Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и специфическая трансдукция. Использование трансформации и трансдукции для картирования генов. Фаговая трансдукция Неспецифическая трансдукция

Трансформация

Трансформацией называется перенос чистой ДНК из одних клеток в другие. Трансформация была открыта бактериологом Ф. Гриффитсом в 1928 г. в опытах с пневмококками. У пневмококков известно два типа штаммов: S– и R–формы.

S–форма характеризуется наличием полисахаридной капсулы, благодаря чему при искусственном культивировании она образует гладкие блестящие колонии; эта форма патогенна для мышей. R–форма не имеет капсулы, при искусственном культивировании она образует шероховатые колонии; эта форма непатогенна для мышей. Но если мышам одновременно ввести убитые S–клетки и живые R–клетки, то мыши погибают. Следовательно, генетические свойства одного штамма влияют на генетические свойства другого штамма.

В 1944 г. О. Эвери, К. МакЛеод и М. МакКарти доказали, что изменение наследственных свойств клеток связано с переносом ДНК.

Способность клетки к трансформации возможна при особом ее состоянии, которое называется компетентностью. У компетентных клеток изменяется состав клеточной стенки и плазмалеммы: стенка становится пористой, плазмалемма образует многочисленные впячивания, а на внешней поверхности появляются особые антигены – факторы компетентности (в частности, специфические белки с низкой молекулярной массой).

В природных условиях внеклеточная чистая ДНК образуется при гибели (лизисе) прокариот.

Как правило, трансформация происходит в пределах одного вида прокариот, но при наличии гомологичных генов наблюдается и межвидовая трансформация.

Процесс трансформации включает следующие стадии:

1. Присоединение трансформирующей двунитевой ДНК к рецепторам на поверхности клетки–реципиента.

2. Превращение двунитевой ДНК в однонитевую.

3. Проникновение однонитевой ДНК в клетку.

4. Интеграция трансформирующей ДНК в хромосому реципиента и рекомбинация генетического материала.

Длина трансформирующей ДНК должна быть от 500 до 200 тысяч пн. Энергия, выделяющаяся при деградации одной из нитей ДНК, используется для активного транспорта оставшейся нити вовнутрь клетки.

Первые три стадии трансформации не зависят от нуклеотидного состава ДНК. Однако процесс интеграции трансформирующей ДНК в хромосому реципиента более вероятен при высокой гомологичности этой ДНК по отношению к ДНК реципиента.

Процесс трансформации изображен на схеме. Каждый отрезок прямой соответствует одной цепи ДНК. Трансформирующая ДНК обозначена черным цветом, а ДНК клетки–реципиента – серым цветом.

На первой стадии трансформирующая ДНК присоединяется к рецепторным сайтам на поверхности клетки–реципиента.

На втором этапе двунитевая ДНК на поверхности клетки превращается в однонитевую за счет расщепления одной из нитей бактериальными нуклеазами.

На третьем этапе оставшаяся нить ДНК транспортируется через мембрану в цитоплазму. При этом используется энергия, выделившаяся при деградации комплементарной цепи.

При репликации бактериальной хромосомы трансформирующая нить ДНК присоединяется к гомологичному (частично комплементарному) участку ДНК клетки–реципиента. При этом из-за отсутствия полной комплементарности образуется гетеродуплекс («молекулярная гетерозигота») – участок двунитевой ДНК, на котором не во всех нуклеотидных парах азотистые основания связаны водородными связями. Остальная часть ДНК реплицируется нормальным образом.

После окончания репликации ДНК клетка–реципиент делится с образованием двух клеток: частично трансформированной клетки с хромосомой, включающей гетеродуплексный участок ДНК, и нетрансформированной клетки. При репликации ДНК в частично трансформированной клетке на обеих цепях ДНК происходит достраивание комплементарных цепей. Одна цепь сохраняет исходные последовательности нуклеотидов, а другая становится полностью трансформированной. После деления частично трансформированной клетки образуется одна нетрансформированная клетка и одна полностью трансформированная, у которой исходная последовательность нуклеотидов замещена на последовательность нуклеотидов трансформирующей ДНК.

Таким образом, при трансформации происходит не добавление новых генов, а замещение генов реципиента на гомологичные нуклеотидные последовательности.

