Модели жизненного цикла для разработки программных систем. Жизненный цикл программного обеспечения

представление окончательных документов, метрик процесса, критериев начала и завершения задач и перехода к следующему шагу процесса; подбор методов тестирования для выбранного класса ПС для проверки правильности выполнения задач тестирования; разработка специальных шаблонов документов для документирования процесса тестирования относительно каждого шага процесса тестирования.

Т.е. делается предположение, что каждая работа будет выполнена настолько тщательно, что после ее завершения и перехода к следующему этапу возвращения к предыдущему не потребуется.

Разработчик проверяет промежуточный результат разными известными методами верификации и фиксирует его в качестве готового эталона для следующего процесса.

Согласно данной модели ЖЦ работы и задачи процесса разработки обычно выполняются последовательно, как это представлено в схеме. Однако вспомогательные и организационные процессы (контроль требований, управление качеством и др.) обычно выполняются параллельно с процессом разработки. В данной модели возвращение к начальному процессу предусматривается после сопровождения и исправления ошибок.

Особенность такой модели состоит в фиксации последовательных процессов разработки программного продукта. В ее основу положена модель фабрики, где продукт проходит стадии от замысла до производства, затем передается заказчику как готовое изделие, изменение которого не предусмотрено, хотя возможна замена на другое подобное изделие в случае рекламации или некоторых ее деталей, вышедших из строя.

Недостатки этой модели:

  • процесс создания ПС не всегда укладывается в такую жесткую форму и последовательность действий;
  • не учитываются изменившиеся потребности пользователей, изменения во внешней среде, которые вызовут изменения требований к системе в ходе ее разработки;
  • большой разрыв между временем внесения ошибки (например, на этапе проектирования) и временем ее обнаружения (при сопровождении), что приводит к большой переделке ПС.

При применении каскадной модели могут иметь место следующие факторы риска:

  • требования к ПС недостаточно четко сформулированы, либо не учитывают перспективы развития ОС, сред и т.п.;
  • большая система, не допускающая компонентной декомпозиции, может вызвать проблемы с размещением ее в памяти или на платформах, не предусмотренных в требованиях;
  • внесение быстрых изменений в технологию и в требования может ухудшить процесс разработки отдельных частей системы или системы в целом;
  • ограничения на ресурсы (человеческие, программные, технические и др.) в ходе разработки могут сузить отдельные возможности реализации системы;

полученный продукт может оказаться плохим для применения по причине недопонимания разработчиками требований или функций системы или недостаточно проведенного тестирования. Преимущества реализации системы с помощью каскадной модели следующие:

  • все задачи подсистем и системы реализуются одновременно (т.е. ни одна задача не забыта), а это способствует установлению стабильных связей и отношений между ними;
  • полностью разработанную систему с документацией на нее легче сопровождать, тестировать, фиксировать ошибки и вносить изменения не беспорядочно, а целенаправленно, начиная с требований (например, добавить или заменять некоторые функции) и повторить процесс.

Каскадную модель можно рассматривать как модель ЖЦ, пригодную для создания первой версии ПО с целью проверки реализованных в ней функций. При сопровождении и эксплуатации могут быть обнаружены разного рода ошибки, исправление которых потребует повторного выполнения всех процессов, начиная с уточнения требований.

2.2.2. Инкрементная модель ЖЦ

Первая создаваемая промежуточная версия системы (выпуск 1) реализует часть требований, в последующую версию (выпуск 2) добавляют дополнительные требования и так до тех пор, пока не будут окончательно выполнены все требования и решены задачи разработки системы. Для каждой промежуточной версии на этапах ЖЦ выполняются необходимые процессы, работы и задачи, в том числе, анализ требований и создание новой архитектуры, которые могут быть выполнены одновременно.

Процессы разработки технического проекта ПС, его программирование и тестирование, сборка и квалификационные испытания ПС выполняются при создании каждой последующей версии.

В соответствии с данной моделью ЖЦ, процессы которой практически такие же, что и в каскадной модели, ориентир делается на разработку некоторой законченной промежуточной версии, а задачи процесса разработки выполняются последовательно или частично параллельно для ряда отдельных промежуточных структур версии.

Работы и задачи процесса разработки следующей версии системы с дополнительными требованиями или функциями могут выполняться неоднократно в той же последовательности для всех промежуточных версий системы. Процессы сопровождения и эксплуатации могут быть реализованы параллельно с процессом разработки версии путем проверки частично реализованных требований в каждой промежуточной версии и так до получения законченного варианта системы. Вспомогательные и организационные процессы ЖЦ обычно выполняются параллельно с процессом разработки версии системы и к концу разработки будут собраны данные, на основании которых может быть установлен уровень завершенности и качества изготовленной системы.

