.

Первый закон (первое начало) термодинамики имеет несколько формулировок, но все они выражают одну и туже суть - неуничтожимость и эквивалентность энергии при взаимных переходах различных видов ее друг в друга.

Электролизом называются окислительно-восстановительные реакции, протекающие на электродах в растворе или расплаве электролита под действием постоянного электрического тока, подаваемого от внешнего источника. При электролизе происходит превращение электрической энергии в химическую. Прибор, в котором проводят электролиз, называют электролизером. На отрицательном электроде электролизера (катоде) происходит процесс восстановления – присоединения окислителем электронов, поступающих из электрической цепи, а на положительном электроде (аноде) – процесс окисления – переход электронов от восстановителя в электрическую цепь.

Таким образом, распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина этого заключается в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе процессы осуществляются за счёт энергииэлектрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нём химической реакции превращается в электрическую энергию. Для процеcсов электролиза DG>0, т.е. при стандартных условиях они самопроизвольно не идут.

Электролиз расплавов. Рассмотрим электролиз расплава хлорида натрия (рис. 10.2). Это простейший случай электролиза, когда электролит состоит из одного вида катионов (Na +) и одного вида анионов(Cl ) и никаких других частиц, могущих участвовать в электролизе, нет. Процесс электролиза расплава NaCl идёт следующим образом. С помощью внешнего источника тока электроны подводятся к одному из электродов, сообщая ему отрицательный заряд. Катионы Na + под действием электрического поля движутся к отрицательному электроду, взаимодействуя с приходящими по внешней цепи электронами. Этот электрод является катодом, и на нём идёт процесс восстановления катионов Na + . Анионы Cl движутся к положительному электроду и, отдав электроны аноду, окисляются. Процесс электролиза наглядно изображают схемой, которая показывает диссоциацию электролита, направление движения ионов, процессы на электродах и выделяющиеся вещества. Схема электролиза расплава хлорида натрия выглядит так:

NaCl = Na + + Cl

(-) Катод: Na + Анод (+):Cl

Na + + e - = Na 2Cl - 2eˉ = Cl 2

Суммарное уравнение:

2Na + + 2Cl ЭЛЕКТРОЛИЗ 2Na + Cl 2

или в молекулярном виде

2NaCl ЭЛЕКТРОЛИЗ 2Na + Cl 2

Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, на катоде – процесс восстановления.

В процессах электролиза растворов электролитов могут участвовать молекулы воды и имеет место поляризация электродов.


Поляризация и перенапряжение. Потенциалы электродов, определённые в растворах электролитов в условиях отсутствия в цепи электрического тока, называются равновесными потенциалами (в стандартных условиях – стандартные электродные потенциалы). При прохождении электрического тока потенциалы электродов изменяются. Изменение потенциала электрода при прохождении тока называется поляризацией:

Dj = j i - j р,

где Dj - поляризация;

j i – потенциал электрода при прохождении тока;

j р – равновесный потенциал электрода.

Когда известна причина изменения потенциала при прохождении тока вместо термина «поляризация», используют термин «перенапряжение». Его также относят к некоторым конкретным процессам, например, к катодному выделению водорода (водородное перенапряжение).

Для экспериментального определения поляризации строят кривую зависимости потенциала электрода от плотности тока, протекающего через электрод. Так как электроды могут быть разными по площади, то в зависимости от площади электрода при одном и том же потенциале могут быть разные токи; поэтому ток относят обычно к единице площади поверхности. Отношение тока I к площади электрода S называют плотностью тока I:

Графическую зависимость потенциала от плотности тока называют поляризационной кривой (рис. 10.3). При прохождении тока изменяются потенциалы электродов электролизёра, т.е. возникает электродная поляризация. Вследствие катодной поляризации (Dj к) потенциал катода становится более отрицательным, а из-за анодной поляризации (Dj а) потенциал анода становится более положительным.

Последовательность электродных процессов при электролизе растворов электролитов. В процессах электролиза растворов электролитов могут участвовать молекулы воды, ионы Н + и ОН в зависимости от характера среды. При определении продуктов электролиза водных растворов электролитов можно в простейших случаях руководствоваться следующими соображениями:

1. Катодные процессы.

1.1. На катоде в первую очередь идут процессы, характеризуемые наибольшим электродным потенциалом, т.е. в первую очередь восстанавливаются наиболее сильные окислители.

1.2. Катионы металлов, имеющих стандартный электродный потенциал больший, чем у водорода (Cu 2+ , Ag + , Hg 2+ , Au 3+ и др. катионы малоактивных металлов), при электролизе практически полностью восстанавливаются на катоде:

Me n + + neˉ " Me.

