Распространение радиоволн. Радиочастотный диапазон и его использование для радиосвязи

Распространение радиоволн, процессы распространения электромагнитных волн радиодиапазона в атмосфере, космическом пространстве и толще Земли. Радиоволны , излучаемые передатчиком, прежде чем попасть в приёмник, проходят путь, который может быть сложным. Радиоволны могут достигать пункта приёма, распространяясь по прямолинейным траекториям, огибая выпуклую поверхность Земли, отражаясь от ионосферы, и т. д. Способы Р. р. существенно зависят от длины волны l, от освещённости земной атмосферы Солнцем и от ряда др. факторов (см. ниже).

Прямые волны. В однородных средах радиоволны распространяются прямолинейно с постоянной скоростью, подобно световым лучам (радиолучи). Такое Р. р. называется свободным. Условия Р. р. в космическом пространстве при радиосвязи между наземной станцией и космическим объектом, между двумя космическими объектами, при радиоастрономических наблюдениях, при радиосвязи наземной станции с самолётом или между самолётами близки к свободному.

Волну, излученную антенной, на больших расстояниях от неё можно считать плоской (см. Излучение и приём радиоволн ). Плотность потока электромагнитной энергии, пропорциональная квадрату напряжённости поля волны, убывает с увеличением расстояния r от источника обратно пропорционально r 2, что приводит к ограничению расстояния, на котором может быть принят сигнал передающей станции. Дальность действия радиостанции (при отсутствии поглощения) равна: , где P c - мощность сигнала на входе приёмника, Р ш - мощность шумов, G1, G2 - коэффициенты направленного действия передающей и приёмной антенн. Скорость Р. р. в свободном пространстве равна скорости света в вакууме : с = км /сек.

При распространении волны в материальной среде (например, в земной атмосфере, в толще Земли, в морской воде и т. п.) происходят изменение её фазовой скорости и поглощение энергии. Это объясняется возбуждением колебаний электронов и ионов в атомах и молекулах среды под действием электрического поля волны и переизлучением ими вторичных волн. Если напряжённость поля волны мала по сравнению с напряжённостью поля, действующего на электрон в атоме, то колебания электрона под действием поля волны происходят по гармоническому закону с частотой пришедшей волны. Поэтому электроны излучают радиоволны той же частоты, но с разными амплитудами и фазами. Сдвиг фаз между первичной и переизлучённой волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн. Поглощение и изменение фазовой скорости в среде характеризуются показателем поглощения c и показателем преломления n , которые, в свою очередь, зависят от диэлектрической проницаемости e и проводимости s среды, а также от длины волны l:

(1)

Коэффициент поглощения b = 2pc/l, фазовая скорость u = c /n . В этом случае r д определяется не только характеристиками передатчика, приёмника и длиной волны, но и свойствами среды (e, s). В земных условиях Р. р. обычно отличается от свободного. На Р. р. оказывают влияние поверхность Земли, земная атмосфера, структура ионосферы и т. д. Влияние тех или иных факторов зависит от длины волны.

Влияние поверхности Земли на распространение радиоволн зависит от расположения радиотрассы относительно её поверхности.

Р. р. - пространственный процесс, захватывающий большую область. Но наиболее существенную роль в этом процессе играет часть пространства, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах которого А и В расположены передатчик и приёмник (рис. 1 ). Большая ось эллипсоида практически равна расстоянию R между передатчиком и приёмником, а малая ось ~. Чем меньше l, тем уже эллипсоид, в оптическом диапазоне он вырождается в прямую линию (световой луч). Если высоты Z1 и Z2 , на которых расположены антенны передатчика и приёмника относительно поверхности Земли, велики по сравнению с l, то эллипсоид не касается поверхности Земли (рис. 1 , а). Поверхность Земли не оказывает в этом случае влияния на Р. р. (свободное распространение). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 1 , б) и на прямую волну, идущую от передатчика к приёмнику, належится поле отражённой волны. Если при Z1 >> l и Z2 >> l, то это поле можно рассматривать как луч, отражённый земной поверхностью по законам геометрической оптики. Поле в точке приёма определяется интерференцией прямого и отражённого лучей. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля (рис. 2 ). Условие Z1 и Z2 >> l практически может выполняться только для метровых и более коротких волн, поэтому лепестковая структура поля характерна для ультракоротких волн (УКВ).

При увеличении l существенная область расширяется и пересекает поверхность Земли. В этом случае уже нельзя представлять волновое поле как результат интерференции прямой и отражённой волн. Влияние Земли на Р. р. в этом случае обусловлено несколькими факторами: земля обладает значительной электропроводностью , поэтому Р. р. вдоль поверхности Земли приводит к тепловым потерям и ослаблению волны. Потери энергии в земле увеличиваются с уменьшением l.