Частота трансформации у прокариот зависит от свойств трансформирующей ДНК, от ее концентрации, от состояния клетки–реципиента, от вида бактерий. Максимальная частота трансформированных клеток не превышает 1 на 100 клеток.

Трансформация известна и для эукариот. Однако на поверхности эукариотических клеток отсутствуют рецепторные сайты, и трансформирующую ДНК вводят в клетки искусственно. Например, в яйцеклетки животных ДНК вводят путем прямой микроинъекции, а в яйцеклетки растений – путем микроинъекции в пыльцевую трубку.

Трансдукцией называется перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент.

Явление трансдукции открыл в 1951 г. Н. Зиндер (ученик Дж. Ледерберга).

При трансдукции в вирионы попадает ДНК клетки-хозяина. Вирионы заражают другие клетки, и ДНК исходной бактериальной клетки проникает в другую бактериальную клетку. Вирусная ДНК интегрируется в бактериальную хромосому, а привнесенная бактериальная ДНК рекомбинирует с ДНК бактериальной хромосомы. В результате 50% клеток оказываются трансформированными.

Различают общую (неспецифическую), ограниченную (специфическую) и абортивную трансдукцию.

Общая трансдукция

При общей трансдукции фрагменты бактериальной ДНК донора случайно включаются в созревающую фаговую частицу вместе с фаговой ДНК или вместо фаговой ДНК. Фрагменты бактериальной ДНК образуются при ее разрезании ферментом, контролируемым фагом. В состав фаговой частицы может включаться до 100 бактериальных генов.

Ограниченная трансдукция

При ограниченной трансдукции происходит рекомбинация – бактериальная ДНК замещает часть фаговой ДНК. В состав рекомбинантной ДНК входит небольшое количество бактериальных генов, прилежащих к фаговой ДНК, интегрированной в бактериальную хромосому.

При общей и ограниченной трансдукции донорская ДНК замещает гомологичные участки ДНК реципиента. Этот процесс сходен с трансформацией.

Абортивная трансдукция может быть и неспецифической, и специфической. Ее сущность заключается в том, что трансдуцируемый фагом фрагмент ДНК не включается в хромосому реципиента, а существует как цитоплазматический репликон. Рано или поздно этот репликон утрачивается.

Явление трансдукции вирусами широко используется при переносе генов у эукариот. Если применяется вирус, неспособный формировать капсид (то есть существующий только в форме ДНК), то трансдукция принципиально не отличается от трансформации или от конъюгативного переноса генетического материала с помощью плазмид–векторов. Созданы системы векторов на основе модифицированных вирусов SV40 (они образуют в клетке до 100 тысяч копий), герпеса, осповакцины, вирус мозаики цветной капусты.

Следует еще раз подчеркнуть, что все описанные типы рекомбинации связаны не с добавлением новых участков ДНК, а с замещением уже имеющихся нуклеотидных последовательностей. Чем выше степень гомологии трансформирующей и исходной ДНК, тем выше вероятность успешной рекомбинации. Легче всего удается рекомбинация ферментов, имеющихся у всех организмов. Труднее ввести в геном новые регуляторы, отличающиеся высокой специфичностью. Поэтому для внедрения в геном новых генов используются более сложные методы, связанные с биохимическими модификациями ДНК.

При общей трансдукции фаговые частицы, содержащие сегменты ДНК клетки-хозяина, переносят относительно протяженные участки геномной ДНК от одной бактериальной клетки к другой. Трансдуцирующие фаговые частицы образуются в ходе определенных инфекционных процессов, когда ДНК клетки эффективно деградирует и фрагменты


клеточной ДНК, по размеру примерно соответствующие фаговому геному, случайно упаковываются в зрелые частицы бактериофага. В результате последующего инфицирования клеток бактерий популяцией фаговых частиц, содержащих в том числе и трандуцирующие фаги, с помощью последних происходит передача ДНК донорных клеток этим инфицируемым клеткам. Рекомбинация между введенными фрагментами донорной ДНК и ДНК клетки-реципиента приводит к изменению генотипа последней.

