Методика и этапы проведения математических исследований в экономике. Математические методы исследования

Математические методы наиболее широко используются при проведении системных исследований. При этом решение практических задач математическими методами последовательно осуществляется по следующему алгоритму:

    математическая формулировка задачи (разработки математической модели);

    выбор метода проведения исследования полученной математической модели;

    анализ полученного математического результата.

Математическая формулировка задачи обычно представляется в виде чисел, геометрических образов, функций, систем уравнений и т. п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Математическая модель представляет собой систему математических соотношений (формул, функций, уравнений, систем уравнений), описывающих те или иные стороны изучаемого объекта, явления, процесса или объект (процесс) в целом.

Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

Модель является результатом компромисса между двумя противоположными целями:

    модель должна быть подробной, учитывать все реально существующие связи и участвующие в его работе факторы и параметры;

    в то же время модель должна быть достаточно простой, чтобы можно было получить приемлемые решения или результаты в приемлемые сроки при определенных ограничениях на ресурсы.

Моделирование можно назвать приближенным научным исследованием. А степень его точности зависит от исследователя, его опыта, целей, ресурсов.

Допущения, принимаемые при разработке модели, являются следствием целей моделирования и возможностей (ресурсов) исследователя. Они определяются требованиями точности результатов, и как сама модель, являются результатом компромисса. Ведь именно допущения отличают одну модель одного и того же процесса от другой.

Обычно при разработке модели отбрасываются (не принимаются во внимание) несущественные факторы. Константы в физических уравнениях считаются постоянными. Иногда усредняются некоторые величины, изменяющиеся в процессе (например, температура воздуха может считаться неизменной за какой-то промежуток времени).

    1. Процесс разработки модели

Это процесс последовательной (и возможно, неоднократной) схематизации или идеализации исследуемого явления.

Адекватность модели - это ее соответствие тому реальному физическому процессу (или объекту), который она представляет.

Для разработки модели физического процесса необходимо определить:

Иногда используется подход, когда применяется модель небольшой полноты, носящая вероятностный характер. Потом с помощью ЭВМ производится ее анализ и уточнение.

Проверка модели начинается и проходит в самом процессе ее построения, когда выбираются или устанавливаются те или иные взаимосвязи между ее параметрами, оцениваются принятые допущения. Однако после сформирования модели в целом надо проанализировать ее с некоторых общих позиций.

Математическая основа модели (т. е. математическое описание физических взаимосвязей) должна быть непротиворечивой именно с точки зрения математики: функциональные зависимости должны иметь те же тенденции изменения, что и реальные процессы; уравнения должны иметь область существования не менее диапазона, в котором проводится исследование; в них не должно быть особых точек или разрывов, если их нет в реальном процессе, и т. д. Уравнения не должны искажать логику реального процесса.

Модель должна адекватно, т. е. по возможности точно, отражать действительность. Адекватность нужна не вообще, а в рассматриваемом диапазоне.

Расхождения между результатами анализа модели и реальным поведением объекта неизбежны, так как модель - это отражение, а не сам объект.

На рис. 3. представлено обобщенное представление, которое используется при построении математических моделей.

Рис. 3. Аппарат для построения математических моделей

При использовании статических методов наиболее часто используется аппарат алгебры и дифференциальные уравнения с независимыми от времени аргументами.

В динамических методах таким же образом используются дифференциальные уравнения; интегральные уравнения; уравнения в частных производных; теория автоматического управления; алгебра.

В вероятностных методах используются: теория вероятностей; теория информации; алгебра; теория случайных процессов; теория Марковских процессов; теория автоматов; дифференциальные уравнения.

Важное место при моделировании занимает вопрос о подобии модели и реального объекта. Количественные соответствия между отдельными сторонами процессов, протекающих в реальном объекте и его модели, характеризуются масштабами.

В целом подобие процессов в объектах и модели характеризуется критериями подобия. Критерий подобия - это безразмерный комплекс параметров, характеризующий данный процесс. При проведении исследований в зависимости от области исследований применяют различные критерии. Например, в гидравлике таким критерием является число Рейнольдса (характеризует текучесть жидкости), в теплотехнике - число Нусссельта (характеризует условия теплоотдачи), в механике - критерий Ньютона и т. д.

Считается, что если подобные критерии для модели и исследуемого объекта равны, то модель является правильной.