Помимо ослабления, происходит также изменение структуры поля волны. Если антенна у поверхности Земли излучает поперечную линейно-поляризованную волну (см. Поляризация волн ), у которой напряжённость электрического поля Е перпендикулярна поверхности Земли, то на больших расстояниях от излучателя волна становится эллиптически поляризованной (рис. 3 ). Величина горизонтальной компоненты E x значительно меньше вертикальной E z и убывает с увеличением проводимости s земной поверхности. Возникновение горизонтальной компоненты позволяет вести приём земных волн на т. н. земные антенны (2 проводника, расположенные на поверхности Земли или на небольшой высоте). Если антенна излучает горизонтально-поляризованную волну (Е параллельно поверхности Земли), то поверхность Земли ослабляет поле тем больше, чем больше s, и создаёт вертикальную составляющую. Уже на небольших расстояниях от горизонтального излучателя вертикальная компонента поля становится больше горизонтальной. При распространении вдоль Земли фазовая скорость земных волн меняется с расстоянием, однако уже на расстоянии ~ нескольких l от излучателя она становится равной скорости света, независимо от электрических свойств почвы.

Выпуклость Земли является своеобразным «препятствием» на пути радиоволн, которые, дифрагируя, огибают Землю и проникают в «область тени». Т. к. дифракция волн заметно проявляется тогда, когда размеры препятствия соизмеримы или меньше l, а размер выпуклости Земли можно охарактеризовать высотой шарового сегмента h (рис. 4 ), отсекаемого плоскостью, которая проходит через хорду, соединяющую точки расположения приёмника и передатчика (см. табл.), то условие h << l выполняется для метровых и более длинных волн. Если учесть, что с уменьшением l увеличиваются потери энергии в Земле, то практически только километровые и более длинные волны могут проникать глубоко в область тени (рис. 5 ).

Высота шарового сегмента h для различных расстояний между передатчиком и приёмником

Расстояние, км

Земная поверхность неоднородна, наиболее существенное влияние на Р. р. оказывают электрические свойства участков трассы, примыкающих к передатчику и приёмнику. Если радиотрасса пересекает линию берега, т. е. проходит над сушей, а затем над морем (s ® ¥) , то при пересечении береговой линии резко изменится напряжённость поля (рис. 6 ), т. е. амплитуда и направление распространения волны (береговая рефракция). Однако береговая рефракция является местным возмущением поля радиоволны, уменьшающимся по мере удаления от береговой линии.

Рельеф земной поверхности также влияет на Р. р. Это влияние зависит от соотношения между высотой неровностей поверхности h , горизонтальной протяжённостью l , l и углом падения q волны на поверхность (рис. 7 ). Если выполняются условия:

4p2l 2 sin2q/l2 £ 1; 2psin q << 1, (2)

то неровности считаются малыми и пологими. В этом случае они мало влияют на Р. р. При увеличении q условия (2) могут нарушаться. При этом энергия волны рассеивается, и напряжённость поля в направлении отражённого луча уменьшается (возникают диффузные отражения).

Высокие холмы, горы и т. п., кроме того, сильно «возмущают» поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых от поверхности Земли волн (рис. 8 ).

Распространение радиоволн в тропосфере. Рефракция радиоволн. Земные радиоволны распространяются вдоль поверхности Земли в тропосфере . Проводимость тропосферы s для частот, соответствующих радиоволнам (за исключением миллиметровых волн), практически равна 0; диэлектрическая проницаемость e и, следовательно, показатель преломления n являются функциями давления и температуры воздуха, а также давления водяного пара. У поверхности Земли n » 1,0003. Изменение e и n с высотой зависит от метеорологических условий. Обычно e и n уменьшаются, а фазовая скорость u растет с высотой. Это приводит к искривлению радиолучей (рефракция радиоволн, рис. 9 ). Если в тропосфере под углом к горизонту распространяется волна, фронт которой совпадает с прямой ав (рис. 9 ), то вследствие того, что в верхних слоях тропосферы волна распространяется с большей скоростью, чем в нижних, верхняя часть фронта волны обгоняет нижнюю и фронт волны поворачивается (луч искривляется). Т. к. n с высотой убывает, то радиолучи отклоняются к Земле. Это явление, называется нормальной тропосферной рефракцией, способствует Р. р. за пределы прямой видимости, т. к. за счёт рефракции волны могут огибать выпуклость Земли. Однако практически этот эффект может играть роль только для УКВ, поскольку для более длинных волн преобладает огибание в результате дифракции. Метеорологические условия могут ослаблять или усиливать рефракцию по сравнению с нормальной.

Тропосферный волновод. При некоторых условиях (например, при движении нагретого воздуха с суши над поверхностью моря) температура воздуха с высотой не уменьшается, а увеличивается (инверсии температуры). При этом преломление в тропосфере может стать столь сильным, что вышедшая под небольшим углом к горизонту волна на некоторой высоте изменит направление на обратное и вернётся к Земле. В пространстве, ограниченном снизу Землёй, а сверху как бы отражающим слоем тропосферы, волна может распространяться на очень большие расстояния (волноводное распространение радиоволн). Так же как в металлических радиоволноводах , в тропосферных волноводах могут распространяться волны, длина которых меньше критической (lкр » 0,085 d 3/2 , d - высота волновода в м , lкр в см ). Толщина слоев инверсии в тропосфере обычно не превышает ~ 50-100 м , поэтому волноводным способом могут распространяться только дециметровые, сантиметровые и более короткие волны.

