Аккумулирование электрической энергии. Химические процессы в аккумуляторе

1. Медную, железную, и никелиновую проволлоки одинаковой длины и площади поперечного сечения спаяли (последовательно) и включили в цепь. Какая

проволока будет выделять большее количество теплоты? Почему? (удельное сопротивление меди 0,017 Ом х мм2/м, железная 0,10 Ом х мм2/м, никелина 0,40 Ом х мм2/м.)

2. Нихромовая спираль длиной 5 м и площадью поперечного сечения 0,5 мм2 включена в сеть напряжения 110 В. Найдите мощность тока в спирали. (Удельное сопротивление нихрома 1,1 Ом х мм2/м.)

3. Электроплитка мощностью 800 Вт включена на 5 ч. Определите расход энергии (в ватт-часах и киловатт-часах).

4. Какое превращение энергии происходит при работе генератора электрического тока?

1. На каком из способов теплопередачи основано нагревание твёрдых тел?A. Теплопроводность.Б. Конвекция.B.Излучение.2. Какой вид теплопередачи

сопровождается переносом вещества?A.Теплопроводность.Б. Излучение.B.Конвекция.3. Какое из перечисленных ниже веществ имеет наибольшуютеплопроводность?А. Мех. Б. Дерево. В. Сталь.4.Какое из перечисленных ниже веществ имеет наименьшую, теплопроводность?A.Опилки. Б. Свинец. В. Медь.5. Назовите возможный способ теплопередачи между телами, отделеннымибезвоздушным пространством.A.Теплопроводность.Б. Конвекция.B.Излучение.6.Металлическая ручка и деревянная дверь будут казаться на ощупь одинаковонагретыми при температуре...A.выше температуры тела.Б. ниже температуры тела.B.равной температуре тела.7.Что происходит с температурой тела, если оно поглощаетстолько же энергии, сколько излучает?A.Тело нагревается.Б. Тело охлаждается.B. Температура тела не меняется.8. Каким из способов происходит теплопередача в жидкостях?A.Теплопроводность.Б. Конвекция.B.Излучение.9. Какое из перечисленных ниже веществ обладает наименьА. Воздух. Б. Чугун. В. Алюминий10. Удельная теплоемкость воды 4200(Дж/кг*0С). Это означает,что...A.для нагревания воды массой 4200 кг на 1 °С требуется количество теплоты,равное 1 Дж.Б. для нагревания воды массой 1 кг на 4200 °С требуется количество теплоты,равное 1 Дж.B.для нагревания воды массой 1 кг на 1 °С требуется коли11.Удельная теплота сгорания топлива показывает, какое коA.сгорании топлива.Б. полном сгорании топлива.B. при полном сгорании топлива массой 1 кг.12. Испарение происходит...A.при любой температуре.Б. при температуре кипения.B.при определенной температуре для каждой жидкости.13. При наличии ветра испарение происходит...A.быстрее.Б. медленнее.B. с такой же скоростью, как и при его отсутствии.14. Может ли КПД теплового двигателя стать равным 100%, если трение междудвижущимися деталями этой машины свести к нулю?А. Да. Б. Нет.15. Из какого полюса магнита выходят линии магнитного поля?А. Из северного. Б. Из южного. В. Из обоих полюсов.16. К шарику незаряженного электроскопа подносят, не касаясь его, телозаряженное отрицательным зарядом. Какой заряд приобретут листочкиэлектроскопа?А. Отрицательный. Б. Положительный. В. Никакой.17. Может ли атом водорода или любого другого вещества изменить свой заряд на1,5 заряда электрона?А. Да. Б. Нет.18. Какое изображение получается на сетчатке глаза человека?А. Увеличенное, действительное, перевернутое.Б. Уменьшенное, действительное, перевернутое.В. Увеличенное, мнимое, прямое.Г. Уменьшенное, мнимое, прямое.19. Что измеряет амперметр?А) Электрическое сопротивление проводниковБ) Напряжение на полюсах источника тока или на каком-то участке цепиВ) Силу тока в цепиГ) Мощность электрического тока20. Диффузия – это:А) Процесс повышения температурыБ) Явление, при котором происходит взаимное проникновение молекул одноговещества между молекулами другогоВ) Явление, при котором тело из состояния твердого переходит в состояниежидкогоГ) Процесс увеличения плотности тела21. Формула КПД:А) ŋ= Аn* 100%АɜБ) ŋ= Аɜ * 100%АnВ) ŋ= Аn * Аɜ100%Г) ŋ= Аn * Аɜ * 100%22. Что гласит закон Архимеда?А) Выталкивающая сила, действующая на погруженное в жидкость тело, равнавесу жидкости, вытесненной этим теломБ) Выталкивающая сила, действующая на погруженное в жидкость тело, равнаскорости погружения этого тела в жидкостьВ) Выталкивающая сила, действующая на погруженное в жидкость тело, равнаплотности этого телаГ) Выталкивающая сила, действующая на погруженное в жидкость тело, равна весуэтого тела23. Какое дейА)теп24. ВнутА)тольБ)тольВ)тольГ) от тем25. Какие из перечисленных веществ относятся к проводникам?а) резина; б) медь, в) пластмасса; г) стекло.26. Тело электризуется только тогда, когда оно …... заряд.а) приобретает; б) теряет; в) приобретает или теряет.27. Какие из перечисленных веществ относятся к диэлектрикам?а) резина; б) медь; в) раствор серной кислоты; г) сталь.28. Одноименно заряженные тела …...., а разноименно заряженные - ……...а) ...отталкиваются, ...притягиваются,б) ...притягиваются, ...отталкиваются.29. Электрическим током называют...А. Движение электронов по проводнику.Б. Упорядоченное движение электронов по проводнику.В. Упорядоченное движение протонов по проводнику.Г. Упорядоченное движение заряженных частиц.Д. Движение электрических зарядов по проводнику.30. Какое превращение энергии происходит при работе электрической кофемолки?Электрическая энергия превращается...А. В химическую. Б. В механическую.В. В световую. Г. Во внутреннюю

Какое превращение энергии происходит при работе электрического тока, когда горит рекламная неоновая лампа? Электрическая энергия превращается в..

А. Химическую
Б. Механическую
В. Световую
Г. Внутреннюю

1) При каких условиях от предмета получается лишь полутень? 2) В чем различие

между излучением , создаваемым радиатором центрального отопления , и излучением горящей свечи?

3) какие превращения энергии происходят при свечении лампы карманного фонаря?

4) В какой материальной среде свет распространяется с наибольшей скоростью?

5) Почему тени даже при одном источнике света никогда не бывают совершенно темными?

6) Почему в комнате светло и тогда, когда прямые солнечные лучи в ее окна не попадают?

7) почему пучки света автомобильных фар видны в тумане, в пыльном воздухе?

8) Почему лица спортсмена-фехтовальщика, смотрящего через частую сетку,мы не видим, а фехтовальщик все предметы через сетку видит хорошо?

10) Для чего стекло для изготовления зеркала шлифуется и полируется с особой тщательностью?

11) угол падения луча=60. Каков угол отражения луча?