К теории подобия примыкает еще один метод теоретического исследования - метод анализа размерностей, который основан на двух положениях:

    физические закономерности выражаются только произведениями степеней физических величин, которые могут быть положительными, отрицательными, целыми и дробными; размерности обоих частей равенства, выражающего физическую размерность, должны быть одинаковы.

Одним из показателей зрелости науки считается использование ею математических методов исследования. Такие методы применяются в криминалистике издавна. В сущности, уже упоминавшийся такой общий метод познания, как измерение, есть гносеологически обобщенное понятие любого математического метода. Однако когда мы говорим о "математизации" криминалистики, то имеем в виду современные математические методы исследования, состоящие из операций неизмеримо более сложных, нежели простое сравнение объекта с мерой.

С начала 60-х годов в криминалистической литературе получает широкое признание как принципиальная возможность использования математических методов в криминалистических научных исследованиях, так и необходимость их применения для решения задач криминалистической экспертизы, в том числе и задачи идентификации. Рассматривая эту проблему в разных аспектах, криминалисты неизменно подчеркивали, что применение математических методов исследования открывает новые возможности в развитии как криминалистической науки, так и практики доказывания, а сама постановка этой проблемы свидетельствует о достижении криминалистикой такого уровня развития, когда она, как и другие развитые науки, испытывает потребность в тех точных методах познания своего предмета, которые может предоставить ей современная математика.

Процесс "математизации" криминалистики в настоящее время протекает в трех направлениях. Первое из них - это общетеоретическое направление.

В общетеоретическом плане процесс "математизации" поставил перед криминалистами задачу принципиального обоснования возможностей применения математических методов исследования и определения тех областей науки, при разработке которых эти методы могут дать наиболее эффективные результаты. В литературе данное направление представлено работами В. А. Пошкявичуса, Н. С. Полевого, А. А. Эйсмана, Н. А. Селиванова, З. И. Кирсанова, Л. Г. Эджубова и других авторов. Основные выводы, которые можно сделать после ознакомления с их исследованиями, сводятся к следующему:

1. Процесс "математизации" криминалистики есть естественный процесс, обусловленный современным этапом развития этой науки и математических методов исследования, приобретающих в силу этого все более универсальный характер. Использование математико-кибернетических методов исследования в криминалистике принципиально допустимо; их применение в доказывании нельзя рассматривать как использование специальных знаний, если речь идет о количественных характеристиках и элементарных математических методах; в тех случаях, когда математические методы используются для описания, обоснования или анализа явлений, познание которых осуществляется с помощью специальных знаний, применение этих методов охватывается понятием применения в судопроизводстве специальных познаний.

2. Использование математико-кибернетических методов исследования возможно в целях:

А) совершенствования методики криминалистической экспертизы, что в итоге приведет к расширению ее возможностей;

Б) научного анализа процесса доказывания и разработки рекомендаций по применению теории вероятностей и математической статистики, математической логики, исследования операций и теории игр в следственной практике.

В исследованиях общетеоретического направления получили свое отражение и два других направления процесса "математизации" криминалистики: использование математических методов в криминалистической экспертизе и при анализе процесса доказывания в целом.

Второе направление рассматриваемого процесса - использование математических методов для разработки проблем теории криминалистической идентификации и ее практических приложений и проблем криминалистической экспертизы, а в итоге - и проблем судебной экспертизы в целом . Суть этого направления и пути использования результатов математизации охарактеризованы А. Р. Шляховым: "Роль математических методов в судебной экспертизе двояка: с одной стороны, они выступают в качестве составной части функционирования ЭВМ в виде программных комплексов решения задач и ИПС, с другой стороны, они могут использоваться самостоятельно, без ЭВМ и обеспечивать полное либо частичное решение задач судебной экспертизы. Математические методы давно и прочно вошли в методики производства экспертиз, например, трасологических, баллистических, почерковедческих, автотехнических и др. ... Математические методы полезны при обработке результатов измерений, аналитического сравнения и как критерий достаточности выявленной совокупности признаков для индивидуализации объекта, оценки полноты ее в целях отождествления".