Каждая трансдуцирующая фаговая частица обычно содержит только один случайный фрагмент исходной донорной хромосомы. Вероятность включения в такую частицу любой части донорного генома примерно одинакова. Однако благодаря довольно большому размеру трансдуцируемых сегментов ДНК (для определенных бактериофагов он составляет около 100 т.п.н., или 2,5 процента всей хромосомы кишечной палочки) обычно реципиентная клетка приобретает за один акт трансдукции целую группу генов. В результате гены, тесно сцепленные друг с другом в хромосоме донора, с высокой частотой котрансдуцируются, тогда как гены, удаленные друг от друга, транс дуцируются независимо. Определение частоты котрансдукции генов помогает уточнить генетические карты, позволяя оценивать относительные расстояния между тесно сцепленными генами. 3 Специфическая (ограниченная) трансдукция

Трансдукция второго типа, специфическая, свойственна умеренным бактериофагам, инфекционный цикл которых прерывается в результате включения генома вируса в специфический хромосомный локус ДНК инфицированной клетки. Бактерии, содержащие такие интегрированные фаговые геномы, получили название лизогенных. Они несут вирусные геномы как наследственные элементы собственных хромосом. В лизогенной клетке вирусные и клеточные геномы реплицируются как единое целое и являются взаимно совместимыми. Интеграция фагового генома с геномом клетки-хозяина лишает фаг возможности вызывать гибель клетки и продуцировать инфекционное потомство. По этой причине бактериофаг,


способный лизогенезировать, в отличие от вирулентного фага, получил название умеренного.

При определенных условиях - индукции - лизогенное состояние прерывается и вирусный геном вырезается из хромосомы ютетки-хозяина. Он реплицируется, образуя множество вирусных частиц, и убивает клетку. Обычно вырезание вирусного генома происходит очень точно и образующийся фаг содержит вирусный геном, полностью соответствующий исходному.

Иногда фаговый геном вырезается неправильно и в дочерние фаговые частицы включаются хромосомные гены, прилегающие к интегрированному вирусному геному. Эти гены включаются вместо некоторых вирусных генов. Во время следующего цикла инфекции гены клетки-донора переходят вместе с фаговыми генами в реципиентные клетки. После включения ДНК трансдуцирующего фага в геном реципиента клетка приобретает наряду с фаговым геномом генетическую информацию предыдущего хозяина фага.

Таким образом, при специфической трансдукции фаг служит вектором для переноса генов от одной клетки в другую. С помощью этого механизма трансдуцируются только те хромосомные гены клетки-хозяина, которые тесно сцеплены с сайтом интеграции вирусного генома.

Поскольку различные умеренные фаги встраиваются в разные хромосомные сайты, при их неправильном вырезании образуются фаги, которые трансдуцируют разные хромосомные гены. Так фаги лямбда трансдуцируют гены, ответственные за метаболизм галактозы, или гены, контролирующие синтез биотина, а фаги ф80 - различное число генов, кодирующих ферменты биосинтеза триптофана.

Фаговый геном способен к специфической трансдукции при условии:

1 Он должен приобрести ковалентно сцепленный сегмент невирусной ДНК, который будет трансдуцироваться. Этот сегмент ДНК обычно имеет клеточное происхождение, но в принципе он может быть из любого источника. Он может включаться в любое место вирусного генома, если это


не влияет на репликацию вирусной ДНК в инфицированной клетке хозяина или на её способность упаковываться в зрелые фаговые частицы.

2 Фаговый геном должен быть способен реплицироваться после того, как произошло инфицирование реципиентной клетки, т.е. в вирусной ДНК должны сохраняться область начала репликации (оп) и гены, необходимые для осуществления репликации.

3 Фаговые гены, кодирующие структурные фаговые белки, должны быть функционально активными.

Специфическая трансдукция широко используется в молекулярной генетике. Рассмотрим один из примеров такого применения данного явления. Ген кишечной палочки, кодирующий синтез фермента бета-галактозидазы, содержит 3600 п.н. и составляет одну тысячную генома данного микроорганизма. Если фрагмент ДНК бактериальной клетки, кодирующий синтез бета-галактозидазы, встраивается в геном трансдуцирующего бакте­риофага лямбда, он занимает там одну пятнадцатую часть, то есть ДНК фага лямбда обогащена бета-галактозидазным геном в 100 раз больше, чем ДНК кишечной палочки.