12) Угол падения луча-25. Чему равен угол между падающим и отраженными лучами?

13) Угол между падающим и отраженным лучами составляет 50. Под каким углом к зеркалу падает свет?

Ребят, помогите пожалуйста)

1.5. Характеристики заряда и разряда аккумуляторной батареи

Основные характеристики аккумулятора - зарядные и разрядные. Процесс, при котором происходит преобразование химической энергии в электрическую, называется разрядом, обратный процесс - зарядом.

После полного восстановления активных веществ плотность электролита перестает повышаться. Это служит признаком конца заряда аккумулятора. В конце заряда также начинается процесс разложения воды нa кислород и водород, характеризующийся появлением на поверхности электролита пузырьков газа.

Разрядными характеристиками аккумулятора называют зависимость изменения ЭДС, напряжения и плотности электролита аккумулятора при постоянной силе разрядного тока от времени заряда (рис. 1.2).

В момент включения аккумулятора на разряд напряжение на его зажимах падает скачком на величину J p R a

вcледствие падения напряжения аккумулятора (см. рис. 1.2)

Рис. 1.2 Характеристики разряда

U p = E a - I p R a ,

где I p - ток разряда; R a - внутреннее сопротивление

Происходящее при разряде поглощение сepной кислоты и выделение взамен ее воды вызывает уменьшение концентрации электролита, находящегося в поpax пластин, вследствие чего ЭДС аккумулятора E a , а слeдoвaтeльно, и напряжение плавно снижаются. Сначала химическим превращениям подвергаются наиболее доступные поверхностные слои активной массы, затем химические реакции распространяются на наиболее глубокие слои пластин. Кроме того, сернокислый свинец PbSO 4 , в который превращается активная масса пластин при разряде, занимает больший объем, чем исходные материалы (PbO 2 и Pb) и, отлагаясь на внутренних поверхностях пор, суживает их сечение. Эти два обстоятельства замедляют диффузию электролита в пластины, и к концу разряда концентрация последнего в порах пластин и с ней ЭДС аккумулятора быстро падают, стремясь к нулю, а значительная часть активной массы, лежащая в глубине пластин, еще не использована. При этом происходят уже необратимые процессы, и сильно ускоряется сульфатация аккумулятора, поэтому аккумулятор нельзя разряжать ниже 1,7 В.

Если разряженный аккумулятор выключить, то его ЭДС будет плавно повышаться. Это восстановление ЭДС называется "отдыхом" аккумулятора.

Плотность электролита по мере разряда уменьшается по закону прямой, так как при постоянной силе разрядного тока количество серной кислоты, замещаемой водой за единицу времени в результате химических реакций, будет одинаково. Признаки, определяющие конец разряда:

1. Понижение напряжения до предельного значения (1,7 В на элемент).

2. Уменьшение плотности электролита до определенного минимума ( 1,15 г/см 3).

На характер зависимости разрядного напряжения аккумулятора от времени влияют температура электролита и сила разрядного тока. При понижении температуры (ниже О °С) резко увеличиваются вязкость и удельное сопротивление электролита. Последнее в диапазоне температур +30...40 о С возрастает в 20 - 30 paз. С повышением вязкости уменьшается скорость диффузии.

3арядные характеристики аккумулятора - зависимость изменения плотности электролита, ЭДС и напряжения аккумулятора при постоянной силе зарядного тока от времени заряда (рис. 1.3).

В начале заряда резко увеличивается напряжение заряда по отношению к ЭДС на значение падения напряжения на внутреннее сопротивление. Затем напряжение медленно возрастает, что обусловлено увеличением ЭДС в результате повышения плотности электролита. Происходящая химическая реакция при заряде возвращает активную массу пластин в ее первоначальное состояние. При этих реакциях взамен поглощаемой воды выделяется серная кислота, вследствие чего плотность электролита повышается. К концу заряда в ocнoвнoм весь сернокислый свинец превратится в пероксид свинца на положительном и губчатый свинец на отрицательном электродах. Химические реакции прекращаются и вследствие этого напряжение и плотность электролита перестают увеличиваться. Дальнейшее прохождение тока вызывает только разложение воды на водород и кислород, которые энергично выделяются в виде пузырьков. Перезаряд аккумулятора вредно отражается на пластинах.

Рис 1.3. Характеристики заряда аккумулятора

1. Напряжение аккумулятора достигло максимального значения и перестало повышаться.

2.Плотность электролита достигла максимума и перестала увеличиваться.

3.Интенсивно выделяются пузырьки газа (аккумулятор «кипит»)

Принцип действия. Аккумулятором называется химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от

постороннего источника (рис. 158,а). Этот процесс, называемый зарядом аккумулятора , сопровождается превращением электрической энергии в химическую, в результате чего аккумулятор сам становится источником тока. При разряде аккумулятора (рис. 158, б) происходит обратное превращение химической энергии в электрическую. Аккумулятор обладает большим преимуществом по сравнению с гальваническим элементом. Если элемент разрядился, то он приходит в полную негодность; аккумулятор же. после разряда может быть вновь заряжен и будет служить источником электрической энергии. В зависимости от рода электролита аккумуляторы разделяют на кислотные и щелочные.

На локомотивах и электропоездах наибольшее распространение получили щелочные аккумуляторы, которые имеют значительно больший срок службы, чем кислотные. Кислотные аккумуляторы ТН-450 применяют только на тепловозах, они имеют емкость 450 А*ч, номинальное напряжение - 2,2 В. Аккумуляторная батарея 32 ТН-450 состоит из 32 последовательно соединенных аккумуляторов; буква Т означает, что батарея установлена на тепловозе, буква Н - тип положительных пластин (намазные).

Устройство. В кислотном аккумуляторе электродами являются свинцовые пластины, покрытые так называемыми активными массами, которые взаимодействуют с электролитом при электрохимических реакциях в процессе заряда и разряда. Активной массой положительного электрода (анода) служит перекись свинца PbO 2 , а активной массой отрицательного электрода (катода) - чистый (губчатый) свинец Pb. Электролитом является 25-34 %-ный водный раствор серной кислоты.

Пластины аккумулятора могут иметь конструкцию поверхностного или намазного типа. Пластины поверхностного типа отливают из свинца; поверхность их, на которой происходят электрохимические реакции, увеличена благодаря наличию ребер, борозд и т. п. Их применяют в стационарных аккумуляторных батареях и некоторых батареях пассажирских вагонов.

В аккумуляторных батареях тепловозов применяют пластины намазного типа (рис. 159, а). Такие пластины имеют остов из сплава свинца с сурьмой, в котором устроен ряд ячеек, заполняемых пастой.

Ячейки пластин после заполнения пастой закрывают свинцовыми листами с большим количеством отверстий. Эти листы предотвращают возможность выпадания из пластин активной массы и не препятствуют в то же время доступу к ней электролита.

