Устройство световых микроскопов и техника микроскопирования. особенности строения. Устройство микроскопа и обращение с ним Строение микроскопа и их значение

Термин «микроскоп» имеет греческие корни. Он состоит из двух слов, которые в переводе означают «маленький» и «смотрю». Основная роль микроскопа заключается в его применении при рассмотрении весьма малых объектов. При этом данный прибор позволяет определить размеры и форму, строение и иные характеристики невидимых невооруженным глазом тел.

История создания

Точных сведений о том, кто являлся изобретателем микроскопа, в истории нет. По одним данным, его в 1590 г. сконструировали отец и сын Янссены, мастера по изготовлению очков. Еще один претендент на звание изобретателя микроскопа - Галилео Галилей. В 1609 г. этим ученым был представлен прибор с вогнутой и выпуклой линзами на обозрение публики в Академии деи Линчеи.

С годами система для рассмотрения микроскопических объектов развивалась и совершенствовалась. Огромным шагом в ее истории стало изобретение простого ахроматически регулировавшегося двухлинзового устройства. Представил эту систему голландец Кристиан Гюйгенс в конце 1600-х годов. Окуляры данного изобретателя находятся в производстве и сегодня. Единственным их минусом является недостаточная широта поля обзора. Кроме того, по сравнению с устройством современных приборов окуляры Гюйгенса имеют неудобное расположение для глаз.

Особый вклад в историю микроскопа внес изготовитель подобных приборов Антон Ван Левенгук (1632-1723 гг.). Именно он привлек внимание биологов к этому устройству. Левенгук изготавливал небольшие по размеру изделия, оснащенные одной, но весьма сильной линзой. Использовать такие приборы было неудобно, но они не удваивали дефекты изображений, что присутствовало в составных микроскопах. Исправить этот недостаток изобретатели смогли только спустя 150 лет. Вместе с развитием оптики улучшилось качество изображения в составных приборах.

Совершенствование микроскопов продолжается и в наши дни. Так, в 2006 г. немецкими учеными, работающими в институте биофизической химии, Мариано Босси и Штефаном Хеллем, был разработан новейший оптический микроскоп. Из-за возможности наблюдать предметы с размерами в 10 нм и трехмерные высококачественные 3D-изображения прибор назвали наноскопом.

Классификация микроскопов

В настоящее время существует большое разнообразие приборов, предназначенных для рассмотрения малых по величине объектов. Их группирование производится исходя из различных параметров. Это может быть назначение микроскопа или принятый способ освещения, строение, использованное для оптической схемы и т. д.

Но, как правило, основные виды микроскопов классифицируются по величине разрешения микрочастиц, которые можно увидеть при помощи данной системы. Согласно такому делению, микроскопы бывают:
- оптическими (световыми);
- электронными;
- рентгеновскими;
- сканирующими зондовыми.

Наибольшее распространение получили микроскопы светового типа. Их богатый выбор имеется в магазинах оптики. При помощи подобных приборов решаются основные задачи по исследованию того или иного объекта. Все другие виды микроскопов относят к специализированным. Их использование производится, как правило, в условиях лаборатории.

Каждый из вышеперечисленных видов приборов имеет свои подвиды, которые применяются в той или иной сфере. Кроме того, сегодня есть возможность купить школьный микроскоп (или учебный), который является системой начального уровня. Предлагаются потребителям и профессиональные приборы.

Применение

Для чего нужен микроскоп? Человеческий глаз, будучи особой оптической системой биологического типа, имеет определенный уровень разрешения. Другими словами, существует наименьшее расстояние между наблюдаемыми объектами, когда их еще можно различить. Для нормального глаза такое разрешение находится в пределах 0,176 мм. А вот размеры большинства животных и растительных клеток, микроорганизмов, кристаллов, микроструктуры сплавов, металлов и т. п. намного меньше этой величины. Каким же образом изучать и наблюдать подобные объекты? Вот здесь на помощь людям и приходят различные виды микроскопов. К примеру, приборы оптического типа позволяют различить структуры, у которых расстояние между элементами составляет минимум 0,20 мкм.

Как устроен микроскоп?

Прибор, с помощью которого человеческому глазу становится доступным рассмотрение микроскопических объектов, имеет два основных элемента. Ими являются объектив и окуляр. Закреплены данные части микроскопа в подвижном тубусе, располагающемся на металлическом основании. На нем же имеется и предметный столик.