Рассеяние на флуктуациях e. Помимо регулярных изменений e с высотой, в тропосфере существуют нерегулярные неоднородности (флуктуации) e, возникающие в результате беспорядочного движения воздуха. На них происходит рассеяние радиоволн УКВ диапазона. Т. о., область пространства, ограниченная диаграммами направленности приёмной и передающей антенн и содержащая большое число неоднородностей e, является рассеивающим объёмом. Рассеяние приводит к флуктуациям амплитуды и фазы радиоволны, а также к распространению УКВ на расстояния, значительно превышающие прямую видимость (рис. 10 ). При этом поле в точке приёма В образуется в результате интерференции рассеянных волн. Вследствие интерференции большого числа рассеянных волн возникают беспорядочные изменения амплитуды и фазы сигнала. Однако среднее значение амплитуды сигнала значительно превышает амплитуду, которая могла бы быть обусловлена нормальной тропосферной рефракцией.

Поглощение радиоволн. Тропосфера прозрачна для всех радиоволн вплоть до сантиметровых. Более короткие волны испытывают заметное ослабление в капельных образованиях (дождь, град, снег, туман), в парах воды и газах атмосферы. Ослабление обусловлено процессами поглощения и рассеяния. Каждая капля воды обладает значительной проводимостью и волна возбуждает в ней высокочастотные токи. Плотность токов пропорциональна частоте, поэтому значительные токи, а следовательно, и тепловые потери, возникают только при распространении сантиметровых и более коротких волн. Эти токи вызывают не только тепловые потери, но являются источниками вторичного рассеянного излучения, ослабляющего прямой сигнал. Плотность потока рассеянной энергии обратно пропорциональна l4, если размер рассеивающей частицы d < l, и не зависит от l, если d >> l (см. Рассеяние света ). Практически через область сильного дождя или тумана волны с l < 3 см распространяться не могут. Волны короче 1,5 см , помимо этого, испытывают резонансное поглощение в водяных парах (l = 1,5 см ; 1,35 см ; 0,75 см ; 0,5 см ; 0,25 см ) и кислороде (l = 0,5 см и 0,25 см ). Энергия распространяющейся волны расходуется в этом случае на ионизацию или возбуждение атомов и молекул. Между резонансными линиями имеются области малого поглощения.

Распространение радиоволн в ионосфере. В ионосфере - многокомпонентной плазме , находящейся в магнитном поле Земли, механизм Р. р. сложнее, чем в тропосфере. Под действием радиоволны в ионосфере могут возникать как вынужденные колебания электронов и ионов, так и различные виды коллективных собственных колебаний (плазменные колебания). В зависимости от частоты радиоволны w основную роль играют те или другие из них и поэтому электрические свойства ионосферы различны для различных диапазонов радиоволн. При высокой частоте w в Р. р. принимают участие только электроны, собственная частота колебаний которых (Ленгмюровская частота) равна:

(3)

где е - заряд, m - масса, N - концентрация электронов. Вынужденные колебания свободных электронов ионосферы, в отличие от электронов тропосферы, тесно связанных с атомами, отстают от электрического поля высокочастотной волны по фазе почти на 2p. Такое смещение электронов усиливает поле Е волны в ионосфере (рис. 11 ). Поэтому диэлектрическая проницаемость e, равная отношению напряжённости внешнего поля к напряжённости поля внутри среды, оказывается для ионосферы < 1: e = 1 - w20/w2. Учёт столкновений электронов с атомами и ионами даёт более точные формулы для e и s ионосферы:

, (4)

где n - число столкновений в секунду.

Для высоких частот, начиная с коротких волн, в большей части ионосферы справедливо соотношение: w2 >> n2 и показатели преломления n и поглощения c равны:

; (5)

С увеличением частоты c уменьшается, а n растет, приближаясь к 1. Т. к. n < 1, фазовая скорость распространения волны . Скорость распространения энергии (групповая скорость волны) в ионосфере равна с ×n и в соответствии с относительности теорией меньше с.

Отражение радиоволн. Для волны, у которой w < w0n и u становятся мнимыми величинами, это означает, что такая волна не может распространяться в ионосфере. Поскольку концентрация электронов N и плазменная частота w0 в ионосфере увеличиваются с высотой (рис. 12 ), то падающая волна, проникая в ионосферу, распространяется до такого уровня, при котором показатель преломления обращается в нуль. На этой высоте происходит полное отражение волны от слоя ионосферы. С увеличением частоты падающая волна всё глубже проникает в слой ионосферы. Максимальная частота волны, которая отражается от слоя ионосферы при вертикальном падении, называется критической частотой слоя:

(6)

Критическая частота слоя F 2 (главный максимум, рис. 12 ) изменяется в течение суток и от года к году приблизительно от 5 до 10 Мгц. Для волн с частотой w > wкр n всюду > 0, т. е. волна проходит через слой, не отражаясь.

При наклонном падении волны на ионосферу максимальная частота волны, возвращающейся на Землю, оказывается выше wкр. Радиоволна, падающая на ионосферу под углом j0, испытывая рефракцию, поворачивается к Земле на той высоте, где j(z ) = p/2. Условие отражения при наклонном падении имеет вид: n (z ) = sinj0. Частоты волн, отражающихся от данной высоты при наклонном и вертикальном падении, связаны соотношением: wнакл = wверт secj0. Максимальная частота волны, отражающейся от ионосферы при данном угле падения, т. е. для данной длины трассы, называется максимальной применимой частотой (МПЧ).