Исходным материалом для изготовления пасты для положительных пластин служит порошок свинца Pb, а для отрицательных- порошок, перекиси свинца PbO 2 , которые замешиваются на водном растворе серной кислоты. Строение активных масс в таких пластинах пористое; благодаря этому в электрохимических реакциях участвуют не только поверхностные, но и глубоколежащие слои электродов аккумулятора.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями . Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Намазные пластины имеют большую поверхность соприкосновения с электролитом и хорошо им пропитываются, что способствует уменьшению массы и размеров аккумулятора и позволяет получать при разряде большие токи.

При изготовлении аккумуляторов пластины подвергают специальным зарядно-разрядным циклам. Этот процесс носит название формовки аккумулятора . В результате формовки паста положительных пластин электрохимическим путем превращается в перекись (двуокись) свинца PbO 2 и приобретает коричневый цвет. Паста отрицательных пластин при формовке переходит в чистый свинец Pb, имеющий пористую структуру и называемый поэтому губчатым; отрицательные пластины приобретают серый цвет.

В некоторых аккумуляторах применены положительные пластины панцирного типа. В них каждая положительная пластина заключена в специальный панцирь (чехол) из эбонита или стеклоткани. Панцирь надежно удерживает активную массу пластины от осыпания при тряске и толчках; для сообщения же активной массы пластин с электролитом в панцире делают горизонтальные прорези шириной около 0725 мм.

Для предотвращения замыкания пластин посторонними предметами (щупом для измерения уровня электролита, устройством для заливки электролита и др.) пластины в некоторых аккумуляторах покрывают полихлорвиниловой сеткой.

Для увеличения емкости в каждый аккумулятор устанавливают несколько положительных и отрицательных пластин; одноименные пластины соединяют параллельно в общие блоки, к которым приваривают выводные штыри. Блоки положительных и отрицательных пластин обычно устанавливают в эбонитовом аккумуляторном сосуде (рис. 159,б) так, чтобы между каждыми двумя

пластинами одной полярности располагались пластины другой полярности. По краям аккумулятора ставят отрицательные пластины, так как положительные пластины при установке по краям склонны к короблению. Пластины отделяют одну от другой сепараторами, выполненными из микропористого эбонита, полихлорвинила, стекловойлока или другого изоляционного материала. Сепараторы предотвращают возможность короткого замыкания между пластинами при их короблении.

Пластины устанавливают в аккумуляторном сосуде так, чтобы между их нижней частью и дном сосуда имелось некоторое свободное пространство. В этом пространстве скапливается свинцовый осадок (шлам), образующийся вследствие отпадания отработавшей активной массы пластин в процессе эксплуатации.

Разряд и заряд. При разряде аккумулятора (рис. 160, а) положительные ионы H 2 + и отрицательные ионы кислотного остатка
S0 4 -, на которые распадаются молекулы серной кислоты H 2 S0 4 электролита 3, направляются соответственно к положительному
1 и отрицательному 2 электродам и вступают в электрохимические реакции с их активными массами. Между электродами возникает
разность потенциалов около 2 В, обеспечивающая прохождение электрического тока при замыкании внешней цепи. В результате
электрохимических реакций, возникающих при взаимодействии ионов водорода с перекисью свинца PbO 2 положительного
электрода и ионов сернокислого остатка S0 4 — со свинцом Pb отрицательного электрода, образуется сернокислый свинец PbS0 4 (сульфат свинца), в который превращаются поверхностные слои активной массы обоих электродов. Одновременно при этих реакциях образуется некоторое количество воды, поэтому концентрация серной кислоты понижается, т. е. плотность электролита уменьшается.

Аккумулятор может разряжаться теоретически до полного превращения активных масс электродов в сернокислый свинец и истощения электролита. Однако практически разряд прекращают гораздо раньше. Образующийся при разряде сернокислый свинец представляет собой соль белого цвета, плохо растворяющуюся в электролите и обладающую низкой электропроводностью. Поэтому разряд ведут не до конца, а только до того момента, когда в сернокислый свинец перейдет около 35 % активной массы. В этом случае образовавшийся сернокислый свинец равномерно распределяется в виде мельчайших кристалликов в оставшейся активной массе, которая сохраняет еще достаточную электропроводность, чтобы обеспечить напряжение между электродами 1,7-1,8 В.

Разряженный аккумулятор подвергают заряду, т. е. присоединяют к источнику тока с напряжением, большим напряжения аккумулятора. При заряде (рис. 160,б) положительные ионы водорода перемещаются к отрицательному электроду 2, а отрицательные ионы сернокислого остатка S0 4 — - положительному электроду 1 и вступают в химическое взаимодействие с сульфатом свинца PbS0 4 , покрывающим оба электрода. В процессе возникающих электрохимических реакций сульфат свинца PbS0 4 растворяется и на электродах вновь образуются активные массы: перекись свинца PbO 2 на положительном электроде и губчатый свинец Pb - на отрицательном. Концентрация серной кислоты при этом возрастает, т. е. плотность электролита увеличивается.

Электрохимические реакции при разряде и заряде аккумулятора могут быть выражены уравнением

PbO 2 + Pb + 2H 2 SO 4 ? 2PbSO 4 + 2H 2 O

Читая это уравнение слева направо, получаем процесс разряда, справа налево - процесс заряда.

Номинальный разрядный ток численно равен 0,1С НОМ, максимальный при запуске дизеля (стартерный режим) - примерно 3С НОМ, зарядный ток - 0,2 С НОМ, где С НОМ - номинальная емкость.

Полностью заряженный аккумулятор имеет э. д. с. около 2,2 В. Таково же приблизительно и напряжение на его зажимах, так как внутреннее сопротивление аккумулятора весьма мало. При разряде напряжение аккумулятора довольно быстро падает до 2 В, а затем медленно понижается до 1,8-1,7 В (рис. 161), при этом напряжении разряд прекращают во избежание повреждения аккумулятора. Если разряженный аккумулятор оставить на некоторое время в бездействии, то напряжение его снова восстанавливается до среднего значения 2 В. Это явление носит название «отдыха» аккумулятора. При нагрузке подобного «отдохнувшего» аккумулятора напряжение быстро понижается, поэтому измерение напряжения аккумулятора без нагрузки не дает правильного суждения о степени разряда .

При заряде напряжение аккумулятора быстро поднимается до 2,2 В, а затем медленно повышается до 2,3 В и, наконец, снова довольно быстро возрастает до 2,6-2,7 В. При 2,4 В начинают выделяться пузырьки газа, образующегося в результате разложения воды на водород и кислород. При 2,5 В оба электрода выделяют сильную струю газа, а при 2,6-2,7 В аккумулятор начинает как бы кипеть, что служит признаком окончания заряда. При отключении аккумулятора от источника зарядного тока напряжение его быстро снижается до 2,2 В.

Уход за аккумуляторами. Кислотные аккумуляторы быстро теряют емкость или даже приходят в полную негодность при

неправильной эксплуатации. В них происходит саморазряд, в результате которого они теряют свою емкость (примерно 0,5- 0,7 % в сутки). Для компенсации саморазряда неработающие аккумуляторные батареи необходимо периодически подзаряжать. При загрязнении электролита, а также крышек аккумуляторов, их выводов и междуэлементных соединений происходит повышенный саморазряд, быстро истощающий батарею.