Современные виды микроскопов, как правило, оснащены осветительной системой. Это, в частности, конденсор, имеющий ирисовую диафрагму. Обязательной комплектацией увеличительных приборов являются микро- и макровинты, которые служат для настройки резкости. В конструкции микроскопов предусматривается и наличие системы, управляющей положением конденсора.

В специализированных, более сложных микроскопах нередко используются и иные дополнительные системы и устройства.

Объективы

Начать описание микроскопа хотелось бы с рассказа об одной из его основных частей, то есть с объектива. Они является сложной оптической системой, увеличивающей размеры рассматриваемого предмета в плоскости изображения. Конструкция объективов включает в себя целую систему не только одиночных, но и склеенных по две или три штуки линз.

Сложность подобной оптико-механической конструкции зависит от круга тех задач, которые должны быть решены тем или иным прибором. Например, в самом сложном микроскопе предусматривается до четырнадцати линз.

В составе объектива находятся фронтальная часть и системы, последующие за ней. Что является основой для построения изображения нужного качества, а также определения рабочего состояния? Это фронтальная линза или их система. Последующие части объектива необходимы для обеспечения требуемого увеличения, фокусного расстояния и качества изображения. Однако осуществление таких функций возможно только в сочетании с фронтальной линзой. Стоит сказать и о том, что конструкция последующей части влияет на длину тубуса и высоту объектива прибора.

Окуляры

Эти части микроскопа представляют собой оптическую систему, предназначенную для построения необходимого микроскопического изображения на поверхности сетчатки глаз наблюдателя. В составе окуляров находятся две группы линз. Ближайшая к глазу исследователя называется глазной, а дальняя - полевой (с ее помощью объектив выстраивает изображение изучаемого объекта).

Осветительная система

В микроскопе предусмотрена сложная конструкция из диафрагм, зеркал и линз. С ее помощью обеспечивается равномерная освещенность исследуемого объекта. В самых первых микроскопах данную функцию осуществляли По мере усовершенствования оптических приборов в них стали применять сначала плоские, а затем и вогнутые зеркала.

С помощью таких нехитрых деталей лучи от солнца или лампы направлялись на объект исследования. В современных микроскопах более совершенна. Она состоит из конденсора и коллектора.

Предметный столик

Микроскопические препараты, требующие изучения, располагаются на плоской поверхности. Это и есть предметный столик. Различные виды микроскопов могут иметь данную поверхность, сконструированную таким образом, что объект исследования будет поворачиваться в наблюдателя по горизонтали, по вертикали или под определенным углом.

Принцип действия

В первом оптическом приборе система линз давала обратное изображение микрообъектов. Это позволяло разглядеть строение вещества и мельчайшие детали, которые подлежали изучению. Принцип действия светового микроскопа сегодня схож с той работой, которую осуществляет рефракторный телескоп. В этом приборе свет преломляется в момент прохождения через стеклянную часть.

Как же увеличивают современные световые микроскопы? После попадания в прибор пучка световых лучей происходит их преобразование в параллельный поток. Только затем идет преломление света в окуляре, благодаря чему и увеличивается изображение микроскопических объектов. Далее эта информация поступает в нужном для наблюдателя виде в его

Подвиды световых микроскопов

Современные классифицируют:

1. По классу сложности на исследовательский, рабочий и школьный микроскоп.
2. По области применения на хирургические, биологические и технические.
3. По видам микроскопии на приборы отраженного и проходящего света, фазового контакта, люминесцентные и поляризационные.
4. По направлению светового потока на инвертированные и прямые.

Электронные микроскопы

С течением времени прибор, предназначенный для рассмотрения микроскопических объектов, становился все более совершенным. Появились такие виды микроскопов, в которых был использован совершенно иной, не зависящий от преломления света принцип работы. В процессе использования новейших типов приборов задействовали электроны. Подобные системы позволяют увидеть настолько малые отдельные части вещества, что их попросту обтекают световые лучи.

Для чего нужен микроскоп электронного типа? С его помощью изучают структуру клеток на молекулярном и субклеточном уровнях. Также подобные приборы применяют для исследования вирусов.

Устройство электронных микроскопов

Что лежит в основе работы новейших приборов для рассмотрения микроскопических объектов? Чем электронный микроскоп отличается от светового? Есть ли между ними какие-либо сходства?