Двойное лучепреломление. Существенное влияние на Р. р. оказывает магнитное поле Земли H 0 = 0,5 э, пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает двойное лучепреломление , т. е. расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле H 0 на электрон, движущийся со скоростью u, действует Лоренца сила , под действием которой электрон вращается с частотой (гироскопическая частота) вокруг силовых линий магнитного поля. Вследствие этого изменяется характер вынужденных колебаний электронов ионосферы под действием электрического поля волны.

В простейшем случае, когда направление Р. р. перпендикулярно H 0 (Е лежит в одной плоскости с H 0), волну можно представить в виде суммы 2 волн с Е ^ Н 0 и Е || Н 0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:

; (7)

В случае произвольного направления Р. р. относительно магнитного поля Земли формулы более сложные: как n 1, так и n 2 зависят от wH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

По мере Р. р. в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается (см. Вращение плоскости поляризации ). В общем случае поляризация обеих волн эллиптическая.

Рассеяние радиоволн. Помимо регулярной зависимости электронной концентрации N от высоты (рис. 12 ), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 13 ), сложение которых приводит к замираниям - хаотическим изменениям сигнала.

Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее Р. р. (метрового диапазона).

Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов . Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80-120 км , длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.

Нелинейные эффекты. Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга (см. Суперпозиции принцип ), ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» E p ионосферы, e и s начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.

Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург - Горьковский эффект ) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы.

Особенности распространения радиоволн различного диапазона в ионосфере. Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность Р. р. при одном отражении от ионосферы ~ 3500-4000 км , т. к. угол падения j на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли (рис. 14 ). Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 15 ).

Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке (эффект антипода , рис. 16 ).

Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в др. полушарии (рис. 17 ). Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие атмосферики ).

Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики . Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, т. е. к появлению магнито-гидродинамических (альфвеновских) волн, которые распространяются вдоль магнитных силовых линий со скоростью 4,5×104 м /сек (r - плотность ионизированного газа).

Космическая радиосвязь. Когда один из корреспондентов находится на Земле, диапазон длин волн, пригодных для связи с космическим объектом, определяется условиями прохождения через атмосферу Земли. Т. к. радиоволны, частота которых < МПЧ (5-30 Мгц ), не проходят через ионосферу, а волны с частотой > 6-10 Ггц поглощаются в тропосфере, то волны от космического объекта могут приниматься на Земле при частотах от ~ 30 Мгц до 10 Ггц. Однако и в этом диапазоне атмосфера Земли не полностью прозрачна для радиоволн. Вращение плоскости поляризации при прохождении через ионосферу при приёме на обычную антенну приводит к потерям, которые уменьшаются с ростом частоты. Только при частотах > 3 Ггц ими можно пренебречь (рис. 18 ). Эти условия определяют диапазон радиоволн для дальней связи на УКВ при использовании спутников.

Для связи с объектами, находящимися на др. планетах, необходимо учитывать поглощение и в атмосфере этих планет. При осуществлении связи между 2 космическими кораблями, находящимися вне атмосферы планет, особенное значение приобретают миллиметровые и световые волны, обеспечивающие наибольшую ёмкость каналов связи (см. Оптическая связь ). Сведения о процессах Р. р. в космическом пространстве даёт радиоастрономия .

Подземная и подводная радиосвязь. Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры s » 10-3-10-2 ом -1м -1. В этих средах волна практически затухает на расстоянии £ l. Кроме того, для сред с большой s коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности и затем принимается подземной приёмной антенной (рис. 19 ). Глубина погружения антенн достигает десятков м. Системы этого типа обеспечивают дальность до нескольких сотен км и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы - слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся каменная соль , поташ и др. Эти породы залегают на глубинах до сотен м и обеспечивают дальность Р. р. до нескольких десятков км. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 20 ). На глубине 3-7 км s может уменьшиться до 10-11 ом -1м -1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км , в котором возможно Р. р. на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи - расчёт излучения и передачи энергии от антенн , расположенных в проводящей среде.

Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

Лит.: , Распространение радиоволн вдоль земной поверхности, М., 1961; , Распространение электромагнитных волн и ионосфера, М., 1972; , Нелинейная теория распространения радиоволн в ионосфере, М., 1973; , Волны в слоистых средах, 2 изд., М., 1973; , Распространение волн в турбулентной атмосфере, М., 1967; , Распространение волн в среде со случайными неоднородностями, М., 1958; , Распространение электромагнитных волн в плазме, М., 1967; , Обзор работ, связанных с подземным распространением радиоволн. Проблемы дифракции и распространения радиоволн, Сб. 5, Л., 1966; , Распространение радиоволн, 4 изд., М., 1972; , Системы подземной радиосвязи, «Зарубежная радиоэлектроника», 1963, № 10; Габиллард [Р.], Дегок [П.], Уэйт [Дж.], Радиосвязь между подземными и подводными пунктами, там же, 1972, № 12; Ратклифф Дж. А., Магнито-ионная теория и ее приложения к ионосфере, пер. с англ., М., 1962.