Батарея аккумулятора должна быть всегда чистой, а выводы для предохранения от окисления покрыты тонким слоем технического вазелина. Периодически нужно проверять уровень электролита и степень заряженности аккумуляторов. Аккумуляторы должны периодически заряжаться. Хранение незаряженных аккумуляторов недопустимо. При неправильной эксплуатации аккумуляторов (разряде ниже 1,8-1,7 В, систематическом недозаряде, неправильном проведении заряда, длительном хранении незаряженного аккумулятора, понижении уровня электролита, чрезмерной плотности электролита) происходит повреждение их пластин, называемое сульфатацией . Это явление заключается в переходе мелкокристаллического сульфата свинца, покрывающего пластины при разряде, в нерастворимые крупнокристаллические химические соединения, которые при заряде не переходят в перекись свинца РbO 2 и свинец РЬ. При этом аккумулятор становится непригодным для эксплуатации.

Назначение стартерных аккумуляторных батарей
Теоретические основы преобразования химической энергии в электрическую
Разряд аккумулятора
Заряд аккумулятора
Расход основных токообразующих реагентов
Электродвижущая сила
Внутреннее сопротивление
Напряжение при заряде и разряде
Емкость аккумулятора
Энергия и мощность аккумулятора
Саморазряд аккумулятора


Назначение стартерных аккумуляторных батарей

Основная функция батареи - надежный пуск двигателя. Другая функция - энергетический буфер при работающем двигателе. Ведь наряду с традиционными видами потребителей, появилось множество дополнительных сервисных устройств, улучшающих комфорт водителя и безопасность движения. Батарея компенсирует дефицит энергии при движении по городскому циклу с частыми и длительными остановками, когда генератор не всегда может обеспечить отдачу мощности, необходимую для полного обеспечения всех включенных потребителей. Третья рабочая функция - энергоснабжение при выключенном двигателе. Однако длительное использование электроприборов во время стоянки с неработающим двигателем (или двигателем, работающем на холостом ходу), приводит к глубокому разряду батареи и резкому снижению ее стартерных характеристик.

Батарея предназначена еще и для аварийного электропитания. При отказе генератора, выпрямителя, регулятора напряжения или при обрыве ремня генератора она должна обеспечить работу всех потребителей, необходимых для безопасного движения до ближайшей СТО.

Итак, стартерные аккумуляторные батареи должны удовлетворять следующим основным требованиям:

Обеспечивать нужный для работы стартера разрядный ток, то есть обладать малым внутренним сопротивлением для минимальных внутренних потерь напряжения внутри батареи;

Обеспечивать необходимое количество попыток пуска двигателя с установленной продолжительностью, то есть иметь необходимый запас энергии стартерного разряда;

Иметь достаточно большую мощность и энергию при минимально возможных размерах и массе;

Обладать запасом энергии для питания потребителей при неработающем двигателе или в аварийной ситуации (резервная емкость);

Сохранять необходимое для работы стартера напряжение при понижении температуры в заданных пределах (ток холодной прокрутки);

Сохранять в течение длительного времени работоспособность при повышенной (до 70 "С) температуре окружающей среды;

Принимать заряд для восстановления емкости, израсходованной на пуск двигателя и питание других потребителей, от генератора при работающем двигателе (прием заряда);

Не требовать специальной подготовки пользователей, обслуживания в процессе эксплуатации;

Иметь высокую механическую прочность, соответствующую условиям эксплуатации;

Сохранять указанные рабочие характеристики продолжительное время в процессе эксплуатации (срок службы);

Обладать незначительным саморазрядом;

Иметь невысокую стоимость.

Теоретические основы преобразования химической энергии в электрическую

Химическим источником тока называется устройство, в котором за счет протекания пространственно разделенных окислительно-восстановительных химических реакций их свободная энергия преобразуется в электрическую. По характеру работы эти источники делятся на две группы:

Первичные химические источники тока или гальванические элементы;

Вторичные источники или электрические аккумуляторы.

Первичные источники допускают только однократное использование, так как вещества, образующиеся при их разряде, не могут быть превращены в исходные активные материалы. Полностью разряженный гальванический элемент, как правило, к дальнейшей работе непригоден - он является необратимым источником энергии.

Вторичные химические источники тока являются обратимыми источниками энергии - после как угодно глубокого разряда их работоспособность можно полностью восстановить путем заряда. Для этого через вторичный источник достаточно пропустить электрический ток в направлении, обратном тому, в котором он протекал при разряде. В процессе заряда образовавшиеся при разряде вещества, превратятся в первоначальные активные материалы. Так происходит многократное превращение свободной энергии химического источника тока в электрическую энергию (разряд аккумулятора) и обратное превращение электрической энергии в свободную энергию химического источника тока (заряд аккумулятора).

Прохождение тока через электрохимические системы связано с происходящими при этом химическими реакциями (превращениями). Поэтому между количеством вещества, вступившего в электрохимическую реакцию и подвергшегося превращениям, и количеством затраченного или высвободившегося при этом электричества существует зависимость, которая была установлена Майклом Фарадеем.

Согласно первому закону Фарадея масса вещества, вступившего в электродную реакцию или получившегося в результате ее протекания, пропорциональна количеству электричества, прошедшего через систему.

Согласно второму закону Фарадея, при равном количестве прошедшего через систему электричества массы прореагировавших веществ относятся между собой как их химические эквиваленты.

На практике электрохимическому изменению подвергается меньшее количество вещества, чем по законам Фарадея - при прохождении тока помимо основных электрохимических реакций происходят еще и параллельные или вторичные (побочные), изменяющие массу продуктов, реакции. Для учета влияния таких реакций введено понятие выхода по току.

Выход по току это та часть количества электричества, прошедшего через систему, которая приходится на долю основной рассматриваемой электрохимической реакции

Разряд аккумулятора

Активными веществами заряженного свинцового аккумулятора, принимающими участие в токообразующем процессе, являются:

На положительном электроде - двуокись свинца (темно-коричневого цвета);

На отрицательном электроде - губчатый свинец (серого цвета);

Электролит - водный раствор серной кислоты.

Часть молекул кислоты в водном растворе всегда диссоциирована на положительно заряженные ионы водорода и отрицательно заряженные сульфат-ионы.

Свинец, который является активной массой отрицательного электрода, частично растворяется в электролите и окисляется в растворе с образованием положительных ионов. Освободившиеся при этом избыточные электроны сообщают электроду отрицательный заряд и начинают движение по замкнутому участку внешней цепи к положительному электроду.

Положительно заряженные ионы свинца вступают в реакцию с отрицательно заряженными сульфат-ионами, с образованием сульфата свинца, который имеет незначительную растворимость и поэтому осаждается на поверхности отрицательного электрода. В процессе разряда аккумулятора активная масса отрицательного электрода преобразуется из губчатого свинца в сернокислый свинец с изменением серого цвета на светло-серый.

Двуокись свинца положительного электрода растворяется в электролите в значительно меньшем количестве, чем свинец отрицательного электрода. При взаимодействии с водой диссоциирует (распадается в растворе на заряженные частицы - ионы), образуя ионы четырехвалентного свинца и ионы гидроксила.