Принцип работы электронного микроскопа основан на тех свойствах, которыми обладают электрические и магнитные поля. Их вращательная симметрия способна оказывать фокусирующее действие на электронные пучки. Исходя из этого, можно дать ответ на вопрос: «Чем электронный микроскоп отличается от светового?» В нем, в отличие от оптического прибора, нет линз. Их роль играют соответствующим образом рассчитанные магнитные и электрические поля. Создаются они витками катушек, через которые проходит ток. При этом такие поля действуют подобно При увеличении или уменьшении силы тока происходит изменение фокусного расстояния прибора.

Что касается принципиальной схемы, то у электронного микроскопа она аналогична схеме светового прибора. Отличие заключено лишь в том, что оптические элементы замещены подобными им электрическими.

Увеличение объекта в электронных микроскопах происходит за счет процесса преломления пучка света, проходящего сквозь исследуемый объект. Под различными углами лучи попадают в плоскость объективной линзы, где и происходит первое увеличение образца. Далее электроны проходят путь к промежуточной линзе. В ней происходит плавное изменение увеличения размеров объекта. Конечную картинку исследуемого материала дает проекционная линза. От нее изображение попадает на флуоресцентный экран.

Виды электронных микроскопов

Современные виды включают в себя:

1. ПЭМ, или просвечивающий электронный микроскоп. В этой установке изображение очень тонкого, толщиной до 0,1 мкм, объекта формируется при взаимодействии пучка электронов с исследуемым веществом и с последующим его увеличением находящимися в объективе магнитными линзами.
2. РЭМ, или растровый электронный микроскоп. Такой прибор позволяет получить изображение поверхности объекта с большим разрешением, составляющим порядка нескольких нанометров. При использовании дополнительных методов подобный микроскоп выдает информацию, помогающую определить химический состав приповерхностных слоев.
3. Туннельный сканирующий электронный микроскоп, или СТМ. При помощи данного прибора измеряется рельеф проводящих поверхностей, имеющих высокое пространственное разрешение. В процессе работы с СТМ острую металлическую иглу подводят к изучаемому объекту. При этом выдерживается расстояние всего в несколько ангстрем. Далее на иглу подают небольшой потенциал, благодаря чему возникает туннельный ток. При этом наблюдатель получает трехмерное изображение исследуемого объекта.

Микроскопы «Левенгук»

В 2002 году в Америке появилась новая компания, занимающаяся производством оптических приборов. В ассортиментном перечне ее продукции находятся микроскопы, телескопы и бинокли. Все эти приборы отличает высокое качество изображения.

Головной офис и отдел разработок компании располагаются в США, в городе Фримонде (Калифорния). А вот что касается производственных мощностей, то они находятся в Китае. Благодаря всему этому компания поставляет на рынок передовую и качественную продукцию по приемлемой цене.

Вам нужен микроскоп? Levenhuk предложит необходимый вариант. В ассортименте оптической техники компании находятся цифровые и биологические приборы для увеличения изучаемого объекта. Кроме того, покупателю предлагаются и дизайнерские модели, исполненные в разнообразной цветовой гамме.

Микроскоп Levenhuk обладает обширными функциональными возможностями. Например, учебный прибор начального уровня может быть присоединен к компьютеру, а также он способен выполнять видеосъемку проводимых исследований. Таким функционалом оснащена модель Levenhuk D2L.

Компания предлагает биологические микроскопы различного уровня. Это и более простые модели, и новинки, которые подойдут профессионалам.

Существуют различные модели учебных и исследовательских световых микроскопов. Подобные микроскопы позволяют определить форму клеток микроорганизмов, их размер, подвижность, степень морфологической гетерогенности, а также способность микроорганизмов к дифференцирующему окрашиванию.

Успех наблюдения объекта и надежность получаемых результатов зависят от хорошего знания оптической системы микроскопа.

Рассмотрим устройство и внешний вид биологического микроскопа, модель XSP–136 (Ningbo teaching instrument Co., LTD), работу его составных частей. Микроскоп имеет механическую и оптическую части (рисунок 3.1).

Рисунок 3.1 –Устройство и внешний вид микроскопа

Механическая часть биологического микроскопа включает штатив с предметным столиком; бинокулярную насадку; рукоятку грубой настройки на резкость; рукоятку точной настройки на резкость; рукоятки перемещения предметного столика вправо/влево, вперед/назад; револьверное устройство.

Оптическая часть микроскопа включает осветительный аппарат, конденсор, объективы и окуляры.

Описание и работа составных частей микроскопа

Объективы. Объективы (тип ахроматы), входящие в комплект микроскопа, рассчитаны на механическую длину тубуса микроскопа 160 мм, линейное поле зрения в плоскости изображения 18 мм и толщину покровного стекла 0,17 мм. На корпусе каждого объектива нанесено линейное увеличение, например, 4х; 10х; 40х; 100х и, соответственно, указана числовая апертура 0,10; 0,25; 0,65; 1,25, а также цветовая маркировка.