Общая трансдукция

Механизм ее заключается в том, что в процессе внутриклеточного размножения фага в его головку может быть случайно включен вместо фаговой ДНК фрагмент бактериальной ДНК, равный по длине фаговой. Это вполне возможно, так как в инфицированной клетке биосинтез ее ДНК блокирован, а сама ДНК подвергается распаду. Таким образом в процессе репродукции фага возникают дефектные вирионы, у которых в головках вместо собственной геномной ДНК содержится фрагмент ДНК бактерии. Такие фаги сохраняют инфекционные свойства. Они адсорбируются на бактериальной клетке, вводят в нее ДНК, содержащуюся в головке, но при этом размножения фага не происходит. Введенная в клетку реципиента донорная ДНК (фрагмент хромосомы донора), если она содержит гены, отсутствующие у реципиента, наделяет его новым признаком. Этот признак будет зависеть от того, какой ген (гены) попал в головку трансдуцирующего фага. В случае рекомбинации привнесенного фагом фрагмента ДНК донора с хромосомой клетки - реципиента этот признак наследственно закрепляется.

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения образуются дефектные фаги: A - dgal или Xdbio.

Специфическую трансдукцию у Е. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1/3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токси - генную.

Рис. 4.

1 - спот-тест; 2 - титрование по Грациа.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °С 0,7% - ного агара, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того, как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис.4.2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет:

а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.), изучать наследственную изменчивость V фагов.

По спектру действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi - I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi - II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.

Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.

Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.

5-е издание, исправленное и дополненное

Книга:

<<< Назад
Вперед >>>

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения образуются дефектные фаги: ?dgal или?dbio.

Специфическую трансдукцию у E. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1 / 3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °C агара 0,7 %-ного, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис. 84, 2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет: а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.) изучать наследственную изменчивость у фагов.

По спектру своего действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi-I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi-II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.


Рис. 84 . Обнаружение бактериофагов в исследуемом материале:

1 – спот-тест; 2 – титрование по Грациа

<<< Назад
Вперед >>>

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
(ГОУ ВПО ИГУ)
Факультет биолого-почвенный
Кафедра микробиологии

Реферат
цитология микроорганизмов
Трансдукция и трансформация у бактерий

Выполнила:
студентка гр.04331-ДС
Кузнецова Е.А
Проверила: к.б. н
Макарова А.П

Иркутск 2012
Содержание

    Трансдукция у бактерий……………………………………….3
      История изучения………………………………………………3
      Поведение фагов в бактериальной клетке…………………… 3
      Перенос фрагментов ДНК бактерии………………………….. 4
        Общая (неспецифическая) трансдукция………………..4
        Специфическая трансдукция…………………………… 5
        Абортивная трансдукция………………………………...7
    Трансформация у бактерий……………………………………..9
2.1 История изучения………………………………………………..9
2.2 Трансформация у прокариот…………………………………….9
2.3 Стадии трансформации бактерий ………………………………11
    Заключение…………………………………………………… ….12
    Литература…………………………………………………… …..13

Трансдукция у бактерий
Трансдукция (от лат. transduct io - перемещение) - перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг. Трансдуцирующий бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент).
К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

История изучения
Эстер Ледерберг была первой учёной, кому удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K-12 в 1950 году.
Собственно открытие трансдукции связано с именем американского учёного Д жошуа Ледерберга. В 1952 году он совместно с Нортоном Циндером обнаружил общую трансдукцию. В1953 Ледербергом и др. было показано существование абортивной трансдукции, в 1956 - специфической.
Поведение фагов в бактериальной клетке
Фаги способны к реализации двух путей развития в бактериальной клетке:

    Литический - после попадания в бактерию ДНК фага сразу же начинается его репликация, синтез белков и сборка готовых фаговых частиц, после чего происходит лизис клетки. Фаги, развивающиеся только по такому сценарию, называют вирулентными.
    Лизогенный - попавшая в бактериальную клетку ДНК фага встраивается в её хромосому или существует в ней как плазмида, реплицируясь при каждом делении клетки. Такое состояние бактериофага носит название профаг. Система его репликации в этом случае подавлена синтезируемыми им самим репрессорами. При снижении концентрации репрессора профаг индуцируется и переходит к литическому пути развития. Реализующие подобную стратегию бактериофаги называются умеренными. Для некоторых из них стадия профага является обязательной, другие в некоторых случаях способные сразу развиваться по литическому пути.
Перенос фрагментов ДНК бактериями
Неспецифическая трансдукция.
Перенос участков бактериальной хромосомы фагами был открыт в 1951 г. Ледербергом и Циндером у Salmonella typhimurium. В решающем эксперименте штамм-донор В + инфицировали умеренным бактериофагом Р22. После лизиса клетки-хозяина выделяли свободные фаги и инкубировали их вместе со штаммом-реципиентом В-, который генетически отличался от штамма В + по меньшей мере одним признаком. Авторы нашли, что после высева инкубированных клеток на подходящую среду появлялись рекомбинанты, обладавшие признаками штамма-донора В + .
Процессы, происходящие при таком неспецифическом переносе ДНК, весьма сложны. Во время репродукции фага Р22 в клетках штамма-донора В + в капсиды вместо фаговой ДНК могут включаться фрагменты бактериальной хромосомы. Таким образом, фаголизат содержит смесь нормальных и дефектных фагов. Заражение штамма-реципиента В" нормальным фагом ведет, как правило, к лизису клеток. Однако в некоторые клетки проникают дефектные трансдуцирующие фаги, ДНК которых способна рекомбинироваться с хромосомой реципиента. Происходит обмен гомологичными участками ДНК, что может привести к замене дефектного гена реципиента интактным геном донора.
Так как трансдуцируются лишь небольшие фрагменты ДНК, вероятность рекомбинации, затрагивающей какой-то определенный признак, очень мала: она составляет от 10 -б до 10- 8 . Становится понятно, что с помощью одной частицы фага Р22 Salmonella или неспецифически трансдуцирующего фага PI Escherichia coli в каждом случае может быть трансдуцирован только один ген (или несколько очень близко расположенных генов). Количество бактериальной ДНК, сравнимое с геномом фага, составляет лишь 1-2% всего количества ДНК, содержащегося в бактериальной клетке. Исключение составляет бактериофаг PBS 1 Bacillus subtilis, который может трансдуцировать до 8% генома хозяина.

Специфическая трансдукция.
Наиболее известным примером служит трансдукция, осуществляемая фагом X . Как уже говорилось, этот фаг при переходе в состояние профага включается в определенный участок хромосомы бактерии-хозяина. Отделение фаговой ДНК от бактериальной хромосомы (например, в результате УФ-облучения) может произойти неточно, т.е. какой-то фрагмент ее останется в хромосоме, а близко расположенные гены клетки-хозяина будут захвачены фаговой ДНК. По-видимому, причиной этого может быть неправильная рекомбинация.
В случае заражения трансдуцирующим фагом клеток, дефектных по определенному гену, например gal, может произойти рекомбинация с заменой собственного дефектного гена бактерии интактным трансду-цированным геном; при этом образуются рекомбинанты (трансдук-танты) gal + .
Подобным же образом происходит перенос генов бактериофагом Phi 80. Его ДНК включается в хромосому вблизи генов, кодирующих ферменты, ответственные за биосинтез триптофана. По этой причине Phi 80 особенно пригоден для переноса генов trp.
Предпосылкой успешного переноса генов при специфической транс-дукции (в отличие от неспецифической) является интеграция фага в геном клетки-хозяина.
В некоторых случаях было показано, что трансдуцированный фрагмент ДНК не вступает в рекомбинацию с хромосомой реципиента, а остается вне хромосомы. В этом случае клетка становится гетерозиготной по перенесенным генам. Перенесенная ДНК транскрибируется (на это указывает синтез соответствующего генного продукта), но не реплицируется. Это приводит к тому, что при клеточном делении донорский фрагмент переходит только в одну из дочерних клеток (абортивная трансдукция). Если реципиент ауксотрофный, а перенесенный фрагмент исправляет соответствующий дефект, то расти могут только те клетки, которые унаследовали этот фрагмент; при посеве на агар они образуют мельчайшие колонии.

Абортивная трансдукция
При абортивной трансдукции внесенный фрагмент ДНК донора не встраивается в хромосому реципиента, а остается в цитоплазме и там самостоятельно функционирует. Впоследствии он передается одной из дочерних клеток (т.е. наследуется однолинейно) и затем теряется в потомстве.
Свойства трансдуцирующих фаговых частиц следующие:
Частицы несут лишь часть ДНК фага, то есть не являются функциональными вирусами, а скорее ёмкостями, переносящими фрагменты бактериальной ДНК.
Подобно прочим дефектным вирусам, частицы не способны к репликации.
Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества (например, гены устойчивости к антибиотикам или гены, кодирующие способность к синтезу различных веществ). Подобное приобретение бактериями новых свойств получило название феномен лизогении.
Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трансформации.