Ионы сообщают электроду положительный потенциал и, присоединяя электроны, пришедшие по внешней цепи от отрицательного электрода, восстанавливаются до ионов двухвалентного свинца

Ионы взаимодействуют с ионами, образуя сернокислый свинец, который по указанной выше причине также осаждается на поверхности положительного электрода, как это имело место на отрицательном. Активная масса положительного электрода по мере разряда преобразуется из двуокиси свинца в сульфат свинца с изменением ее цвета из темно-коричневого в светло-коричневый.

В результате разряда аккумулятора активные материалы и положительного, и отрицательного электродов превращаются в сульфат свинца. При этом на образование сульфата свинца расходуется серная кислота и образуется вода из освободившихся ионов, что приводит к снижению плотности электролита при разряде.

Заряд аккумулятора

В электролите у обоих электродов присутствуют в небольших количествах ионы сульфата свинца и воды. Под влиянием напряжения источника постоянного тока, в цепь которого включен заряжаемый аккумулятор, во внешней цепи устанавливается направленное движение электронов к отрицательному выводу аккумулятора.

Двухвалентные ионы свинца у отрицательного электрода нейтрализуются (восстанавливаются) поступившими двумя электронами, превращая активную массу отрицательного электрода в металлический губчатый свинец. Оставшиеся свободными ионы образуют серную кислоту

У положительного электрода под действием зарядного тока двухвалентные ионы свинца отдают два электрона, окисляясь в четырехвалентные. Последние, соединяясь через промежуточные реакции с двумя ионами кислорода, образуют двуокись свинца, которая выделяется на электроде. Ионы и так же, как и у отрицательного электрода, образуют серную кислоту, в результате чего при заряде растет плотность электролита.

Когда процессы преобразования веществ в активных массах положительного и отрицательного электродов окончены, плотность электролита перестает изменяться, что служит признаком окончания заряда аккумулятора. При дальнейшем продолжении заряда происходит так называемый вторичный процесс - электролитическое разложение воды на кислород и водород. Выделяясь из электролита в виде пузырьков газа, они создают эффект его интенсивного кипения, что также служит признаком окончания процесса заряда.

Расход основных токообразующих реагентов

Для получения емкости в один ампер-час при разряде аккумулятора необходимо, чтобы в реакцииприняло участие:

4,463 г двуокиси свинца

3,886 г губчатого свинца

3,660 г серной кислоты

Суммарный теоретический расход материалов для получения 1 А-ч (удельный расход материалов) электричества составит 11,989 г/А-ч, а теоретическая удельная емкость - 83,41 А-ч/кг.

При величине номинального напряжения аккумулятора 2 В теоретический удельный расход материалов на единицу энергии равен 5,995 г/Втч, а удельная энергия аккумулятора составит 166,82 Вт-ч/кг.

Однако на практике невозможно добиться полного использования активных материалов, принимающих участие в токообразующем процессе. Примерно половина поверхности активной массы недоступна для электролита, так как служит основой для построения объемного пористого каркаса, обеспечивающего механическую прочность материала. Поэтому реальный коэффициент использования активных масс положительного электрода составляет 45-55 %, а отрицательного 50-65 %. Кроме того, в качестве электролита используется 35-38%-ный раствор серной кислоты. Поэтому величина реального удельного расхода материалов значительно выше, а реальные значения удельной емкости и удельной энергии значительно ниже, чем теоретические.

Электродвижущая сила

Электродвижущей силой (ЭДС) аккумулятора Е называют разность его электродных потенциалов, измеренную при разомкнутой внешней цепи.

ЭДС батареи, состоящей из n последовательно соединенных аккумуляторов.

Следует различать равновесную ЭДС аккумулятора и неравновесную ЭДС аккумулятора в течение времени от размыкания цепи до установления равновесного состояния (период протекания переходного процесса).

ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление не менее 300 Ом/В). Для этого вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток.

Равновесная ЭДС свинцового аккумулятора, как и любого химического источника тока, зависит от химических и физических свойств веществ, принимающих участие в токообразующем процессе, и совершенно не зависит от размеров и формы электродов, а также от количества активных масс и электролита. Вместе с тем в свинцовом аккумуляторе электролит принимает непосредственное участие в токообразующем процессе на аккумуляторных электродах и изменяет свою плотность в зависимости от степени заряженности аккумуляторов. Поэтому равновесная ЭДС, которая в свою очередь является функцией плотности

Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь.

Внутреннее сопротивление

Сопротивление, оказываемое аккумулятором протекающему внутри него току (зарядному или разрядному), принято называть внутренним сопротивлением аккумулятора.

Сопротивление активных материалов положительного и отрицательного электродов, а также сопротивление электролита изменяются в зависимости от степени заряженности аккумулятора. Кроме того, сопротивление электролита весьма существенно зависит от температуры.

Поэтому омическое сопротивление также зависит от степени заряженности батареи и температуры электролита.

Сопротивление поляризации зависит от силы разрядного (зарядного) тока и температуры и не подчиняется закону Ома.

Внутреннее сопротивление одного аккумулятора и даже аккумуляторной батареи, состоящей из нескольких последовательно соединенных аккумуляторов, незначительно и составляет в заряженном состоянии всего несколько тысячных долей Ома. Однако в процессе разряда оно существенно изменяется.

Электрическая проводимость активных масс уменьшается для положительного электрода примерно в 20 раз, а для отрицательного - в 10 раз. Электропроводность электролита также изменяется в зависимости от его плотности. При увеличении плотности электролита от 1,00 до 1,70 г/см3 его электропроводность сначала растет до его максимального значения, а затем вновь уменьшается.

По мере разряда аккумулятора плотность электролита снижается от 1,28 г/см3 до 1,09 г/см3, что приводит к снижению его электропроводности почти в 2,5 раза. В результате омическое сопротивление аккумулятора по мере разряда увеличивается. В разряженном состоянии сопротивление достигает значения, более чем в 2 раза превышающего его величину в заряженном состоянии.

Кроме состояния заряженности существенное влияние на сопротивление аккумуляторов оказывает температура. С понижением температуры удельное сопротивление электролита возрастает и при температуре -40 °С становится примерно в 8 раз больше, чем при +30 °С. Сопротивление сепараторов также резко возрастает с понижением температуры и в том же интервале температуры увеличивается почти в 4 раза. Это является определяющим фактором увеличения внутреннего сопротивления аккумуляторов при низких температурах.

Напряжение при заряде и разряде

Разность потенциалов на полюсных выводах аккумулятора (батареи) в процессе заряда или разряда при наличии тока во внешней цепи принято называть напряжением аккумулятора (батареи). Наличие внутреннего сопротивления аккумулятора приводит к тому, что его напряжение при разряде всегда меньше ЭДС, а при заряде - всегда больше ЭДС.

При заряде аккумулятора напряжение на его выводах должно быть больше его ЭДС на сумму внутренних потерь.