Бинокулярная насадка. Бинокулярная насадка обеспечивает визуальное наблюдение изображения объекта; устанавливается в гнездо штатива и закрепляется винтом.

Установка расстояния между осями окуляров в соответствии с глазной базой наблюдателя осуществляется разворотом корпусов с окулярными тубусами в диапазоне от 55 до 75 мм.

Окуляры. В комплект микроскопа входят два широкоугольных окуляра с увеличением 10х.

Револьверное устройство. Четырехгнездное револьверное устройство обеспечивает установку объективов в рабочее положение. Смена объективов производится вращением рифленого кольца револьверного устройства до фиксированного положения.

Конденсор. В комплект микроскопа входит конденсор светлого поля Аббе с ирисовой диафрагмой и фильтром, числовая апертура А=1,25. Конденсор устанавливается в кронштейн под предметным столиком микроскопа и закрепляется винтом. В конденсоре светлого поля имеется ирисовая апертурная диафрагма и откидная оправа для установки светофильтра.

Осветительное устройство. Для получение равномерно освещенного изображения объектов в микроскопе имеется осветительное светодиодное устройство. Включение осветителя осуществляется с помощью выключателя, расположенного на задней поверхности основания микроскопа. Вращая диск регулировки накала лампы, расположенный на боковой поверхности основания микроскопа слева от наблюдателя, можно изменять яркость освещения.

Фокусировочный механизм. Фокусировочный механизм расположен в штативе микроскопа. Фокусирование на объект производится перемещением по высоте предметного столика вращением рукояток, расположенных по обеим сторонам штатива. Грубое перемещение осуществляется рукояткой большего размера, точное перемещение – рукояткой меньшего размера.

Предметный столик. Предметный столик обеспечивает перемещение объекта в горизонтальной плоскости. Диапазон перемещения столика равен 70x30 мм. Объект крепится на поверхности столика между держателем и прижимом препаратоводителя, для чего прижим отводится в сторону.

Работа с микроскопом

Перед началом работы с препаратами необходимо правильно настроить освещение. Это позволяет добиться максимального разрешения и качества изображения микроскопа. Для работы с микроскопом следует отрегулировать раскрытие окуляров таким образом, чтобы два изображения слились в одно. Кольцо диоптрийной коррекции на правом окуляре следует установить «на ноль», если острота зрения обоих глаз одинакова. В противном случае необходимо выполнить общую наводку на резкость, после чего закрыть левый глаз и добиться максимальной резкости для правого, вращая кольцо коррекции.

Исследование препарата рекомендуется начинать с объектива наименьшего увеличения, который используется в качестве поискового при выборе участка для более подробного изучения, затем можно переходить к работе с более сильными объективами.

Убедитесь в том, что объектив 4х готов к работе. Это поможет вам установить предметное стекло на место, а также разместить объект для исследования. Поместите предметное стекло на предметный столик и осторожно зажмите его при помощи пружинных держателей.

Подсоедините сетевой шнур и включите микроскоп.

Всегда начинайте исследование с объективом 4х. Для достижения четкости и резкости изображения исследуемого объекта используйте рукоятки грубой и точной фокусировки. Если при помощи слабого объектива 4х было получено желаемое изображение, поверните револьверное устройство на следующее большее значение 10х. Револьвер должен зафиксироваться в нужном положении.

Наблюдая за объектом в окуляр, поверните рукоятку (большого диаметра) грубой фокусировки. Чтобы получить наиболее четкое изображение используйте рукоятку (маленького диаметра) четкой фокусировки.

Чтобы контролировать поток света, проходящего через конденсор, можно открыть или закрыть ирисовую диафрагму, расположенную под предметным столиком. Изменяя настройки, можно добиться наиболее четкого изображения исследуемого объекта.

Во время фокусировки не следует допускать соприкосновения объектива с объектом исследования. При увеличении объектива до 100х объектив располагается очень близко к предметному стеклу.

Правила обращения и ухода за микроскопом

1 Микроскоп необходимо содержать в чистоте и предохранять от повреждений.

2 Для сохранения внешнего вида микроскопа, его необходимо периодически протирать мягкой салфеткой, слегка пропитанной бескислотным вазелином, предварительно удалив пыль, а затем вытирать сухой мягкой чистой салфеткой.