1.3. Катионы металлов, потенциал которых значительно меньше, чем у водорода (стоящих в «Ряду напряжений» от Li + до Al 3+ включительно, т.е. катионы активных металлов), не восстанавливаются на катоде, так как на катоде восстанавливаются молекулы воды:

2Н 2 О + 2еˉ ® Н 2 ­ + 2ОН .

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода:

2Н + + 2еˉ " Н 2 ­.

1.4. Катионы металлов, имеющих стандартный электродный потенциал, меньше, чем у водорода, но больше чем у алюминия (стоящих в «Ряду напряжений» от Al 3+ до 2Н + - катионы металлов средней активности), при электролизе на катоде восстанавливаются одновременно с молекулами воды:

Ме n + + neˉ ® Me

2Н 2 О + 2еˉ ® Н 2 ­ + 2ОН .

К данной группе относятся ионы Sn 2+ , Pb 2+ , Ni 2+ , Co 2+ , Zn 2+ , Cd 2+ и т.д.. При сравнении стандартных потенциалов этих ионов металлов и водорода можно было бы сделать вывод о невозможности выделения металлов на катоде. Однако следует учесть:

· стандартный потенциал водородного электрода относится к а н+ [Н + ] 1 моль/л., т.е. рН=0; с увеличением рН потенциал водородного электрода уменьшается, становится отрицательнее ( ; см. раздел 10.3); в то же время потенциалы металлов в области, где не происходит выпадения их нерастворимых гидроксидов, от рН не зависят;

· поляризация процесса восстановления водорода больше поляризации разряда ионов металлов этой группы (или по-другому, выделение водорода на катоде происходит с более высоким перенапряжением по сравнению с перенапряжением разряда многих ионов металлов этой группы); пример: поляризационные кривые катодного выделения водорода и цинка (рис. 10.4).

Как видно из данного рисунка, равновесный потенциал цинкового электрода меньше потенциала водородного электрода, при малых плотностях тока на катоде выделяется лишь водород. Но водородное перенапряжение электрода больше, чем перенапряжение цинкового электрода, поэтому при повышении плотности тока начинает выделяться на электроде и цинк. При потенциале φ 1 плотности токов выделения водорода и цинка одинаковы, а при потенциале φ 2 , т.е. на электроде выделяется в основном цинк.

2.
Анодные процессы.

2.1. На аноде в первую очередь идут процессы, характеризуемые наименьшим электродным потенциалом, т.е. в первую очередь окисляются сильные восстановители.

2.2. Обычно аноды подразделяют на инертные (нерастворимые) и активные (растворимые). Первые изготовляют из угля, графита, титана, платиновых металлов, имеющих значительный положительный электродный потенциал или покрытых устойчивой защитной плёнкой, служащих только проводниками электронов. Вторые – из металлов, ионы которых присутствуют в растворе электролита – из меди, цинка, серебра, никеля и др.

2.3. На инертном аноде при электролизе водных растворов щелочей, кислородосодержащих кислот и их солей, а также НF и ее солей (фторидов) происходит электрохимическое окисление гидроксид-ионов с выделением кислорода. В зависимости от рН раствора этот процесс протекает по- разному и может быть записан различными уравнениями:

а) в кислой и нейтральной среде

2 Н 2 О – 4еˉ = О 2 + 4 Н + ;

б) в щелочной среде

4ОН – 4еˉ = О 2 + 2Н 2 О.

Потенциал окисления гидроксид-ионов (потенциал кислородного электрода) рассчитывается по уравнению (см. раздел 10.3):

Кислородосодержащие анионы SO , SO , NO , CO , PO и т.д. или не способны окисляться, или их окисление происходит при очень высоких потенциалах, например: 2SO - 2eˉ = S 2 O = 2,01 В.

2.4. При электролизе водных растворов бескислородных кислот и их солей (кроме НF и ее солей) у инертного анода разряжаются их анионы.

Отметим, что выделение хлора (Cl 2) при электролизе раствора НCl и её солей, выделение брома (Br 2) при электролизе раствора HBr и её солей противоречит взаимному положению систем.

2Cl - 2eˉ = Cl 2 = 1,356 В или других веществ, присутствующих в растворе или на электроде, то протекает электролиз с активным анодом. Активный анод окисляется, растворяясь: Ме – neˉ ® Me n + .

Выход по току. Если потенциалы двух или нескольких электродных реакций равны, то эти реакции протекают на электроде одновременно. При этом прошедшее через электрод электричество расходуется на все эти реакции. Доля количества электричества, расходуемая на превращение одного из веществ (B j), называется выходом по току этого вещества:

(B j) % = (Q j /Q) . 100,

где Q j – количество электричества, израсходованное на превращение j-го вещества; Q – общее количество электричества, прошедшее через электрод.

Например, из рис. 10.4 следует, что выход по току цинка растет с увеличением катодной поляризации. Для данного примера высокое водородное перенапряжение – явление положительное. Вследствие этого из водных растворов удается выделять на катоде марганец, цинк, хром, железо, кобальт, никель и другие металлы.