В начале заряда происходит скачок напряжения на величину омических потерь внутри аккумулятора, а затем резкое повышение напряжения за счет потенциала поляризации, вызванное в основном быстрым увеличением плотности электролита в порах активной массы. Далее происходит медленный рост напряжения, обусловленный главным образом ростом ЭДС аккумулятора вследствие увеличения плотности электролита.

После того, как основное количество сульфата свинца преобразуется в РЬО2 и РЬ, затраты энергии все в большей мере вызывают разложение воды (электролиз) Избыточное количество ионов водорода и кислорода, появляющееся в электролите, еще больше увеличивает разность потенциалов разноименных электродов. Это приводит к быстрому росту зарядного напряжения, вызывающему ускорение процесса разложения воды. Образующиеся при этом ионы водорода и кислорода не вступают во взаимодействие с активными материалами. Они рекомбинируют в нейтральные молекулы и выделяются из электролита в виде пузырьков газа (на положительном электроде выделяется кислород, на отрицательном - водород), вызывая "кипение" электролита.

Если продолжить процесс заряда, можно увидеть, что рост плотности электролита и зарядного напряжения практически прекращается, так как уже почти весь сульфат свинца прореагировал, и вся подводимая к аккумулятору энергия теперь расходуется только на протекание побочного процесса - электролитическое разложение воды. Этим объясняется и постоянство зарядного напряжения, которое служит одним из признаков окончания зарядного процесса.

После прекращения заряда, то есть отключения внешнего источника, напряжение на выводах аккумулятора резко снижается до значения его неравновесной ЭДС, или на величину омических внутренних потерь. Затем происходит постепенное снижение ЭДС (вследствие уменьшения плотности электролита в порах активной массы), которое продолжается до полного выравнивания концентрации электролита в объеме аккумулятора и порах активной массы, что соответствует установлению равновесной ЭДС.

При разряде аккумулятора напряжение на его выводах меньше ЭДС на величину внутреннего падения напряжения.

В начале разряда напряжение аккумулятора резко падает на величину омических потерь и поляризации, обусловленной снижением концентрации электролита в порах активной массы, то есть концентрационной поляризации. Далее при установившемся (стационарном) процессе разряда происходит снижение плотности электролита в объеме аккумулятора, обусловливающее постепенное снижение разрядного напряжения. Одновременно происходит изменение соотношения содержания сульфата свинца в активной массе, что также вызывает повышение омических потерь. При этом частицы сульфата свинца (имеющего примерно втрое больший объем в сравнении с частицами свинца и его двуокиси, из которых они образовались) закрывают поры активной массы, чем препятствуют прохождению электролита в глубину электродов.

Это вызывает усиление концентрационной поляризации, приводящее к более быстрому снижению разрядного напряжения.

При прекращении разряда напряжение на выводах аккумулятора быстро повышается на величину омических потерь, достигая значения неравновесной ЭДС. Дальнейшее изменение ЭДС вследствие выравнивания концентрации электролита в порах активных масс и в объеме аккумулятора приводит к постепенному установлению значения равновесной ЭДС.

Напряжение аккумулятора при его разряде определяется в основном температурой электролита и силой разрядного тока. Как сказано выше, сопротивление свинцового аккумулятора (батареи) незначительно и в заряженном состоянии составляет всего несколько миллиОм. Однако при токах стартерного разряда, сила которых в 4-7 раз превышает значение номинальной емкости, внутреннее падение напряжения оказывает существенное влияние на разрядное напряжение. Увеличение омических потерь с понижением температуры связано с ростом сопротивления электролита. Кроме того, резко возрастает вязкость электролита, что затрудняет процесс диффузии его в поры активной массы и повышает концентрационную поляризацию (то есть увеличивает потери напряжения внутри аккумулятора за счет снижения концентрации электролита в порах электродов).

При токе более 60 А зависимость напряжения разряда от силы тока является практически линейной при всех температурах.

Среднее значение напряжения аккумулятора при заряде и разряде определяют как среднее арифметическое значений напряжения, измеренных через равные промежутки времени.

Емкость аккумулятора

Емкость аккумулятора - это количество электричества, полученное от аккумулятора при его разряде до установленного конечного напряжения. В практических расчетах емкость аккумулятора принято выражать в ампер-часах (Ач). Разрядную емкость можно вычислить, умножив силу разрядного тока на продолжительность разряда.

Разрядная емкость, на которую рассчитан аккумулятор и которая указывается изготовителем, называется номинальной емкостью.

Кроме нее, важным показателем является также емкость, сообщаемая батарее при заряде.

Разрядная емкость зависит от целого ряда конструктивных и технологических параметров аккумулятора, а также условий его эксплуатации. Наиболее существенными конструктивными параметрами являются количество активной массы и электролита, толщина и геометрические размеры аккумуляторных электродов. Основными технологическими параметрами, влияющими на емкость аккумулятора, являются рецептура активных материалов и их пористость. Эксплуатационные параметры - температура электролита и сила разрядного тока - также оказывают значительное влияние на разрядную емкость. Обобщенным показателем, характеризующим эффективность работы аккумулятора, является коэффициент использования активных материалов.

Для получения емкости в 1 А-ч, как указывалось выше, теоретически необходимо 4,463 г двуокиси свинца, 3,886 г губчатого свинца и 3,66 г серной кислоты. Теоретический удельный расход активных масс электродов составляет 8,32 г/Ач. В реальных аккумуляторах удельный расход активных материалов при 20-часовом режиме разряда и температуре электролита 25 °С составляет от 15,0 до 18,5 г/А-ч, что соответствует коэффициенту использования активных масс 45-55 %. Следовательно, практический расход активной массы превышает теоретические величины в 2 и более раза.

На степень использования активной массы, а следовательно, и на величину разрядной емкости оказывают влияние следующие основные факторы.

Пористость активной массы. С увеличением пористости улучшаются условия диффузии электролита в глубину активной массы электрода и увеличивается истинная поверхность, на которой протекает токообразующая реакция. С ростом пористости увеличивается разрядная емкость. Величина пористости зависит от размеров частиц свинцового порошка и рецептуры приготовления активных масс, а также от применяемых добавок. Причем повышение пористости приводит к уменьшению долговечности вследствие ускорения процесса деструкции высокопористых активных масс. Поэтому величина пористости выбирается производителями с учетом не только высоких емкостных характеристик, но и обеспечения необходимой долговечности батареи в эксплуатации. В настоящее время оптимальной считается пористость в пределах 46-60 %, в зависимости от назначения батареи.

Толщина электродов. С уменьшением толщины снижается неравномерность нагруженности наружных и внутренних слоев активной массы электрода, что способствует увеличению разрядной емкости. У более толстых электродов внутренние слои активной массы используются весьма незначительно, особенно при разряде большими токами. Поэтому с ростом разрядного тока различия в емкости аккумуляторов, имеющих электроды различной толщины, резко уменьшаются.

Пористость и рациональность конструкции материала сепаратора. С ростом пористости сепаратора и высоты его ребер увеличивается запас электролита в межэлектродном зазоре и улучшаются условия его диффузии.