Это направление развивается наиболее интенсивно как непосредственно отвечающее потребностям судебно-экспертной практики. Еще в 1969 г. А. Р. Шляхов отмечал, что математические методы заняли одно из главных мест в системе методов, общих для всех стадий экспертного исследования и различных видов криминалистических экспертиз. В 1977 г. методы прикладной математики и программно-математические методы применения ЭВМ по предложенной А. И. Винбергом и А. Р. Шляховым классификации методов экспертного исследования были отнесены к числу общих (общепознавательных) методов. С конца 60-х гг. идет интенсивный поиск точек приложения математико-кибернетических методов практически во всех видах судебных экспертиз, предпринимаются попытки инвентаризации применяемых методов.

В результате интенсивного изучения проблемы использования математических методов в научных и экспертных исследованиях был поставлен вопрос о пределах их применения. Г. Л. Грановский отметил две точки зрения: одни возлагают надежды в области совершенствования экспертизы только на применение методов точных наук, другие более осторожно подходят к этому вопросу и указывают на пределы возможностей использования современной математики. Именно их позиция представляется более близкой к правильному пониманию проблемы". По его мнению, существуют естественные ограничения, "которые природа объектов экспертизы налагает на возможности использования для их исследования математических методов... Применение количественных методов в любой экспертизе теоретически допустимо, но практически еще мало известно, какие признаки и в каких пределах поддаются математическому описанию и оценке, какие результаты можно ожидать от использования для их исследования математических методов". Современная экспертная практика идет по пути решения этой двуединой задачи: определение точек приложения математических методов, и затем уже их практическое использование.

В настоящее время математические методы наиболее активно применяются при решении задач судебно-почерковедческой экспертизы, САТЭ, а также КЭМВИ; при этом они не только используются при проведении судебно-экспертного исследования (в процессе получения информации об объекте судебной экспертизы), но и являются средством решения судебно- экспертной задачи на основе информации об объекте. При этом наибольшую доказательственную ценность составляет количественная информация, что подтверждают исследования, связанные с решением задачи установления ФКВ объектов волокнистой природы (В.А. Пучков, В. З. Поляков, 1986) на основе результатов аналитического исследования микрочастиц волокон (когда после проведения информационного поиска по массиву волокон, исследованных в экспертизах, задача принятия решения по результатам конкретного аналитического исследования сводится к теоретико-вероятностной задаче), с применением вероятностно-статистической модели (Л. А. Гегечкори, 1985) к решению задачи криминалистической идентификации по признакам состава и строения (модель может быть использована как на предварительной стадии, так и на стадиях сравнительного исследования и синтезирующей; ядром модели являются статистические критерии, использующиеся на стадии сравнительного исследования и в зависимости от которых организуется статистический анализ информационных фондов, необходимый при работе модели на других стадиях решения задачи), с разработкой математической модели задач дифференциации подлинных подписей и неподлинных, выполненных с подражанием после предварительной тренировки (С. А. Атаходжаев и др., 1984). Отметим также разработку математических моделей задачи о наезде ТС на пешехода в условиях ограниченной видимости и некоторые подходы к применению математических методов в задачах судебно-фоноскопической экспертизы.

Опыт использования математических методов в судебной экспертизе свидетельствует о том, что необходимо четко разграничивать применение математических методов для обработки информации, получаемой в процессе изучения объектов судебной экспертизы, и разработку математических моделей для решения судебно-экспертных задач на основе результатов исследования. Если первый аспект не является специфически криминалистическим (ибо исследование объекта судебной экспертизы ведется естественнонаучными методами), то второй имеет особую криминалистическую природу. Она предстает в снятом виде, когда мы располагаем уже математической моделью для решения типовой судебно-экспертной задачи, однако, если не отвлекаться от процесса разработки математической модели, криминалистическая природа ее обнаруживается со всей очевидностью. В самом деле, разработка математических моделей для типовых судебно-экспертных задач всегда инициируется потребностью решения конкретных, индивидуально определенных задач. Специалист-математик в тесном контакте с судебным экспертом выделяет наиболее существенные количественные закономерности, которые дают возможность разработать математическую модель не только для конкретной судебно-экспертной задачи, но и для целого типа задач. В этом и заключен глубокий смысл математизации их решения. Математические методы в судебной экспертизе являются не только (и не столько) методами изучения объектов, получения информации о них (каковы, например, физические и химические методы), но и методами решения судебно-экспертных задач на основе результатов исследования.