Трансформация у бактерий
Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Иногда под трансформацией понимают любые процессы горизонтального переноса генов, в том числе трансдукцию, конъюгацию и т. д.
История изучения
Трансформация была открыта в 1928 году, когда британский учёный Ф. Гриффит показал возможность превращения непатогенных штаммов Streptococcus pneumoniae в патогенные (различаются наличием полисахаридной капсулы, позволяющей закрепляться на тканях высших организмов) в результате взаимодействия с убитыми клетками патогенных штаммов. В1944 году О. Эйвери (США) показал, что для передачи признака достаточно обработки ДНК патогенного штамма пневмококка. Это открытие стало первым свидетельством роли ДНК как носителя наследственности.
В 1960-х годах началось изучение трансформации у животных, в конце 1970-х - у растений.

Трансформация у прокариот
В любой популяции лишь часть бактерий способна к поглощению из среды молекул ДНК. Состояние клеток, при котором это возможно, называют состоянием компетентности. Обычно максимальное число компетентных клеток наблюдается в конце фазы логарифмического роста.
В состоянии компетентности бактерии вырабатывают особый низкомолекулярный белок (фактор компетентности), активизирующий синтез аутолизина, эндонуклеаз ы I и ДНК-связывающего белка. Аутолизин частично разрушает клеточную стенку, что позволяет ДНК пройти через неё, а также снижает устойчивость бактерий к осмотическому шоку. В состоянии компетентности также снижается общая интенсивность метаболизма. Возможно искусственное приведение клеток в состояние компетентности. Для этого применяют среды с высоким содержанием ионов кальция, цезия, рубидия, электропорацию или заменяют клетки реципиента протопластами без клеточных стенок.
Эффективность трансформации определяется количеством колоний, выросших на чашке Петри после добавления к клеткам 1 мкг суперскрученной плазмидной ДНК и рассева клеток на питательную среду. Современные методы позволяют добиваться эффективности 10 6 -10 9 .
Поглощаемая ДНК должна быть двухнитевой (эффективность трансформации однонитевой ДНК на порядки ниже, однако несколько возрастает в кислой среде), её длина - не менее 450 пар оснований. Оптимальное pH для прохождения процесса - около 7. Для некоторых бактерий (Neisseria gonorrhoeae, Hemophilus) поглощаемая ДНК должна содержать определённые последовательности.
ДНК необратимо адсорбируются на ДНК-связывающем белке, после чего одна из нитей разрезается эндонуклеазой на фрагменты длиной 2-4 тыс. пар оснований и проникает в клетку, вторая полностью разрушается. В случае, если эти фрагменты имеют высокую степень гомологии с какими-либо участками бактериальной хромосомы, возможна замена этих участков на них. Поэтому эффективность трансформации зависит от эволюционного расстояния между донором и реципиентом. Общее время процесса не превышает нескольких минут. Впоследствии, при делении, в одну дочернюю клетку попадает ДНК, построенная на основе исходной нити ДНК, в другую - на основе нити с включённым чужеродным фрагментом (выщепление).

    Трансфекция – передача всего набора генов вируса или фага, приводящая к развитию вирусных частиц в клетке.
Стадии трансформации бактерии
Трансформация протекает в три стадии:
1) адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток;
2) ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4-5*10 6 D;
3) проникновение фрагментов ДНК с молекулярной массой не менее 5*10 6 D, сопровождающееся разрушением одной из цепей ДНК (последний этап энергозависим). Проникшая цепь ДНК рекомбинирует с генетическим материалом реципиентной клетки.

Заключение
Трансдукция служит активным механизмом формирования культур с измененными свойствами и может играть большую роль в эволюции микроорганизмов. Способность к трансформации обнаружена у ряда родов бактерий, но, по-видимому, роль ее в обмене генетическим материалом среди бактерий в естественных условиях менее существенна, чем роль других механизмов, потому что у многих бактерий имеются особые системы рестрикции и модификации.

Литература

    Гусев М.В, Минеева Л.А «Микробиология»// 4-е изд., стер. - М.: Академия, 2003. - 464 с.
    Википедия// ru.wikipedia.org/интернет ресурс