При применении данной модели необходимо учитывать следующие факторы риска:

  • требования составлены с учетом возможности их изменения при реализации продукта;
  • все возможности системы требуется реализовать с начала;
  • быстрое изменение технологии и требований к системе может привести к нарушению полученной структуры системы;
  • ограничения в ресурсном обеспечении (исполнители, финансы) могут привести к затягиванию сроков сдачи системы в эксплуатацию.

Данную модель ЖЦ целесообразно использовать, в случаях когда:

  • желательно реализовать некоторые возможности системы быстро за счет создания промежуточной версии продукта;
  • система декомпозируется на отдельные составные части, которые можно реализовывать как некоторые самостоятельные промежуточные или готовые продукты;
  • возможно увеличение финансирования на разработку отдельных частей системы.

Иногда люди не вполне отчетливо различают работы по управлению проектом и работы жизненного цикла проекта, так как для успешного выполнения проекта необходимы работы обоих видов. Основное различие между ними заключается в том, что управление проектом сосредоточено на определении, планировании, мониторинге и контроле, а также на закрытии проекта. Работы же, связанные с фактическим созданием результатов поставки проекта, принято относить к "жизненному циклу" проекта. В процессе управления проектом создается его график, но подавляющее большинство работ в этом графике составляют именно работы жизненного цикла проекта, в результате выполнения которых появляется выходная продукция.

Несмотря на уникальность всех проектов, подобно тому, как существуют общие процессы управления, применимые к большинству проектов, существуют также и общие модели, которые могут служить руководством по определению жизненного цикла большинства проектов. Эти общие модели ценны тем, что экономят время проектным командам при разработке графика проекта.

Примером одной из моделей жизненного цикла является распространенная классическая модель "водопад". Эта модель представляет базовый подход, который может применяться в любом проекте. Чаще всего Вам приходится начинать с понимания требований к результату проекта, затем следуют проектирование результата, создание и тестирование результата, и завершаете Вы внедрением результата. Каждая из этих областей концентрации внимания называется фазой (фаза анализа, фаза проектирования, фаза реализации и т.д.). Классический "водопадный" подход - это модель жизненного цикла, которую Вы, вероятно, сможете применить, ничего не зная о методологиях и планируя проект "с чистого листа".

Что может быть проще? Даже если у Вас очень маленький проект, Вы все равно проходите эти базовые шаги, хотя бы даже проделывая некоторые из них в голове. К примеру, если у Вас 40-часовой (на одну рабочую неделю) проект разработки или улучшения документа, может показаться что Вы сразу же бросаетесь в фазу "Реализация". Но так ли это? Наиболее вероятно, что Вы получили какого-либо рода поручение с требованиями или пожеланиями, которые придется осмыслить (Анализ) и трансформировать в замысел будущего содержания (Проектирование). Затем вы воплощаете замысел (Реализация), проверяете результат (Тестирование) и передаете для использования (Внедрение).

Водопадная (каскадная) схема включает несколько важных операций, применимых ко всем проектам:

* составление плана действий по разработке системы;

* планирование работ, связанных с каждым действием;

* применение операции отслеживания хода выполнения действий с контрольными этапами.

Графическая иллюстрация “водопадной модели” проектного цикла

Рисунок.3 Водопадная модель жизненного цикла проекта

Преимущества водопадной (каскадной) модели.

Каскадная модель имеет преимущества, если ее использовать в проекте, для которого она достаточно приемлема.

a. Модель хорошо известна потребителям, не имеющих отношения к разработке и эксплуатации программ, и конечным пользователям.

b. Она упорядоченно справляется со сложностями и хорошо срабатывает для тех проектов, которые достаточно понятны, но все же трудно разрешимы.

c. Она доступна для понимания, так как преследуется простая цель - выполнить необходимые действия.

d. Она проста и удобна в применении, так как процесс разработки выполняется поэтапно.

e. Она отличается стабильностью требований.

f. Она представляет собой шаблон, в который можно поместить методы для выполнения анализа, проектирования, кодирования, тестирования и обеспечения.

g. Она позволяет участникам проекта, завершившим действия на выполняемой ими фазе, принять участие в реализации других проектов.

h. Она определяет процедуры по контролю за качеством. Каждые полученные данные подвергаются обзору. Такая процедура используется командой разработчиков для определения качества системы.

i. Ход выполнения проекта легко проследить с помощью использования временной шкалы (диаграммы Ганта), поскольку момент завершения каждой фазы используется в качестве стадии.

Недостатки каскадной модели.