Рис. 3. к ст. Распространение радиоволн.

Рис. 1. Область, существенная при распространении радиоволн: А - передающая антенна; В - приёмная; Z1 и Z2 - их высоты над поверхностью Земли.

Рис. 2. Лепестковая структура поля в точке приёма.

Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

Рис. 5. График изменения напряжённости поля с расстоянием r (в км ). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

Рис. 6. Изменение напряженности Е поля волны при пересечении береговой линии.

Рис. 7. к ст. Распространение радиоволн.

Рис. 8. Усиление радиоволн при дифракции на непологих неровностях.

Рис. 9. Искривление радиолучей в тропосфере в результате ее неоднородности.

Рис. 10. Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля DE.

Рис. 12. Изменение концентрации N электронов в ионосфере с высотой; Е, F1, F2 - слои ионосферы.

Рис. 13. Рассеяние радиоволн на неоднородностях ионосферы.

Рис. 14. к ст. Распространение радиоволн.

Рис. 15. к ст. Распространение радиоволн.

Рис. 16. Зависимость напряженности Е поля волны от расстояния до передатчика r в отсутствии поглощения (пунктир) и при учете поглощения.

Рис. 17. к ст. Распространение радиоволн.

Рис. 18. Зависимость потерь энергии за счет вращения плоскости поляризации волны от частоты для трех значений угла возвышения b.

Рис. 19. Система подземной связи с частичным распространением радиоволн вдоль земной поверхности. Вторичные волны изображены условно.

УДК 537.874

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ОСЛАБЛЕНИЯРАДИОВОЛН СТРОИТЕЛЬНЫМИ И ЭКРАНИРУЮЩИМИ
МАТЕРИАЛАМИ В ДИАПАЗОНЕ ЧАСТОТ 800 МГц – 17 ГГц

А. Н. Катруша

Военно-учебный научный центр Военно-воздушных сил «Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина»

Аннотация. Экспериментально получены коэффициенты прохождения радиоволн для различных материалов в широком диапазоне частот; рассмотрены типовые трассы распространения радиоволн при организации экранирования оконного проема здания; проведен физический анализ полученных результатов.

Ключевые слова: распространение радиоволн, экспериментальные исследования, электромагнитное экранирование.

Abstract. Factors of passage of radio-waves for various materials in a wide range of frequencies are experimentally received; typical lines of propagation of radio-waves are considered at the organisation of shielding of a window aperture of a building; the physical analysis of the received results is carried out.

Keywords: propagation of radio-waves, experimental researches, e lectromagnetic shielding.

Введение.

Оценка уровня сигнала при распространении радиоволн в условиях городской застройки необходима при решении таких важных задач, как планирование и организация сетей мобильной радиосвязи (в том числе сверхширокополосных), беспроводных компьютерных сетей, а также формирования помех с целью предотвращения утечки информации по радиоканалу. Кроме того в настоящее время представляет интерес исследование ослабления различными препятствиями сверхкоротких электромагнитных импульсов при их деструктивном воздействии на радиоэлектронную аппаратуру, находящуюся внутри здания.

Данные по ослаблению радиоволн при их прохождении внутрь здания могут быть найдены в справочной литературе, например , однако они приводятся или в обобщенном виде для ряда выборочных частот, или в виде усредненных значений в весьма широких диапазонах частот (например, в величина ослабления при прохождении радиоволн внутрь здании усреднена для диапазона частот 500 МГц – 3 ГГц). Очевидно, что для адекватной оценки уровней ослабления сверхширокополосных сигналов и сверхкоротких импульсов необходимы более детальные сведения о коэффициентах ослабления радиоволн различными препятствиями в полосе частот сигналов (импульсов), достигающей несколько гигагерц.

Для исследований выбран диапазон частот 800 МГц – 17 ГГц, охватывающий диапазоны работы современных сетей мобильной радиосвязи, беспроводной передачи данных, сверхширокополосных систем связи, а также наиболее актуальные диапазоны частот сверхкоротких электромагнитных импульсов.

Результаты экспериментальных исследований.

Рассмотрим каноническую задачу прохождения радиоволн внутрь здания при нормальном падении волны на фронтальную стену здания. Очевидно, что наименьшее ослабление ожидается при распространении радиоволн через оконный проем. В связи с этим задача экранирования помещений решается путем применения оконных штор из экранирующих материалов.

Необходимо отметить, что для экранирующих материалов известны только коэффициенты прохождения сквозной волны, полученные в лабораторных условиях . Поэтому представляет интерес исследование характеристик экранирующих материалов на трассах распространения в составе препятствия «окно + экранирующий материал», а также влияние дифракционных компонент на параметры экранирования.

Экспериментальная установка для измерения коэффициентов прохождения радиоволн через препятствия состояла из передатчика, приемника и двух встречно направленных рупорных антенн П6-23М. В качестве передатчика использовался генератор сигналов Rhode & Swarz SMF 43, приемником служил анализатор спектра Rhode & Swarz FSU 26.