3 Металлические детали микроскопа необходимо содержать в чистоте. Для чистки микроскопа следует использовать специальные смазочные некоррозирующие жидкости.

4 Для предохранения оптических деталей визуальной насадки от пыли необходимо оставлять окуляры в окулярных тубусах.

5 Нельзя касаться пальцами поверхностей оптических деталей. В случае если на линзу объектива попала пыль, ее следует удалить пыль при помощи вентилятора или кисточки. В случае если пыль проникла внутрь объектива и на внутренних поверхностях линз образовался мутный налет, необходимо отправить объектив для чистки в оптическую мастерскую.

6 Во избежание нарушения юстировки необходимо предохранять микроскоп от толчков и ударов.

7 Во избежание попадания пыли на внутреннюю поверхность линз микроскоп необходимо хранить под чехлом или в упаковке.

8 Не следует самостоятельно разбирать микроскоп и его составные для устранения неисправностей.

Меры безопасности

При работе с микроскопом источником опасности является электрический ток. Конструкция микроскопа исключает возможность случайного соприкосновения к токоведущим частям, находящимся под напряжением.

В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

Рисунок 1. Устройство микроскопа

К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании находится также гнездо для зеркала или встроенный осветитель.

  • предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;
  • узел для крепления и вертикального светофильтров.

В большинстве современных микроскопов фокусировка осуществляется путем вертикального перемещения предметного столика с помощью макро- и микромеханизма при неподвижном тубусодержателе. Это позволяет установить на тубусодержатель различные насадки (микрофото и т.п.). В некоторых конструкциях микроскопов, предназначенных для работы с микроманипулятором, фокусировка осуществляется вертикальным перемещением тубусодержателя при неподвижном предметном столике.

Тубус микроскопа - узел, служащий для установки объективов и окуляров на определенном расстоянии друг от друга. Он представляет собой трубку, в верхней части которой находится окуляр или окуляры, а в нижней - устройство для крепления и смены объективов. Обычно это револьвер с несколькими гнездами для быстрой смены объективов различного увеличения. В каждом гнезде револьвера объектив закреплен таким образом, что он всегда остается центрированным по отношению к оптической оси микроскопа. В настоящее время конструкция тубуса существенно отличается от прежних микроскопов тем, что части тубуса несущие окуляры и револьвер с объективами, конструктивно не связаны. Роль средней части тубуса может выполнять штатив.
Механическая длина тубуса биологических микроскопов обычно составляет 160мм. В тубусе между объективом и окуляром могут располагаться призмы, изменяющие направление хода лучей и промежуточные линзы, изменяющие окулярное увеличение и оптическую длину тубуса.

Существуют различные взаимозаменяемые конструкции участка тубуса, несущего окуляры (прямой и наклонный) и различающиеся по количеству окуляров (окулярные насадки):

  • монокулярные - с одним окуляром, для наблюдения одним глазом;
  • бинокулярные - с двумя окулярами, для одновременного наблюдения двумя глазами, которые могут различаться по конструкции в зависимости от модели микроскопа;
  • тринокулярные - с двумя окулярами и проекционным выходом, позволяющие одновременно с визуальным наблюдением двумя глазами, проецировать изображение препарата соответствующей оптикой на монитор компьютера или другой приемник изображения.



Помимо тубусодержателя с тубусом к механической части микроскопа относятся:

  • кронштейн для крепления предметного столика;
  • предметный столик, служащий для размещения препаратов и горизонтального перемещения в двух перпендикулярных направлениях относительно оси микроскопа. Конструкция некоторых столиков позволяет вращать препарат. Вертикальное перемещение предметного столика осуществляется макро- и микромеханизмом.
  • приспособления для крепления и вертикального перемещения конденсора и его центрировки, а также для помещения светофильтров.

Тема: Микроскоп Работа № 1. Устройство светового микроскопа

Оборудование: микроскоп, постоянный препарат, пенал.

Оформление работы: Записать устройство микроскопа, назначение его частей, правила работы.

Микроскоп – оптико-механический прибор, позволяющий увеличивать рассматриваемый предмет (объект, препарат).

В микроскопе различают оптическую и механическую системы.

ОПТИЧЕСКАЯ СИСТЕМА:

Объектив – самая важная часть микроскопа, который привинчивается к нижней части тубуса. Объектив в микроскопе находится в непосредственной близости от рассматриваемого предмета, за что он и получил свое название. Он состоит из системы оптических линз, вставленных в латунную оправу, и требует весьма бережного обращения и тщательного ухода (никоим образом не следует надавливать объективом на лежащий на предметном столике препарат, так как это может вызвать повреждение или даже выпадение линзы).