При использовании каскадной модели для проекта, который трудно назвать подходящим для нее, проявляются следующие недостатки:

a. В основе модели лежит последовательная линейная структура, в результате чего попытка вернуться на одну или две фазы назад, чтобы исправить какую-либо проблему или недостаток, приведет к значительному увеличению затрат и сбою в графике.

b. У клиента не всегда есть возможность ознакомиться с системой заранее, это происходит лишь в самом конце жизненного цикла.

c. Клиент не имеет возможности воспользоваться промежуточными результатами, и отзывы пользователей нельзя передать обратно разработчикам. Поскольку готовый продукт не доступен вплоть до окончания процесса, пользователь принимает участие в процессе только в самом начале - при сборе требований, и в конце во время приемочных испытаний.

d. Каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, так как он не поддается гибкому моделированию.

e. Для каждой фазы создаются результативные данные, которые по его завершении считается замороженными. Это означает, что они не должны изменяться на следующих этапах жизненного цикла продукта. Если элемент результативных данных какого-либо этапа изменяется, на проект окажет негативное влияние изменение графика, поскольку ни модель, ни план не были рассчитаны на внесение и разрешение изменения на более поздних этапах жизненного цикла.

f. Все требования должны быть известны в начале жизненного цикла, но клиенты не всегда могут сформулировать все четко заданные требования на этот момент разработки.

В то время, как "водопад" универсален и может применяться в любом проекте, другие модели жизненного цикла могут оказаться более результативными и эффективными в зависимости от характеристик проекта. Например, если Вы устанавливаете пакет программного обеспечения, Вы пропускаете фазы проектирования и реализации. Подобным же образом, если Вы занимаетесь опытно-конструкторскими разработками, Вы можете использовать специфическую модель жизненного цикла R&D проекта, учитывающую, что проделанная работа или часть ее может пойти в мусорную корзину. Другие важные модели жизненного цикла могут использоваться для ускорения проектов определенного вида. Проекты в области информационных технологий, к примеру, часто используют итеративную либо быструю (Agile development) разработку.

Ниже приведены некоторые другие модели жизненного цикла проекта:

Итеративный подход (англ. iteration -- повторение) -- выполнение работ параллельно с непрерывным анализом полученных результатов и корректировкой предыдущих этапов работы. Проект при этом подходе в каждой фазе развития проходит повторяющийся цикл: Планирование -- Реализация -- Проверка -- Оценка (англ. plan-do-check-act cycle).

Преимущества итеративного подхода:

1. снижение воздействия серьезных рисков на ранних стадиях проекта, что ведет к минимизации затрат на их устранение;

2. организация эффективной обратной связи проектной команды с потребителем (а также заказчиками, стейкхолдерами) и создание продукта, реально отвечающего его потребностям;

3. акцент усилий на наиболее важные и критичные направления проекта;

4. непрерывное итеративное тестирование, позволяющее оценить успешность всего проекта в целом;

5. раннее обнаружение конфликтов между требованиями, моделями и 6.реализацией проекта;

8. эффективное использование накопленного опыта;

9. реальная оценка текущего состояния проекта и, как следствие, большая 10.уверенность заказчиков и непосредственных участников в его успешном завершении.

Спиральная модель жизненного цикла проекта . В рамках этой модели рассматривается зависимость эффективности проекта от его стоимости с течением времени. На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка.

Спиральная модель была впервые сформулирована Барри Боэмом (Barry Boehm) в 1988 году. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла. Боэм формулирует “top-10” наиболее распространенных (по приоритетам) рисков

1. Дефицит специалистов.

2. Нереалистичные сроки и бюджет.

3. Реализация несоответствующей функциональности.

4. Разработка неправильного пользовательского интерфейса.

5. “Золотая сервировка”, перфекционизм, ненужная оптимизация и оттачивание деталей.

6. Непрекращающийся поток изменений.

7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию.

8. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.

9. Недостаточная производительность получаемой системы.

10. “Разрыв” в квалификации специалистов разных областей знаний.

Большая часть этих рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации. Каждый виток разбит на 4 сектора:

оценка и разрешение рисков,

определение целей,

разработка и тестирование,

планирование.

Спиральная модель ориентирована на большие, дорогостоящие и сложные проекты.

Преимущества спиральной модели:

При использовании спиральной модели при выполнении проекта, для которого она в достаточной мере подходит, появляются следующие преимущества:

a Спиральная модель разрешает пользователям «увидеть» систему на ранних этапах, что обеспечивается посредством использования ускоренного прототипирования в жизненном цикле разработки проекта.

b Обеспечивается определение непреодолимых рисков без особых затрат.

c Модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий.

d Она обеспечивает разбиение большого потенциального объема работы по разработке продукта на небольшие части.

e В модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели.

f Реализовано преимущество инкрементной модели, а именно выпуск инкрементов, сокращение графика посредством перекрывания инкрементов и неизменяемость ресурсов при постепенном росте системы.