Плотность электролита. Влияет на емкость аккумулятора, и срок его службы. При повышении плотности электролита емкость положительных электродов увеличивается, а емкость отрицательных, особенно при отрицательной температуре, снижается вследствие ускорения пассивации поверхности электрода. Повышенная плотность также отрицательно сказывается на сроке службы аккумулятора вследствие ускорения коррозионных процессов на положительном электроде. Поэтому оптимальная плотность электролита устанавливается исходя из совокупности требований и условий, в которых эксплуатируется батарея. Так, например, для стартерных батарей, работающих в умеренном климате, рекомендована рабочая плотность электролита 1,26-1,28 г/см3, а для районов с жарким (тропическим) климатом 1,22-1,24 г/см3.

Сила разрядного тока, которым аккумулятор должен непрерывно разряжаться в течение заданного времени (характеризует режим разряда). Режимы разряда условно разделяют на длительные и короткие. При длительных режимах разряд происходит малыми токами в течение нескольких часов. Например, 5-, 10- и 20-часовой разряды. При коротких или стартерных разрядах сила тока в несколько раз больше номинальной емкости аккумулятора, а разряд длится несколько минут или секунд. При увеличении разрядного тока скорость разряда поверхностных слоев активной массы возрастает в большей степени, чем глубинных. В результате рост сернокислого свинца в устьях пор происходит быстрее, чем в глубине, и пора закупоривается сульфатом раньше, чем успевает прореагировать ее внутренняя поверхность. Вследствие прекращения диффузии электролита внутрь поры реакция в ней прекращается. Таким образом, чем больше разрядный ток, тем меньше емкость аккумулятора, а следовательно, и коэффициент использования активной массы.

Для оценки пусковых качеств батарей их емкость характеризуется также количеством прерывистых стартерных разрядов (например, длительностью 10-15 с с перерывами между ними по 60 с). Емкость, которую отдает батарея при прерывистых разрядах, превышает емкость при непрерывном разряде тем же током, особенно при стартерном режиме разряда.

В настоящее время в международной практике оценки емкостных характеристик стартерных аккумуляторов применяется понятие "резервная" емкость. Она характеризует время разряда батареи (в минутах) при силе разрядного тока 25 А независимо от номинальной емкости батареи. По усмотрению производителя допускается устанавливать величину номинальной емкости при 20-часовом режиме разряда в ампер-часах или по резервной емкости в минутах.

Температура электролита. С ее понижением разрядная емкость аккумуляторов уменьшается. Причина этого - повышение вязкости электролита и его электрического сопротивления, что замедляет скорость диффузии электролита в поры активной массы. Кроме того, с понижением температуры ускоряются процессы пассивации отрицательного электрода.

Температурный коэффициент емкости а показывает изменение емкости в процентах при изменении температуры на 1 °С.

При испытаниях сравнивают разрядную емкость, полученную при длительном режиме разряда с величиной номинальной емкости, определяемой при температуре электролита +25 °С.

Температура электролита при определении емкости на длительном режиме разряда в соответствии с требованиями стандартов должна находиться в пределах от +18 °С до +27 °С.

Параметры стартерного разряда оценивают продолжительностью разряда в минутах и напряжением в начале разряда. Эти параметры определяются на первом цикле при +25 °С (проверка для сухозаряженных батарей) и на последующих циклах при температурах -18 °С или -30 °С.

Степень заряженности. С увеличением степени заряженности при прочих равных условиях емкость увеличивается и достигает своего максимального значения при полном заряде батарей. Это обусловлено тем, что при неполном заряде количество активных материалов на обоих электродах, а также плотность электролита не достигают своих максимальных значений.

Энергия и мощность аккумулятора

Энергия аккумулятора W выражается в Ватт-часах и определяется произведением его разрядной (зарядной) емкости на среднее разрядное (зарядное) напряжение.

Так как с изменением температуры и режима разряда меняются емкость аккумулятора и его разрядное напряжение, то при понижении температуры и увеличении разрядного тока энергия аккумулятора уменьшается еще более значительно, чем его емкость.

При сравнении между собой химических источников тока, различающихся по емкости, конструкции и даже по электрохимической системе, а также при определении направлений их усовершенствования пользуются показателем удельной энергии, - энергии, отнесенной к единице массы аккумулятора или его объема. Для современных свинцовых стартерных необслуживаемых батарей удельная энергия при 20-часовом режиме разряда составляет 40-47 Вт ч/кг.

Количество энергии, отдаваемой аккумулятором в единицу времени, называется его мощностью. Ее можно определить как произведение величины разрядного тока на среднее разрядное напряжение.

Саморазряд аккумулятора

Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.

Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.

Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.

Наличие примесей различных металлов на поверхности отрицательного электрода оказывает весьма значительное влияние (каталитическое) на увеличение скорости саморастворения свинца (вследствие снижения перенапряжения выделения водорода). Практически все металлы, встречающиеся в виде примесей в аккумуляторном сырье, электролите и сепараторах, или вводимые в виде специальных добавок, способствуют повышению саморазряда. Попадая на поверхность отрицательного электрода, они облегчают условия выделения водорода.

Часть примесей (соли металлов с переменной валентностью) действуют как переносчики зарядов с одного электрода на другой. В этом случае ионы металлов восстанавливаются на отрицательном электроде и окисляются на положительном (такой механизм саморазряда приписывают ионам железа).

Саморазряд положительного активного материала обусловлен протеканием реакции.

2РЬО2 + 2H2SO4 -> PbSCU + 2H2O + О2 Т.

Скорость данной реакции также возрастает с ростом концентрации электролита.

Так как реакция протекает с выделением кислорода, то скорость ее в значительной степени определяется кислородным перенапряжением. Поэтому добавки, снижающие потенциал выделения кислорода (например, сурьма, кобальт, серебро), будут способствовать росту скорости реакции саморастворения двуокиси свинца. Скорость саморазряда положительного активного материала в несколько раз ниже скорости саморазряда отрицательного активного материала.

Другой причиной саморазряда положительного электрода является разность потенциалов материала токоотвода и активной массы этого электрода. Возникающий вследствие этой разности потенциалов гальванический микроэлемент превращает при протекании тока свинец токоотвода и двуокись свинца положительной активной массы в сульфат свинца.

Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками. Этот вид саморазряда не отличается от обычного разряда очень малыми токами при замкнутой внешней цепи и легко устраним. Для этого необходимо содержать поверхность батарей в чистоте.

Саморазряд батарей в значительной мере зависит от температуры электролита. С понижением температуры саморазряд уменьшается. При температуре ниже 0 °С у новых батарей он практически прекращается. Поэтому хранение батарей рекомендуется в заряженном состоянии при низких температурах (до -30 °С).

В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.

Снижение саморазряда возможно за счет повышения перенапряжения выделений кислорода и водорода на аккумуляторных электродах.