Назначение объектива:

1) Строить в трубе микроскопа изображение, геометрически подобное изучаемому предмету.

2) Увеличивать изображение в то или иное число раз.

3) Выявлять подробности, недоступные невооруженному глазу. Объективы в количестве 2-3 штук ввинчиваются в особое приспособление, называемое револьвером (4).

Окуляр – вставляется в верхнюю часть тубуса. В него рассматривается изображение предмета (а не предмет), направленное объективом вверх. Он состоит из системы линз, вставленных в металлический цилиндр. Окуляр строит изображение, увеличивает его, но не выявляет подробности строения.

Конденсор – собирает и концентрирует в плоскости препарата весь свет, отраженный от зеркала. Конденсор состоит из цилиндра (оправы) внутри которого расположены 2 линзы. Поднимая и опуская конденсор можно регулировать освещение препарата.

Диафрагма – расположена в нижней части конденсора. Также как и конденсор служит для регулирования силы света.

Зеркало – служит для улавливания света от источника освещения. Оно подвижно прикреплено под столиком, вращаясь вокруг горизонтальной оси. Зеркало с одной стороны - плоское, с друзой - вогнутое.

МЕХАНИЧЕСКАЯ СИСТЕМА:

основание (штатив) или массивная ножка (1); коробка с микромеханизмом (2) и микровинтом (3);

податочный механизм для грубой наводки – макровинт или кремальера (8); предметный столик (4);

винты (5, 6, 12, 13);

головка (9); револьвер (10); клеммы; тубус (11);

дуга или тубусодержвтель(7); Кремальера (макровинт) – служит для приблизительной «грубой» установки на фо-

Микровинт - служит для более тонкой и точной наводки.

Предметный столик – прикрепляется к передней части колонки, на которой помещают исследуемый предмет. На столике имеется 2 клеммы; с их помощью закрепляется препарат. Передвижение препарата осуществляется с помощью винтов, которые расположены сбоку столика.

Тубус – служит для соединения объектива и окуляра, и соединен со штативом таким образом, что может подниматься и опускаться. Передвижение тубуса осуществляется с помощью двух винтов: макрометрического и микрометрического.

Штатив – соединяет все вышеуказанные части микроскопа.

Определение общего увеличения микроскопа

Объектив

10х

15х

Определение фокусного расстояния

F8 = 0,9 см ~ 1 см

F40 = 1,2 мм ~ 1 мм

Вспомогательное оборудование (запомнить названия):

1. предметные и покровные стекла;

2. стаканчик или колбочка для воды, пипетка;

3. бритва (лезвие), препаровальные иглы;

4. полоски фильтровальной бумаги, салфетка.

Правила работы с микроскопом:

Работать с микроскопом следует без торопливых и резких движений. В работе с микроскопом соблюдайте чистоту и аккуратность. Оберегайте микроскоп от пыли и загрязнения.

1. Перенос микроскопа осуществляется двумя руками: одной рукой – за тубусодержатель, другой – снизу за основание.

2. Микроскоп устанавливается прямо перед работающим, напротив его левого глаза, и не перемещается.

3. С правой стороны располагаются необходимые инструменты, материалы и альбом для зарисовок.

4. Перед началом работы мягкой (желательно батистовой) тряпочкой протираются от пыли окуляр, объектив, зеркало.

5. Поставив микроскоп на постоянное место, опускаем при помощи микровинта тубус микроскопа, глядя при этом сбоку микроскопа, так, чтобы объектив малого увеличения находился на расстоянии ~ 1 см. от предметного стекла.

6. Каждый объект изучается сначала при малом увеличении, в затем переводят на большое.

7. Для освещения используются естественный свет, но не прямой, солнечный или электрический, лучше матовый.

8. Установка освещения:

а) удалить матовое стекло под конденсором; б)установить конденсор фронтальной линзой на уровень столика микроскопа (под-

нять его с помощью винта; в) открыть полностью диафрагму;

г) установить объектив малого увеличения; д) движением зеркала направить свет так, чтобы, пройдя через объектив, пучок све-

та полностью освещал плоскость входного зрачка объектива.

9. После установки освещения помещаем препарат на предметный столик, чтобы рассматриваемый объект находился под фронтальной линзой объектива малого увеличения. Затем снова опускаем тубус при помощи кремальеры так, чтобы между фронтальной линзой малого объектива и покровным стеклом препарата было расстояние 3-4 мм (при опускании тубуса нужно смотреть не в окуляр, а сбоку на объектив).