Третье направление математизации криминалистических научных исследований - применение математических методов для решения проблем криминалистической тактики и методики. В литературе оно представлено работами А. А. Эйсмана, И. М. Лузгина, Л. Г. Видонова, Н.А. Селиванова и др. Уже первые исследования в этой области показали ограниченность приложения математических методов к решению проблем тактики и методики.

А. А. Эйсман справедливо отметил, что "судебное доказывание не может быть описано с помощью средств традиционной логики, прежде всего, потому, что все акты доказывания, как простые, так и сложные, носят не только качественный характер (да/нет), но и количественный (более надежно, менее надежно). Именно эта оценочная, количественная сторона создает главные трудности для моделирования... Отсутствуют какие бы то ни было средства и возможности показать абсолютный уровень этой надежности, дать ей строгие количественные значения. Это вполне понятно, потому что мы не располагаем (и трудно с научной достоверностью предсказать, будем ли когда-нибудь располагать) методами количественной оценки улик. По-видимому, единственным средством получения таких количественных характеристик является статистическая обработка огромного числа событий и фактов, входящих в содержание доказательств. При этом речь идет о статистическом учете значения отдельных фактов (например, обнаружения поличного) в разных меняющихся условиях. Нетрудно представить почти беспредельный объем таких статистических исследований. В то же время, трудно судить и о практической эффективности результатов, если они будут получены." Именно поэтому А. А. Эйсман высказывал мнение, что в логике следствия из средств математической логики используются лишь некоторые формулы исчисления высказываний, которые "не образуют строгого исчисления, то есть законченного аппарата правил построения вывода, а играют вспомогательную роль". Это мнение поддерживал и И. М. Лузгин.

Н. А. Селиванов ограничил применение математических методов в области криминалистической тактики лишь измерением различных объектов и решением некоторых задач в процессе отдельных следственных действий, преимущественно при осмотре места происшествия: для определения неизвестного расстояния по двум известным, наклона линии полета брызг крови, размеров автомобильных шин по их следам, скорости движения автомобиля по тормозному пути и некоторых других. У И. М. Лузгина мы встречаем упоминание о логико-математическом моделировании, объектами которого, с его точки зрения, могут быть признаки спорных ситуаций, факты, образующие состав преступления, и связанные с ним обстоятельства, отношения между предметами и явлениями, признаки следов. Однако, кроме упоминания, никаких данных, подтверждающих реальную возможность такого моделирования, он не приводит.

Пионерами изучения возможности применения в криминалистической методике вероятностно-статистических методов можно считать З. И. Кирсанова и Н. А. Родионова. Первый определил основные направления применения статистических методов: для изучения способов совершения преступления, видов документов, подделываемых преступниками, предметов, используемых в качестве тайников, в целом для обобщения и изучения следственной практики и т. п.. Второй назвал те статистические методы, которые, по его мнению, могут быть применены при расследовании преступлений. Примером успешного применения вероятностно-статистических методов для определения зависимостей между элементами криминалистической характеристики умышленных убийств служат работы Л. Г. Видонова.

Предпринимаются попытки оценки при помощи вероятностно-статистических методов эффективности отдельных тактических приемов или их сочетаний в рамках специальных комплексов, эффективности тактических комбинаций (операций) по отдельным категориям преступлений.

Расширение сферы применения в криминалистике математических методов логически повлекло за собой исследование возможностей их использования для решения практических задач на базе компьютерных технологий. "Говоря о применении математических методов, хотелось бы подчеркнуть, что не следует противопоставлять их ЭВМ, - справедливо замечал уже в 1984 году в этой связи А. Р. Шляхов. - Математические и технико- криминалистические методы могут дополнять друг друга, взаимодействовать, а в ряде случаев функционировать параллельно. По своей сути и форме они не тождественны. Верно, что почти все достижимое математикой может решать и

ЭВМ (иногда даже лучше математиков), но без математиков ЭВМ бессильна". Такой областью правоохранительной практической деятельности, где применение ЭВМ оказалось наиболее перспективным, является судебная экспертиза.

Помимо экспертной практики, в криминалистике определились следующие направления использования кибернетических методов:

Извлечение информации о различных объектах, процессах и автоматизация ее первичной обработки;

Применение автоматических устройств и ЭВМ для срочной обработки информации и для получения производных параметров по фиксированной первичной информации;

Автоматизация процесса кодирования и сканирования информации;

Компьютерное распознавание образов;

Исследование математических моделей процесса доказывания.