Недостатки спиральной модели:

При использовании спиральной модели относительно проекта, для которого она не подходит в достаточной мере, проявляются следующие недостатки:

a Спираль может продолжаться до бесконечности.

b Большое количество промежуточных стадий может привести к необходимости в обработке внутренней дополнительной и внешней документации.

c Использование модели может стать дорогостоящим, так как время, затраченное на планирование, повторное определение целей, анализа рисков и прототипирование, может быть чрезмерным.

Инкрементная модель проектного цикла. Эта модель в большинстве случаев применяется при проведении сложных опытно-конструкторских работ, которые требуют большого количества участников, множества различных вопросов, которые необходимо решить. Ее суть заключается в разбиении большого объема работ на последовательность более мелких составляющих частей. Она представляет собой процесс частичной реализации всей системы и медленного наращивания функциональных возможностей или эффективности.

Эта модель предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает “мини-проект”, включая все фазы жизненного цикла в применении к созданию меньших фрагментов функциональности, по сравнению с проектом, в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определенную интегрированным содержанием всех предыдущих и текущей итерации. Результаты финальной итерации содержит всю требуемую функциональность продукта.

Преимущества инкрементной модели.

Применяя инкрементную модель при разработке проекта, для которого она подходит в достаточной мере, можно убедиться в следующих ее преимуществах:

a Не требуется заранее тратить средства на разработку всего проекта.

b В результате выполнения каждого инкремента получается функциональный продукт.

c Использование последовательных инкрементов позволяет объединить полученные пользователями опыт в виде усовершенствованного продукта, затратив при этом намного меньше средств, чем требуется для выполнения повторной разработки.

d Правило по принципу «разделяй и властвуй» позволяет разбить возникшую проблему на управляемые части, благодаря чему предотвращается формирование громоздких перечней требований, выдвигаемых перед командой разработчиков.

e В процессе разработки можно ограничить количество персонала таким образом, чтобы над поставкой каждого инкремента, последовательно работала одна и та же команда.

f В конце каждой инкрементной поставки существует возможность пересмотреть риски, связанного с затратами и соблюдением установленного графика.

g Поскольку переход из настоящего в будущее не происходит моментально, заказчик может привыкать к новой технологии постепенно.

h Риск распределяется на несколько меньших по размеру инкрементов, и не сосредоточен в одном большом проекте разработки.

Недостатки инкрементной модели.

При использовании этой модели относительно проекта, для которого она подходит не в достаточной мере, проявляются следующие недостатки:

a В модели не предусмотрены итерации в рамках каждого инкремента.

b Определение полной функциональной системы должно осуществляться в начале жизненного цикла, чтобы обеспечить определение инкрементов.

c Заказчик должен осознавать, что общие затраты на выполнение проекта не будут снижены.

Стандарты жизненного цикла ПО

  • ГОСТ 34.601-90
  • ISO/IEC 12207:1995 (российский аналог - ГОСТ Р ИСО/МЭК 12207-99)

Методологии разработки ПО

  • Rational Unified Process (RUP).
  • Microsoft Solutions Framework (MSF). Включает 4 фазы: анализ, проектирование, разработка, стабилизация, предполагает использование объектно-ориентированного моделирования.
  • Экстремальное программирование (Extreme Programming , XP). В основе методологии командная работа, эффективная коммуникация между заказчиком и исполнителем в течение всего проекта по разработке ИС. Разработка ведется с использованием последовательно дорабатываемых прототипов.

Стандарт ГОСТ 34.601-90

Стандарт ГОСТ 34.601-90 предусматривает следующие стадии и этапы создания автоматизированной системы:

  1. Формирование требований к АС
    1. Обследование объекта и обоснование необходимости создания АС
    2. Формирование требований пользователя к АС
    3. Оформление отчета о выполнении работ и заявки на разработку АС
  2. Разработка концепции АС
    1. Изучение объекта
    2. Проведение необходимых научно-исследовательских работ
    3. Разработка вариантов концепции АС и выбор варианта концепции АС, удовлетворяющего требованиям пользователей
    4. Оформление отчета о проделанной работе
  3. Техническое задание
    1. Разработка и утверждение технического задания на создание АС
  4. Эскизный проект
    1. Разработка предварительных проектных решений по системе и ее частям
  5. Технический проект
    1. Разработка проектных решений по системе и ее частям
    2. Разработка документации на АС и ее части
    3. Разработка и оформление документации на поставку комплектующих изделий
    4. Разработка заданий на проектирование в смежных частях проекта
  6. Рабочая документация
    1. Разработка рабочей документации на АС и ее части
    2. Разработка и адаптация программ
  7. Ввод в действие
    1. Подготовка объекта автоматизации
    2. Подготовка персонала
    3. Комплектация АС поставляемыми изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями)
    4. Строительно-монтажные работы
    5. Пусконаладочные работы
    6. Проведение предварительных испытаний
    7. Проведение опытной эксплуатации
    8. Проведение приемочных испытаний
  8. Сопровождение АС.
    1. Выполнение работ в соответствии с гарантийными обязательствами
    2. Послегарантийное обслуживание