10. Глядя в окуляр левым глазом (не закрывая правый), плавно поворачиваем правой рукой винт кремальеры не себя, находим изображение, одновременно левой рукой придаем объекту выгодное положение.

11. Переходя на большое увеличение, переводим револьвер и на место малого увеличения ставим объектив 40 х . При большом увеличении, вращая микровинт, добиваются четкого изображения (вращают микровинт не более чем на пол-оборота). Помните, что при вращении микро- и макровинта по часовой стрелке тубус с объективами опускается вниз, а при обратном вращении поднимается.

12. После работы опять устанавливаем объектив малого увеличения.

13. Только при малом увеличении следует снимать препарат со столика микроскопа. Микроскоп после работы нужно протереть салфеткой и поместить под чехол.

Работа № 2. Работа с микроскопом на малом и большом увеличении.

Оформление работы: Записать технику приготовления препаратов.

Препараты и их приготовление.

Препараты могут быть временные и постоянные. При изготовлении временного препарата объект помещается в каплю прозрачной жидкости - воды или глицерина. Та-

кие препараты не подлежат долгому хранению. В том случае, когда объект исследования помещается в каплю горячего глицерин-желатина или канадского бальзама, затвердевающих при охлаждении. Получается постоянный препарат, который может храниться годами.

На практических занятиях по анатомии растений студенты пользуются как постоянными, так и временными препаратами, изготовленными ими самостоятельно. Для изготовления временного препарата необходимо:

o с помощью пипетки нанести каплю воды или глицерина в центр предметного стекла; o препаровальной иглой поместить объект в каплю приготовленной жидкости;

o осторожно накрыть объект тонким (хрупким) покровным стеклом. Сверху покровное стекло должно оставаться сухим, т.е. вода не должна выходить за его пределы. Избыток воды удаляется с помощью полоски фильтровальной бумаги. Если же жидкости под стеклом мало, можно добавить ее, подведя пипетку к краю покровного стекла, не поднимая его.

o в препарате часто оказываются пузырьки воздуха, которые попадают в него вместе с объектом или при резком, неосторожном опускании покровного стекла и своими контурами мешают изучению объекта. Удалить их можно добавлением воды с одной стороны покровного стекла с одновременным удалением ее с противоположной стороны или легким постукиванием препаровальной иглой по покровному стеклу, держа препарат почти вертикально.

ИСПОЛЬЗОВАНИЕ В ШКОЛЕ

Полученные знания и практические навыки используются в школьном курсе биологии на уроке «Знакомство с увеличительными приборами» и в процессе преподавания всего курса ботаники и других биологических дисциплин.

ДОМАШНЕЕ ЗАДАНИЕ : Выучить устройство микроскопа, правила работы с ним и технику приготовления препаратов.

Тема 1. КЛЕТКА

§6. СТРОЕНИЕ МИКРОСКОПА

Вы ознакомиться со строением микроскопа и узнаете, как рассчитывать его увеличение.

Будем ли мы работать с микроскопом?

Что можно увидеть в микроскоп, кроме бактерия?

Микроскоп (от греческого «микрос»- малый и «скопео» - смотреть, рассматривать) - где увеличительный прибор, который позволяет рассматривать предмет и очень малого размера. Конструкция школьного микроскопа почти такая же, как в лучших исследовательских микроскопов первой половины XX века. (мл. 6). При правильной настройке школьный микроскоп позволяет увидеть не только клетку, но и отдельные ее внутренние структуры. А при наличии определенного опыта - даже выполнять некоторые интересные эксперименты.

Микроскоп состоит а корпуса и элементов оптической системы, через которые проходит свет.

Частями корпуса являются:

✓ основание;

Рис. в. Внешний вид и основные составляющие школьного микроскопа

предметный столик, на котором размещается опытный образец, закрепляется на столике с помощью двух гибких держателей;

В штатив с изменяемым углом наклона, на котором находятся большой винт грубой настройки четкости (макрогвинт), и меньший винт точной настройки четкости (мікрогвинт);

тубус, на нижней части которого крепится револьверная насадка с объективами, а в верхнюю часть укладывается окуляр.

К элементам оптической системы микроскопа относятся:

вогнутое зеркало, которое можно поворачивать;

В диафрагма, что находится под предметным столиком;

револьверная насадка с объективами разного увеличения;

окуляр, в который наблюдают объект исследования.