Закон Фарадея. Теоретическое соотношение между количеством прошедшего электричества и количеством вещества, окисленного или восстановленного на электроде, определяется законом Фарадея, согласно которому масса электролита, подвергшаяся химическому превращению, а также масса веществ, выделившихся на электродах, прямо пропорциональны количеству прошедшего через электролит электричества и молярным массам эквивалентов веществ: m = M э It/F,

где m – масса электролита, подвергшаяся химическому превращению,

или масса веществ – продуктов электролиза, выделившихся на электродах, г; M э – молярная масса эквивалента вещества, г/моль; I – сила тока, А; t – продолжительность электролиза, с; F – число Фарадея – 96480 Кл/моль.

Пример 1. Как протекает электролиз водного раствора сульфата натрия с угольным (инертным) анодом?

Na 2 SO 4 = 2Na + + SO

Электролиз - это процесс разложения вещества под действием электрического тока (electric current ).

История открытия электролиза

Слово электролиз происходит от греческого (ἤλεκτρον) [ɛ̌ːlektron] "янтарь" и λύσις "растворение".

Небольшая хронология истории электролиза:

  • 1785 г. - Мартинуса ван Марум использовал электростатический генератор, чтобы осадить (извлечь) олово, цинк и сурьму из их солей с использованием электролиза (Энциклопедия Британника 3-е издание (1797), том 1, стр 225).
  • 1800 г. - Уильям Николсон и Энтони Карлайл (при участии Иоганн Риттер) разложили воду на водород и кислород.
  • 1807 г. - такие химические элементы как: калия, натрия, бария, кальция и магния были обнаружены сэром Хамфри Дэви с помощью электролиза.
  • 1833 г. - Майкл Фарадей открывает свои два закона электролиза, и даёт их математическую формулировку и объяснение.
  • 1875 г. - Поль Эмиль Лекок де Буабодран обнаружили галлий с помощью электролиза.
  • 1886 г. - был обнаружен Фтор Анри Муассаном с помощью электролиза.
  • 1886 г. - Разработан процесс Холла-Эру для получения алюминия из глинозёма.
  • 1890 г. - Разработан Castner–Kellner процесс получения гидроксида натрия.

Краткое описание электролиза

Электролиз происходит при прохождении постоянного (прямого) электрического тока через ионизированное вещество, которое может быть или расплавом, или раствором, в котором это самое вещество распадается на ионы (электролитическая диссоциация молекул) и представляет собой электролит. При прохождении электрического тока через такое состояние вещества, когда оно представлено ионами, происходит электрохимическая реакция окисления и восстановления.

На одном электроде ионы одного вида будут окислятся, а на другом восстанавливаться, что весьма часто проявляется в виде выделения газов, или выпадением вещества в виде нерастворимого химического осадка. При электролизе ионы, называемые анионами получают недостающие им электроны и перестают быть ионами, а ионы другого вида - катионы, отдают лишние электроны и также перестают после этого быть ионами.

Электролиз не может происходить там, где отсутствуют ионы, например в кристалле соли, или в твёрдых полимерах (смолы, пластмассы). Если кристалл соли растворить в подходящем растворителе, в котором он распадётся на ионы, то в такой жидкой среде возможен процесс электролиза, так как раствор представляет собой электролит. Все электролиты являются проводниками второго рода , в которых может существовать электрический ток.

Для процесса электролиза необходимо как минимум два электрода, которые представляют собой источник тока. Между этими двумя электродами через электролит или расплав протекает электрический ток, а наличие только одного электрода не обеспечивает замкнутую электрическую цепь, и потому ток протекать не может.

В качестве электродов могут быть использованы любые материалы обеспечивающие достаточную проводимость. Это могут быть металлы и их сплавы, графит, полупроводниковые материалы. Электрохимические свойства электродов имеют решающее значение в коммерческом (промышленном) использовании электролиза, так как могут существенно снизить стоимость производства, улучшить качество и скорость электрохимического процесса, которым и является электролиз.

Процесс электролиза

Вся суть процесса электролиза заключается в превращении ионов раствора (расплава) в атомы через добавление или отнятие электронов. Такое изменение происходит благодаря внешней электрической цепи, в которой существует электрический ток . В такой цепи обязательно имеется источник электричества, который является поставщиком электронов на одном электроде - катоде, и своеобразным насосом выкачивающем электроны на другом электроде - аноде. На катоде всегда избыток электронов и в его сторону движутся катионы (+), чтобы получить недостающие электроны и стать атомами, а на аноде - недостаток электронов и в его сторону движутся анионы (-), которые имеют лишние электроны на своей орбите, с тем, чтобы отдать их и стать нейтральными атомами.