Для этого необходимо, во-первых, использовать возможно более чистые материалы для производства аккумуляторов, уменьшать количественное содержание легирующих элементов в аккумуляторных сплавах, использовать только

чистую серную кислоту и дистиллированную (или близкую к ней по чистоте при других методах очистки) воду для приготовления всех электролитов, как при производстве, так и при эксплуатации. Например, благодаря снижению содержания сурьмы в сплаве токо-отводов с 5 % до 2 % и использованию дистиллированной воды для всех технологических электролитов, среднесуточный саморазряд снижается в 4 раза. Замена сурьмы на кальций позволяет еще больше снизить скорость саморазряда.

Снижению саморазряда могут также способствовать добавки органических веществ - ингибиторов саморазряда.

Применение общей крышки и скрытых межэлементных соединений в значительной степени снижает скорость саморазряда от токов утечки, так как значительно снижается вероятность гальванической связи между далеко отстоящими полюсными выводами.

Иногда саморазрядом называют быструю потерю емкости вследствие короткого замыкания внутри аккумулятора. Такое явление объясняется прямым разрядом через токопроводящие мостики, образовавшиеся между разноименными электродами.

Применение сепараторов-конвертов в необслуживаемых аккумуляторах

исключает возможность образования коротких замыканий между разноименными электродами в процессе эксплуатации. Однако такая вероятность остается вследствие возможных сбоев в работе оборудования при массовом производстве. Обычно такой дефект выявляется в первые месяцы эксплуатации и батарея подлежит замене по гарантии.

Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени.

Действующими в настоящее время стандартами саморазряд характеризуется также напряжением стартерного разряда при -18 °С после испытания: бездействия в течение 21 суток при температуре +40 °С.

Типы аккумуляторов электрической энергии

Аккумуляторы являются неотъемлемой частью любой системы, ориентированной на получение альтернативных видов энергии.

Наибольшее распространение к настоящему времени получили электрохимические аккумуляторы электрической энергии, в которых преобразование химической энергии в электрическую при разряде аккумулятора происходит посредством химической реакции. При зарядке аккумулятора химическая реакция протекает в обратном направлении.

Кроме электрохимических аккумуляторов электроэнергию можно запасать в конденсаторах и соленоидах (катушках индуктивности).

В заряженном конденсаторе энергия хранится в виде энергии электрического поля диэлектрика. Ввиду того что удельная энергия, запасаемая конденсатором, очень невелика (практически от 10 до 400 Дж/кг), а длительность возможного хранения энергии вследствие имеющейся ее утечки небольшая, этот тип аккумулятора энергии применяется только в тех случаях, когда надо отдать электроэнергию потребителю за очень короткое время при кратком сроке ее хранения.

В соленоиде электрическая энергия аккумулируется в виде энергии магнитного поля. Поэтому этот тип накопителя именуется электромагнитным. Но время выдачи энергии электромагнитными аккумуляторами обычно измеряется даже не секундами, а долями секунды.

Для зарядки аккумулятора нужен внешний источник энергии, причем в процессе зарядки могут возникать потери энергии. После зарядки аккумулятор может оставаться в состоянии готовности (в заряженном состоянии), но и в этом состоянии часть энергии может теряться из-за произвольного рассеяния, утечки, саморазряда или других подобных явлений. При отдаче энергии из аккумулятора также могут возникать ее потери; кроме того, иногда невозможно получить обратно всю аккумулированную энергию. Некоторые аккумуляторы устроены так, что в них должна оставаться некоторая остаточная энергия.

Характеристики аккумуляторов

Основной характеристикой аккумулятора является его электрическая ёмкость. Единицей измерения этой ёмкости является ампер-час (А·ч) - внесистемная единица измерения электрического заряда.

Исходя из физического смысла, 1 ампер-час - это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока силой в 1 ампер. Теоретически заряженный аккумулятор с заявленной ёмкостью в 1 А·ч способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 0,1 А в течение 10 часов, или 10 А в течение 0,1 часа).

На практике же емкость аккумулятора рассчитывают исходя из 20-часового цикла разряда до конечного напряжения, которое для автомобильных аккумуляторов составляет 10,8 В. Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

Производители аккумуляторов иногда в качестве емкости указывают в технических характеристиках запасаемую энергию в Вт·ч. Поскольку 1 Вт = 1 А * 1 В, то если запасаемая энергия равна 720 Вт·ч мы можем поделить это значение на величину напряжения (скажем 12 В) и получим емкость в ампер-часах (в нашем примере 720 Вт·ч / 12 В = 60 А·ч.).

Свинцово-кислотные аккумуляторы

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) — из двуокиси свинца РbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

РbO2 + Рb + 2Н2SO4 <—> 2РbSO4 + Н2О

Для заряда аккумулятора теоретически требуется удельная энергия 167 Вт/кг. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Вт/кг. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 1. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.


Рис.1. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Вт ч/кг и даже немногим выше.

Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется

  • возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии,
  • возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 МВт ч).

Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 В до 2,20 В).

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности взрыва должна предусматриваться соответствующая надежная вентиляция.

Другие типы аккумуляторов

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия КОН) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 В до 1,45 В, а удельная аккумулирующая способность — в пределах от 15 Вт ч/кг до 45 Вт ч/кг. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также большим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

В литий-ионных аккумуляторах анод состоит из углерода, содержащего в заряженном состоянии карбид лития Li х C 6 , а катод — из окиси лития и кобальта Li 1-х CoO 2 . В качестве электролита применяются твердые соли лития (LiPF 6 , LiBF 4 , LiClO 4 или другие), растворенные в жидком органическом растворителе (например, в эфире). К электролиту обычно добавляют сгуститель (например, кремнийорганические соединения), благодаря чему он приобретает желеобразный вид. Электрохимические реакции при разряде и заряде заключаются в переходе ионов лития с одного электрода на другой и протекают по формуле

Li x C 6 + Li 1-x CoO 2 <—> C 6 + LiCoO 2

По внешней форме элементы литий-ионных аккумуляторов могут быть плоскими (похожими на четырехугольные пластины) или цилиндрическими (с рулонными электродами). Выпускаются также аккумуляторы, в которых применяются другие материалы анода и катода. Одним из важных направлений развития является разработка быстрозаряжаемых аккумуляторов.

Существует много других видов аккумуляторов (всего около 100). Например, в системах электроснабжения самолетов, где масса оборудования должна быть как можно меньше, находят применение серебряно-цинковые аккумуляторы с удельной аккумулирующей способностью, в среднем, 100 Вт ч/кг. Наивысшую ЭДС (6,1 В) и наибольшую удельную аккумулирующую способность (6270 Вт ч/кг) имеют фторо-литиевые аккумуляторы, серийного производства которых, однако, еще нет.

Первичные гальванические элементы хорошо подходят для работы в длительном режиме, а аккумуляторы могут использоваться как для длительной работы, так и для покрытия кратковременных и толчковых нагрузок. Конденсаторы и катушки индуктивности используются, главным образом, для покрытия импульсных нагрузок и для выравнивания мощности при быстрых изменениях нагрузок. Для выравнивания мощности, отдаваемой в энергосистему ветряными и солнечными электростанциями, могут применяться комбинации аккумуляторов с ультраконденсаторами.

Область применения некоторых аккумулирующих устройств по длительности нагрузки и по отдаваемой мощности характеризует рис. 2.