Эскизный, технический проекты и рабочая документация - это последовательное построение все более точных проектных решений. Допускается исключать стадию «Эскизный проект» и отдельные этапы работ на всех стадиях, объединять стадии «Технический проект» и «Рабочая документация» в «Технорабочий проект», параллельно выполнять различные этапы и работы, включать дополнительные.

Данный стандарт не вполне подходит для проведения разработок в настоящее время: многие процессы отражены недостаточно, а некоторые положения устарели.

Стандарт ISO/IEC 12207/ и его применение

Стандарт ISO/IEC 12207:1995 «Information Technology - Software Life Cycle Processes» является основным нормативным документом, регламентирующим состав процессов жизненного цикла ПО. Он определяет структуру жизненного цикла, содержащую процессы , действия и задачи, которые должны быть выполнены во время создания ПО.

Каждый процесс разделен на набор действий, каждое действие - на набор задач. Каждый процесс, действие или задача инициируется и выполняется другим процессом по мере необходимости, причем не существует заранее определенных последовательностей выполнения. Связи по входным данным при этом сохраняются.

Процессы жизненного цикла ПО

  • Основные:
    • Приобретение (действия и задачи заказчика, приобретающего ПО)
    • Поставка (действия и задачи поставщика, который снабжает заказчика программным продуктом или услугой)
    • Разработка (действия и задачи, выполняемые разработчиком: создание ПО, оформление проектной и эксплуатационной документации, подготовка тестовых и учебных материалов и т. д.)
    • Эксплуатация (действия и задачи оператора - организации, эксплуатирующей систему)
    • Сопровождение (действия и задачи, выполняемые сопровождающей организацией, то есть службой сопровождения). Сопровождение - внесений изменений в ПО в целях исправления ошибок, повышения производительности или адаптации к изменившимся условиям работы или требованиям.
  • Вспомогательные
    • Документирование (формализованное описание информации, созданной в течение ЖЦ ПО)
    • Управление конфигурацией (применение административных и технических процедур на всем протяжении ЖЦ ПО для определения состояния компонентов ПО, управления его модификациями).
    • Обеспечение качества (обеспечение гарантий того, что ИС и процессы ее ЖЦ соответствуют заданным требованиям и утвержденным планам)
    • Верификация (определение того, что программные продукты, являющиеся результатами некоторого действия, полностью удовлетворяют требованиям или условиям, обусловленным предшествующими действиями)
    • Аттестация (определение полноты соответствия заданных требований и созданной системы их конкретному функциональному назначению)
    • Совместная оценка (оценка состояния работ по проекту: контроль планирования и управления ресурсами, персоналом, аппаратурой, инструментальными средствами)
    • Аудит (определение соответствия требованиям, планам и условиям договора)
    • Разрешение проблем (анализ и решение проблем, независимо от их происхождения или источника, которые обнаружены в ходе разработки, эксплуатации, сопровождения или других процессов)
  • Организационные
    • Управление (действия и задачи, которые могут выполняться любой стороной, управляющей своими процессами)
    • Создание инфраструктуры (выбор и сопровождение технологии, стандартов и инструментальных средств, выбор и установка аппаратных и программных средств, используемых для разработки, эксплуатации или сопровождения ПО)
    • Усовершенствование (оценка, измерение, контроль и усовершенствование процессов ЖЦ)
    • Обучение (первоначальное обучение и последующее постоянное повышение квалификации персонала)

Каждый процесс включает ряд действий. Например, процесс приобретения охватывает следующие действия:

  1. Инициирование приобретения
  2. Подготовка заявочных предложений
  3. Подготовка и корректировка договора
  4. Надзор за деятельностью поставщика
  5. Приемка и завершение работ

Каждое действие включает ряд задач. Например, подготовка заявочных предложений должна предусматривать:

  1. Формирование требований к системе
  2. Формирование списка программных продуктов
  3. Установление условий и соглашений
  4. Описание технических ограничений (среда функционирования системы и т. д.)