Зеркало используют для настройки наилучшего освещения препарата. Диафрагмой регулируют контрастность и яркость изображения: если диафрагма закрыта, изображение очень контрастное, однако темное; если диафрагма полностью открыта, то контрастность мала, а света много, поэтому изображение переосвітлене.

Рис. 7. Объективы (а), окуляр (б) школьного микроскопа и их маркировка

Объектов. Школьный микроскоп имеет три объектива: очень малого (4-кратного), малого (10-кратного) и большого (40-кратного) увеличения. Для легкой их смены они вкручены в револьверную насадку. Объектив, который расположен вертикально вниз, в направлении к объекту исследования, включенный в оптическую систему, другие - выключены. Поворачивая револьверную насадку, можно менять рабочий объектив и, таким образом, переходить от одного увеличения к другому. При включении другого объектива в оптическую систему слышен легкий щелчок - это срабатывает пружинный фиксатор револьверной насадки.

Объектив является главным элементом оптической системы микроскопа. На объективе цифрами обозначены его технические характеристики.

В верхней строке первой цифрой обозначается увеличение объектива (жал. 7).

Произведение увеличения объектива и увеличения окуляра показывает общее увеличение микроскопа. Например, при включенном 4-кратном объективе и 10-кратном окуляре общее увеличение микроскопа составляет: 4 ∙ 10 = 40 (раз).

При работе с микроскопом на предметный столик кладут опытный образец, закрепляют его держателями, включают объектив малого увеличения (10-кратннй). Вращая зеркальце, направляют на препарат свет, и макрогвинтом настраивают четкость. Далее, при необходимости, включают объектив большого увеличения, підрегульовують четкость мікрогвинтом и контрастируют изображение диафрагмой.

Работая с микроскопом, придерживайтесь таких правил:

1. Линзы окуляров и объективов нужно предохранять от загрязнения и механических повреждений: не касаться пальцами и твердыми предметами, не допускать попадания на них воды и других веществ.

2. Запрещается раскручивать оправы окуляра и объективов, разбирать механические детали микроскопа - их ремонтируют только в специальных мастерских.

3. Переносить микроскоп надо двумя руками в вертикальном положении, держа прибор одной рукой за штатив, а другой - за его основу.

ТЕРМИНЫ И ПОНЯТИЯ, КОТОРЫЕ НУЖНО УСВОИТЬ

Объектив, общее увеличение микроскопа.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Из каких элементов состоит оптическая система микроскопа?

2. Элементы оптической системы микроскопа обеспечивают общее увеличение?

3. Для чего используется вогнутое зеркало?

4. Каково назначение диафрагмы?

5. Объектив включают в начале работы с микроскопом?

6. Какое максимальное увеличение можно получить игры применении объективов и окуляра, изображенных на рисунке 7?

7. Каких правил нужно придерживаться при работе с микроскопом?

ЗАДАЧИ

Внимательно рассмотрите ваш школьный микроскоп, найдите все его составляющие. Запишите увеличения окуляра и объектива. Рассчитайте увеличение микроскопа для каждого из объективов. Результаты запишите в таблицу в тетради.

ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Как определить размер наименьших объектов, которые можно увидеть в оптический микроскоп?

Размер минимального объекта, который можно увидеть с помощью глаза или увеличительного прибора, определяется его разрешением.

Разрешающая способность - это наименьшее расстояние между двумя точками, на котором их изображения еще разделены и не сливаются в одно. Разрешающая способность глаза человека составляет 200 мкм (0,2 мм), оптического микроскопа - 0,2 мкм (0,0002 мм), электронного микроскопа - 0,0002 мкм (0,0000002 мм). Если размер объекта меньше разрешения, то этот объект рассмотреть уже невозможно, и наоборот. Таким образом, именно от разрешения зависит, что можно увидеть в микроскоп, а что - нет.

Значение показателя, по которому рассчитывают разрешающую способность объектива, нанесено на его корпусе сразу после показателя увеличение объектива. Он называется апертурой объектива.

За апертурой рассчитывают разрешающую способность объектива:

Разрешающая способность (в мкм) = 0,3355 /апертура объектива.

Полученное значение округляют до десятых.

Пример: на объективе с красным кольцом (рис. 7) в верхней строке нанесена маркировка: «4 / 0,10». Цифра «4» указывает на увеличение объектива - четырехкратное, а «0,10» - апертуру. Разрешающая способность этого объектива

будет такая:

0,3355 / 0,10 = 3,355 « 3,4 (мкм).