Прохождение радиоволн через стеклопакет.

Экспериментальные исследования прохождения радиоволн через окно проводились с использованием стандартного двухкамерного стеклопакета (три листа стекла) в составе пластикового оконного блока. Передающая и приемная антенны размещались встречно на удалении 1,5 м от окна (рис.1).

Рис.1. Схема измерения коэффициента прохождения черезстеклопакет

Измерялся уровень мощности сигнала на входе анализатора спектра при наличии стеклопакета, где - частота сигнала . Затем створка окна открывалась, и измерялся уровень сигнала при отсутствии препятствия между антеннами (в свободном пространстве). Коэффициент прохождения радиоволн через стеклопакет относительно свободного пространства рассчитывался по формуле

Частотная зависимость , полученная на основе проведенных измерений, представлена на рис. 2.


Рис.2. Частотная зависимость коэффициента прохождения радиоволн через стеклопакет

Анализ рисунка показывает, что коэффициент прохождения через стеклопакет существенно зависит от частоты. На частотах 800 МГц – 3 ГГц наблюдается осциллирующий характер коэффициента прохождения, однако средний уровень равен 0 дБ. Вероятно, эти осцилляции обусловлены отражением радиоволн от металлических составляющих оконной конструкции (на частотах 1-2 ГГц диаграмма направленности антенны П6-23М достаточно широкая, поэтому отраженные волны могут вносить ощутимый вклад в принимаемый сигнал). В диапазоне 3 – 5,8 ГГц ослабление радиоволн незначительное (до -4 дБ). На частотах 5,8 – 13 ГГц наблюдается существенное ослабление сигнала до -20 дБ. В диапазоне 13 – 16 ГГц коэффициент прохождения не превышает -2 дБ. Выше 16 ГГц снова наблюдается увеличение ослабления. Такой характер частотной зависимости коэффициента прохождения объясняется зависимостью диэлектрической проницаемости стекла от частоты (а, следовательно, частотной зависимостью коэффициента отражения радиоволн от стекла).

Для качественного выявления указанной зависимости проведены дополнительные измерения. Сначала измерялся уровень сигнала при прохождении радиоволн через стеклопакет . Затем параллельно стеклопакету размещалось дополнительное стекло на некотором расстоянии d (рис. 3) и измерялся уровень сигнала . Коэффициент прохождения через дополнительное стекло в составе препятствия «стеклопакет + стекло» рассчитывался по формуле

Рис. 3 Схема измерения коэффициента прохождения радиоволн через стеклопакет и дополнительное стекло

Очевидно, что коэффициент прохождения препятствия «стеклопакет + дополнительное стекло» относительно свободного пространства можно рассчитать как , однако для оценки ослабления, вносимого дополнительным стеклом, рассмотрим зависимость .

На рис. 4 приведены частотные зависимости коэффициента прохождения радиоволн при расстоянии между стеклопакетом и дополнительным стеклом d =30 см и 40 см, а также при развороте дополнительного стекла в горизонтальной плоскости на угол 45 0 .


Рис. 4. Частотные зависимости коэффициента прохождения радиоволн через дополнительное стекло

Из анализа рис. 4 можно сделать следующие выводы. В диапазоне 3 – 13 ГГц наблюдаются существенные периодические осцилляции коэффициента прохождения, достигающие размаха в 20 дБ. Такой резонансный характер коэффициента прохождения объясняется многочисленными переотражениями между стеклопакетом и дополнительным стеклом. Причем при увеличении расстояния d с 30 см до 40 см частота осцилляций увеличивается, поскольку разность хода между различными лучами, приходящими в точку приема возрастает. При развороте дополнительного стекла на 45 0 периодические осцилляции прекращаются, однако на некоторых частотах наблюдаются глубокие провалы коэффициента прохождения.

Таким образом, в диапазонах частот 800 МГц – 3 ГГц и 13 ГГц – 17 ГГц диэлектрическая проницаемость стекла близка к диэлектрической проницаемости воздуха, в диапазоне частот 3 ГГц – 13 ГГц диэлектрическая проницаемость стекла отличается от диэлектрической проницаемости воздуха, причем это отличие наиболее существенно в диапазоне 6,5 ГГц – 12 ГГц.

Прохождение радиоволн через экранирующие материалы.

Задача экранирования электромагнитных волн является актуальной как при организации электромагнитной совместимости, так и при защите радиоэлектронной аппаратуры от мощных электромагнитных импульсов. В качестве экранирующих материалов достаточно часто применяются различные металлизированные ткани, например, полиэфирная ткань МЕТАКРОН, покрытая никелем .

На рис. 5 приведены частотные зависимости коэффициента прохождения тканей МЕТАКРОН 1П4-Н3 толщиной 3 мкм и 1П16-Н5 толщиной 5 мкм. Измерения проводились в комнате размером 4 м × 8 м × 2,5 м, размер экранирующего материала составлял 2,5 м × 4 м (экран полностью перекрывал поперечное сечение комнаты). Расстояние между антеннами составляло 1 м (рис. 5а) и 6 м (рис. 5б).