Стадии жизненного цикла ПО, взаимосвязь между процессами и стадиями

Модель жизненного цикла ПО - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Стандарт ГОСТ Р ИСО/МЭК 12207-99 не предлагает конкретную модель жизненного цикла. Его положения являются общими для любых моделей жизненного цикла, методов и технологий создания ИС. Он описывает структуру процессов жизненного цикла, не конкретизируя, как реализовать или выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ ПО включает в себя:

  1. Стадии;
  2. Результаты выполнения работ на каждой стадии;
  3. Ключевые события - точки завершения работ и принятия решений.

Стадия - часть процесса создания ПО, ограниченная определенными временными рамками и заканчивающаяся выпуском конкретного продукта (моделей, программных компонентов, документации), определяемого заданными для данной стадии требованиями.

На каждой стадии могут выполняться несколько процессов, определенных в стандарте ГОСТ Р ИСО/МЭК 12207-99, и наоборот, один и тот же процесс может выполняться на различных стадиях. Соотношение между процессами и стадиями также определяется используемой моделью жизненного цикла ПО.

Модели жизненного цикла ПО

Под моделью жизненного цикла понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики информационной системы и специфики условий, в которых последняя создается и функционирует

К настоящему времени наибольшее распространение получили следующие основные модели жизненного цикла:

  • Задачная модель;
  • каскадная модель (или системная) (70-85 г.г.);
  • спиральная модель (настоящее время).

Задачная модель

При разработке системы "снизу-вверх" от отдельных задач ко всей системе (задачная модель) единый поход к разработке неизбежно теряется, возникают проблемы при информационной стыковке отдельных компонентов. Как правило, по мере увеличения количества задач трудности нарастают, приходится постоянно изменять уже существующие программы и структуры данных. Скорость развития системы замедляется, что тормозит и развитие самой организации. Однако в отдельных случаях такая технология может оказаться целесообразной:

  • Крайняя срочность (надо чтобы хоть как-то задачи решались; потом придется все сделать заново);
  • Эксперимент и адаптация заказчика (не ясны алгоритмы, решения нащупываются методом проб и ошибок).

Общий вывод: достаточно большую эффективную информационной системы таким способом создать невозможно.

Каскадная модель

Каскадная модель жизненного цикла была предложена в 1970 г. Уинстоном Ройсом. Она предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе(рис. 1). Требования, определенные на стадии формирования требований, строго документируются в виде технического задания и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Положительные стороны применения каскадного подхода заключаются в следующем:

  • на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
  • выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Этапы проекта в соответствии с каскадной моделью:

  1. Формирование требований;
  2. Проектирование;
  3. Реализация;
  4. Тестирование;
  5. Внедрение;
  6. Эксплуатация и сопровождение.

Рис. 1. Каскадная схема разработки

Каскадный подход хорошо зарекомендовал себя при построении информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем, чтобы предоставить разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи. Однако в процессе использования этого подхода обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания систем никогда полностью не укладывался в такую жесткую схему. В процессе создания постоянно возникала потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания программного обеспечения принимал следующий вид (рис. 2):

Рис. 2. Реальный процесс разработки ПО по каскадной схеме

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к информационным системам "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания программного обеспечения, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Сущность системного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. Таким образом, данная модель основным достоинством имеет системность разработки, а основные недостатки - медленно и дорого.

Спиральная модель

Для преодоления перечисленных проблем была предложена спиральная модель жизненного цикла (рис. 3), которая была разработана в середине 1980-х годов Барри Боэмом. Она основывается на начальных этапах жизненного цикла: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов.

Прототип - действующий компонент ПО, реализующий отдельные функции и внешние интерфейсы. Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации.

Каждая итерация представляет собой законченный цикл разработки, приводящий к выпуску внутренней или внешней версии изделия (или подмножества конечного продукта), которое совершенствуется от итерации к итерации, чтобы стать законченной системой.

Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.

Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Рис 3. Спиральная модель ЖЦ ИС

Одним из возможных подходов к разработке программного обеспечения в рамках спиральной модели жизненного цикла является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки программного обеспечения, содержащий 3 элемента:

  • небольшую команду программистов (от 2 до 10 человек);
  • короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);
  • повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Жизненный цикл программного обеспечения по методологии RAD состоит из четырех фаз:

  • фаза определения требований и анализа;
  • фаза проектирования;
  • фаза реализации;
  • фаза внедрения.

На каждой итерации оцениваются:

  • риск превышения сроков и стоимости проекта;
  • необходимость выполнения еще одной итерации;
  • степень полноты и точности понимания требований к системе;
  • целесообразность прекращения проекта.