Метод проектов, обладающий огромными возможностями по формированию уневерсальных учебных действий, находит все более широкое распространение в системе школьного образования.Но "уместить" метод проектов в класснно-урочную систему достаточно трудно. Я включаю мини исследования в обычный урок. Такая форма работы открывает большие возможности для формирования познавательной деятельности и обеспечивает учет индивидуальных особенностей учащихся, готовит почву для развития навыков над большими проектами.

Скачать:


Предварительный просмотр:

«Если ученик в школе не научился сам ничего творить, то и в жизни он будет только подражать, копировать, так как мало таких, которые бы, научившись копировать, умели сделать самостоятельное приложение этих сведений». Л.Н.Толстой.

Характерной чертой современного образования является резкое увеличение объема информации, которую необходимо усвоить учащимся. A степень развития обучающегося измеряется и оценивается его способностью самостоятельно приобретать новые знания и использовать их в учебной и практической деятельности. Современный педагогический процесс требует использования инновационных технологий в обучении.

ФГОС нового поколения требует использования в образовательном процессе технологий деятельностного типа, методы проектно-исследовательской деятельности определены как одно из условий реализации основной образовательной программы.

Особая роль отводится такой деятельности на уроках математики и это не случайно. Математика является ключом к познанию мира, базой научно-технического прогресса и важной компонентой развития личности. Она призвана воспитать в человеке способность понять смысл поставленной перед ним задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления.

Уместить метод проектов в классно-урочную систему достаточно трудно. Я пытаюсь разумно совмещать традиционную и личностно-ориентированную систему путем включения элементов исследования в обычный урок. Приведу ряд примеров.

Так при изучении темы «Окружность» мы проводим с учащимися следующее исследование.

Математическое исследование «Окружность».

  1. Подумайте, как построить окружность, какие инструменты для этого необходимы. Обозначение окружности.
  2. Для того чтобы дать определение окружности посмотрим, какими свойствами обладает эта геометрическая фигура. Соединим центр окружности с точкой принадлежащей окружности. Измерим длину этого отрезка. Повторим эксперимент три раза. Сделаем вывод.
  3. Отрезок, соединяющий центр окружности с любой ее точкой, называется радиусом окружности. Это определение радиуса. Обозначение радиуса. Пользуясь этим определением, постройте окружность с радиусом равным 2см5мм.
  4. Постройте окружность произвольного радиуса. Постройте радиус, измерьте его. Запишите результаты измерений. Постройте еще три различных радиуса. Сколько радиусов можно провести в окружности.
  5. Попытаемся, зная свойство точек окружности, дать ее определение.
  6. Постройте окружность произвольного радиуса. Соедините две точки окружности так, чтобы этот отрезок проходил через центр окружности. Этот отрезок называется диаметром. Дадим определение диаметра. Обозначение диаметра. Постройте еще три диаметра. Сколько диаметров имеет окружность.
  7. Постройте окружность произвольного радиуса. Измерьте диаметр и радиус. Сравните их. Повторите эксперимент еще три раза с различными окружностями. Сделайте вывод.
  8. Соедините две любые точки окружности. Полученный отрезок называется хордой. Дадим определение хорды. Постройте еще три хорды. Сколько хорд имеет окружность.
  9. Является ли радиус хордой. Докажите.
  10. Является ли диаметр хордой. Докажите.

Работы исследовательского характера могут носить пропедевтический характер. Исследовав окружность можно рассмотреть ряд интересных свойств, которые учащиеся могут сформулировать на уровне гипотезы, а потом уже доказать эту гипотезу. Например, следующее исследование:

«Математическое исследование»

  1. Построй окружность радиуса 3 см и проведи ее диаметр. Соедини концы диаметра с произвольной точкой окружности и измерь угол образованный хордами. Проведи те же построения еще для двух окружностей. Что ты замечаешь.
  2. Повтори эксперимент для окружности произвольного радиуса и сформулируй гипотезу. Можно ли считать ее доказанной с помощью проведенных построений и измерений.

При изучении темы «Взаимное расположение прямых на плоскости» проводится математическое исследование в группах.

Задания для групп:

  1. группа.

1.В одной системе координат построить графики функции

У = 2х, у = 2х+7, у = 2х+3, у = 2х-4, у = 2х-6.

2.Ответьте на вопросы, заполнив таблицу:

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...