Анализ рис. 5 показывает, что при прохождении радиоволн через более тонкую ткань 1П4-Н3 преобладает сквозная волна, ослабление составляет в среднем -30 дБ почти во всем исследуемом диапазоне частот. Однако на частотах менее 3 ГГц уровень дифракционных волн становится соизмерим с уровнем сквозной волны, при этом появляются интерференционные осцилляции коэффициента прохождения, достигающие 20 дБ. При использовании в качестве экрана ткани 1П16-Н5 во всем диапазоне частот преобладают дифракционные и переотраженные в комнате волны, при этом осцилляции коэффициента прохождения достигают 30 дБ.



Рис. 5. Частотные зависимости коэффициента прохождения радиоволн через металлизированные ткани

Увеличение расстояния между антеннами приводит к повышению уровней дифракционных компонент (рис. 5б), особенно это заметно для ткани 1П16-Н5 (коэффициент прохождения увеличивается в среднем на 20 дБ). При этом на частотах менее 3 ГГц различия между коэффициентами прохождения тканей 1П4-Н3 и 1П16-Н5 практически отсутствуют (рис. 5б) вследствие доминирования дифракционных компонент.

Необходимо отметить, что полученные значения коэффициентов прохождения существенно отличаются от результатов лабораторных испытаний , поскольку учитывают в точке приема не только сквозную, но и дифракционную компоненту радиоволн, которая во многих практически важных случаях может вносить существенный вклад в формируемое поле.

Для решения задач электромагнитного экранирования на практике могут применяться радиоотражающие краски. На рис. 6 приведены измеренные частотные зависимости коэффициентов прохождения радиоволн через лист фанеры размером 1 м × 1 м, покрытый графитовой краской.


Рис. 6. Частотные зависимости коэффициента прохождения радиоволн через лист фанеры, покрытый графитовой краской, и металлический лист

Расстояние между антеннами составляло 1 м. Для сравнения на рисунке также представлена частотная зависимость коэффициента прохождения через сплошной металлический лист аналогичного размера.

Ослабление, вносимое экраном с графитовым покрытием, составляет в среднем -20 дБ практически во всем диапазоне частот. При этом доминирует сквозная волна. Как известно, при прохождении радиоволн через металлический лист преобладают дифракционные компоненты (сквозная компонента практически отсутствует). Из сравнения двух зависимостей видно, что дифракционная компонента при прохождении через лист фанеры, покрытый графитовой краской, соизмерима со сквозной компонентой на частотах менее 4 ГГц, а на частотах порядка 1 ГГц начинает доминировать.

Необходимо отметить, что на практике с помощью экранирующих материалов закрываются оконные проемы, поэтому представляет интерес оценка коэффициента прохождения радиоволн при размещении экрана перед окном. На рис. 7 приведена схема измерения коэффициента прохождения, моделирующая ситуацию экранирования помещения с оконным проемом. При этом имитируется прохождение радиоволн с улицы внутрь здания через окно.

Рис. 7 Схема измерения коэффициента прохождения через экранирующий материал в составе препятствия «стеклопакет + экран»

Производились измерения мощности сигнала и при отсутствии и наличии экранирующего материала соответственно. Расчет коэффициента прохождения экранирующего материала в составе препятствия «стеклопакет + экранирующий материал» производился по формуле

Частотная зависимость коэффициента прохождения листа фанеры, покрытого графитовой краской, относительно стеклопакета приведена на рис. 8, при расстоянии между экраном и стеклопакетом = 14 см и = 30 см. Расстояние между антеннами составляло 3 м.


Рис. 8. Частотные зависимости коэффициента прохождения через экран с графитовым покрытием, расположенный перед окном

Анализ рис. 8 показывает, что коэффициент прохождения носит осциллирующий характер, однако в диапазоне частот 800 МГц – 3 ГГц осцилляции обусловлены интерференцией дифракционных компонент поля, а в диапазоне 3 ГГц – 14 ГГц интерференцией сквозных волн многократно переотраженных между стеклопакетом и экранирующим материалом. Такой вывод обосновывается сравнением зависимостей при различных удалениях экрана от стеклопакета. И если в диапазоне 3-14 ГГц при уменьшении расстояния с 30 до 14 см частота осцилляций уменьшается в 2 раза (что обусловлено уменьшением разности хода между переотраженными волнами в резонаторе «стеклопакет – экран»), то в диапазоне частот 800 МГц – 3 ГГц зависимости практически не отличаются.

Из сравнения зависимостей, представленных на рис. 7 и 8, можно сделать следующий вывод: ослабление, вносимое экраном существенно зависит от условий распространения радиоволн, при этом за счет многократных переотражений между стеклопакетом и экраном может значительно отличаться (на 10 дБ и более) от ослабления, вносимого одним экраном, размещенным в свободном пространстве.

В качестве экранирующего материала кроме специально изготавливаемых металлизированных тканей и радиоотражающих покрытий может применяться обычная солнцезащитная пленка. Очевидно, что наличие металлизации делает солнцезащитную пленку радиоотражающей, поэтому представляет интерес измерение коэффициента прохождения радиоволн через пленку в исследуемом диапазоне частот.