Преимущества итерационного подхода:

  • Итерационная разработка существенно упрощает внесение изменений в проект при изменении требований заказчика.
  • При использовании спиральной модели отдельные элементы информационной системы интегрируются в единое целое постепенно. При итерационном подходе интеграция производится фактически непрерывно. Поскольку интеграция начинается с меньшего количества элементов, то возникает гораздо меньше проблем при ее проведении (по некоторым оценкам, при использовании каскадной модели разработки интеграция занимает до 40 % всех затрат в конце проекта).
  • Итерационная разработка обеспечивает большую гибкость в управлении проектом, давая возможность внесения тактических изменений в разрабатываемое изделие.
  • Итерационный подход упрощает повторное использование компонентов (реализует компонентный подход к программированию). Это обусловлено тем, что гораздо проще выявить (идентифицировать) общие части проекта, когда они уже частично разработаны, чем пытаться выделить их в самом начале проекта. Анализ проекта после проведения нескольких начальных итераций позволяет выявить общие многократно используемые компоненты, которые на последующих итерациях будут совершенствоваться.
  • Спиральная модель позволяет получить более надежную и устойчивую систему. Это связано с тем, что по мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации. Одновременно могут корректироваться критические параметры эффективности, что в случае каскадной модели доступно только перед внедрением системы.
  • Итерационный подход дает возможность совершенствовать процесс разработки - анализ, проводимый в конце каждой итерации, позволяет проводить оценку того, что должно быть изменено в организации разработки, и улучшить ее на следующей итерации.
3.2. Каскадная стратегия

Каскадная стратегия (однократный проход, водопадная или классическая модель) подразумевает линейную последовательность выполнения стадий создания информационной системы (рис.3.1). Другими словами, переход с одной стадии на следующую происходит только после того, как будет полностью завершена работа на текущей.

Рис.3.1. Каскадная стратегия

Данная модель применяется при разработке информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования.

Достоинства модели:

На каждой стадии формируется законченный набор документации, программного и аппаратного обеспечения, отвечающий критериям полноты и согласованности;

Выполняемые в четкой последовательности стадии позволяют уверенно планировать сроки выполнения работ и соответствующие ресурсы (денежные, материальные и людские).

Недостатки модели:

Реальный процесс разработки информационной системы редко полностью укладывается в такую жесткую схему. Особенно это относится к разработке нетиповых и новаторских систем;

Основана на точной формулировке исходных требований к информационной системе. Реально в начале проекта требования заказчика определены лишь частично;

Основной недостаток – результаты разработки доступны заказчику только в конце проекта. В случае неточного изложения требований или их изменения в течение длительного периода создания ИС заказчик получает систему, не удовлетворяющую его потребностям.

3.3. Инкрементная стратегия

Инкрементная стратегия (англ. increment – увеличение, приращение) подразумевает разработку информационной системы с линейной последовательностью стадий, но в несколько инкрементов (версий), т. е. с запланированным улучшением продукта.

Рис.3.2. Инкрементная стратегия

В начале работы над проектом определяются все основные требования к системе, после чего выполняется ее разработка в виде последовательности версий. При этом каждая версия является законченным и работоспособным продуктом. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система.

Данная модель жизненного цикла характерна при разработке сложных и комплексных систем, для которых имеется четкое видение (как со стороны заказчика, так и со стороны разработчика) того, что собой должен представлять конечный результат (информационная система). Разработка версиями ведется в силу разного рода причин:

Отсутствия у заказчика возможности сразу профинансировать весь дорогостоящий проект;

Отсутствия у разработчика необходимых ресурсов для реализации сложного проекта в сжатые сроки;

Требований поэтапного внедрения и освоения продукта конечными пользователями. Внедрение всей системы сразу может вызвать у ее пользователей неприятие и только «затормозить» процесс перехода на новые технологии. Образно говоря, они могут просто «не переварить большой кусок, поэтому его надо измельчить и давать по частям».

Достоинства и недостатки этой стратегии такие же, как и у классической. Но в отличие от классической стратегии заказчик может раньше увидеть результаты. Уже по результатам разработки и внедрения первой версии он может незначительно изменить требования к разработке, отказаться от нее или предложить разработку более совершенного продукта с заключением нового договора.

3.4. Спиральная стратегия

Спиральная стратегия (эволюционная или итерационная модель, автор Барри Боэм, 1988 г.) подразумевает разработку в виде последовательности версий, но в начале проекта определены не все требования. Требования уточняются в результате разработки версий.

Рис. 3.3. Спиральная стратегия

Данная модель жизненного цикла характерна при разработке новаторских (нетиповых) систем. В начале работы над проектом у заказчика и разработчика нет четкого видения итогового продукта (требования не могут быть четко определены) или стопроцентной уверенности в успешной реализации проекта (риски очень велики). В связи с этим принимается решение разработки системы по частям с возможностью изменения требований или отказа от ее дальнейшего развития. Как видно из рис.3.3, развитие проекта может быть завершено не только после стадии внедрения, но и после стадии анализа риска.