На рис. 9 представлены частотные зависимости коэффициента прохождения радиоволн через солнцезащитную пленку средней плотности (один и два слоя) размером 0,5 м × 1 м. Расстояние между антеннами составляло 1 м.


Рис. 9. Частотные зависимости коэффициента прохождения через солнцезащитную пленку

Из анализа рис. 9 видно, что коэффициент прохождения через один слой пленки в среднем составляет -40 дБ. Необходимо отметить, что экранирующие свойства обычной солнцезащитной пленки в среднем на 10 дБ превышают экранирующие свойства ткани МЕТАКРОН 1П4-Н3 (рис. 5). Таким образом, солнцезащитная пленка вполне может использоваться в качестве экранирующего материала. При этом пленка может наклеиваться на оконное стекло и применяться в качестве шторы на некотором удалении от окна.

На рис. 10 представлены частотные зависимости коэффициента прохождения одного слоя солнцезащитной пленки, расположенной перед окном на расстоянии 40 см. Расстояние между антеннами составляло 3 м.


Рис. 10. Частотная зависимость коэффициента прохождения радиоволн через солнцезащитную пленку, расположенную перед окном

Анализ зависимостей, представленных на рис. 10 показывает, что частотная зависимость коэффициента прохождения носит весьма изрезанный характер. На частотах 3 ГГц – 14 ГГц интерференционные осцилляции обусловлены резонансными переотражениями радиоволн между стеклопакетом и пленкой, при этом полученная зависимость качественно отличается от аналогичной зависимости коэффициента прохождения, представленной на рис. 8 (вместо периодических осцилляций наблюдается хаотические изменения коэффициента прохождения). Это объясняется неровной (волнистой) поверхностью пленки, используемой в экспериментах, в результате коэффициент отражения от пленки существенно зависел от частоты.

Прохождение радиоволн через стену.

Необходимо отметить, что при прохождении радиоволн внутрь здания ослабление вносимое стеной может быть существенно меньше ослабления экранированного оконного проема.

В работе приводятся результаты экспериментальных исследований ослабления радиоволн сплошными стенами различной толщины. Однако в настоящее время наружные стены зданий часто имеют слоистую структуру, например, «1-й слой кирпича – утеплитель – 2-й слой кирпича».

На рис. 11 представлены результаты измерения коэффициента прохождения через стену, состоящую из двух слоев кирпичной кладки толщиной 12 см и 9 см и воздушного пространства между ними 15 см (сплошная линия на рисунке). Необходимо отметить, что при проведении экспериментов использовалась модельная сухая стена, выполненная в виде внутренней перегородки здания. Для сравнения на рис. 11 также приведены усредненные значения коэффициента прохождения через сплошную внутреннюю кирпичную стену, полученные в работе и пересчитанные для толщины кирпичной кладки равной 21 см (штриховая линия).


Рис. 11. Коэффициент прохождение радиоволн через стену

Анализ рис. 11 показывает, что частотная зависимость коэффициента прохождения имеет осциллирующий характер, который обусловлен многочисленными преотражениями между двумя слоями кирпичной кладки. При этом на частотах выше 10 ГГц средний уровень коэффициента прохождения почти не меняется и даже несколько возрастает. При одинаковой суммарной толщине кирпичной кладки двухслойная стена вносит большее ослабление по сравнению с однослойной, что объясняется дополнительными потерями на отражение от границ раздела сред «воздух – кирпич» и «кирпич – воздух» при прохождении волны через второй слой стены.

Выводы.

Проведены экспериментальные исследования ослабления радиоволн при их прохождении через стену с оконным проемом. Экспериментально показано, что на частотах 3-12 ГГц ослабление радиоволн стеклопакетом весьма существенно вследствие значительного отражения радиоволн слоем стекла. При использовании экранирующих материалов недостаточно данных о коэффициентах прохождения сквозной волны, полученных в лабораторных условиях. На реальных трассах распространения радиоволн наряду со сквозной необходимо учитывать дифракционную компоненту, которая может вносить значительный вклад в результирующее поле. При размещении экранирующих материалов перед окном необходимо учитывать многочисленные отражения радиоволн в резонаторе «стеклопакет – экранирующий материал», которые приводят к существенным изменениям экранирующих свойств материалов.

Литература

1. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz . Recommendation ITU-R P.1411-6, Geneva (02/2012).

2. Propagation data required for the design of broadcasting-satellite systems. Recommendation ITU - R P .679-3, (02/2001).

3. Металлизированная электропроводящая ткань Метакрон для защиты от излучений [Электронный ресурс]: ООО НПП «Техностиль». URL : http://www.metakron.ru

4. Радиоэкранирующие материалы [Электронный ресурс]: ООО НПП «Радиострим». URL: http://www.radiostrim.ru/ 100-screen.html .

5. А. И. Рыжов, В. А. Лазарев, Т. И. Мохсени, Д. В. Никеров, Ю. В. Андреев, А. С. Дмитриев, Н. П. Чубинский. Ослабление сверхширокополосных хаотических сигналов диапазона 3–5 ГГц при прохождении через стены зданий. // Журнал радиоэлектроники: электронный журнал. 2012. N5. URL: http://сайт/jre/may12/1/text.pdf.

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.