Достоинства модели:

Позволяет быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований;

Допускает изменение требований при разработке информационной системы, что характерно для большинства разработок, в том числе и типовых;

Обеспечивает большую гибкость в управлении проектом;

Позволяет получить более надежную и устойчивую систему. По мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации;

Позволяет совершенствовать процесс разработки – анализ, проводимый в каждой итерации, позволяет проводить оценку того, что должно быть изменено в организации разработки, и улучшить ее на следующей итерации;

Уменьшаются риски заказчика. Заказчик может с минимальными для себя финансовыми потерями завершить развитие неперспективного проекта.

Недостатки модели:

Увеличивается неопределенность у разработчика в перспективах развития проекта. Этот недостаток вытекает из предыдущего достоинства модели;

Затруднены операции временного и ресурсного планирования всего проекта в целом. Для решения этой проблемы необходимо ввести временные ограничения на каждую из стадий жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа выполнена. План составляется на основе статистических данных, полученных в предыдущих проектах и личного опыта разработчиков.

3.5. Сравнительный анализ моделей

Знание различных моделей жизненного цикла и умение их применять на практике необходимы любому руководителю проекта. Правильный выбор модели позволяет грамотно планировать объемы финансирования, сроки и ресурсы, необходимые для выполнения работ, сократить риски как разработчика, так и заказчика. Это способствует повышению авторитета (имиджа) разработчиков в глазах заказчика и в свою очередь оказывает влияние на перспективу дальнейшего сотрудничества с ним и другими заказчиками. Считать, что спиральная модель лучше остальных, неверно. Ведь на каждый проект заключается отдельный договор с определенной стоимостью. Заключать договор на большую сумму с неопределенным итоговым результатом заказчик никогда не будет (если только он не альтруист). В этом случае он предложит вложить вначале небольшую сумму в проект и уже по результатам первой версии (итерации) будет решать вопрос о заключении дополнительного договора на развитие системы.

Каждая из моделей имеет свои достоинства и недостатки, а также сферы применения в зависимости от специфики разрабатываемой системы, возможностей заказчика и разработчика и т. п. В табл. 3.1 приводится сравнительная характеристика рассмотренных выше моделей, которая должна помочь в выборе стратегии для конкретного проекта.

Таблица 3.1. Сравнение моделей жизненного цикла

Характеристика
проекта
Модель (стратегия)
Новизна разработки и обеспеченность ресурсами Типовой. Хорошо проработаны технология и методы решения задачи Нетиповой (новаторский).
Нетрадиционный для разработчика
Ресурсов заказчика и разработчика хватает для реализации проекта в сжатые сроки Ресурсов заказчика или разработчика не хватает для реализации проекта в сжатые сроки
Масштаб проекта Малые и средние проекты Средние и крупные проекты Любые проекты
Сроки выполнения проекта До года До нескольких лет. Разработка одной версии может занимать срок от нескольких недель до года
Заключение отдельных договоров на отдельные версии Заключается один договор. Версия и есть итоговый результат проекта На отдельную версию или несколько последовательных версий обычно заключается отдельный договор
Определение основных требований в начале проекта Да Да Нет
Изменение требований по мере развития проекта Нет Незначительное Да
Разработка итерациями (версиями) Нет Да Да
Распространение промежуточного ПО Нет Может быть Да

В табл. 3.1 не стоит рассматривать значения «Да» и «Нет» как жесткие требования. Например, незначительное изменение требований по мере развития проекта при использовании каскадной модели (например, добавление некоторых непредусмотренных сервисных функций) встречается не так уж редко и в случае их реализации способствует улучшению взаимоотношений между сторонами. Аналогично распространение промежуточного программного обеспечения при спиральной модели необязательно, а иногда даже вредно отражается на процессах внедрения и опытной эксплуатации системы.

При разработке системы под итоговым продуктом и промежуточным программным обеспечением согласно следует понимать:

- ревизию (исправительную или опытную) – любые оперативные изменения программного и информационного обеспечения, а также БД, необязательные в данный момент к передаче на объекты внедрения и связанные с устранением ошибок и усовершенствованием;

- модификацию – любые оперативные изменения программного и информационного обеспечения, а также БД, обязательные для передачи на объекты внедрения и обусловливающие изменение эксплуатационных характеристик без изменения функций (предусмотренных ), а также изменения, связанные с устранением ошибок, усовершенствованием;

- версию – любые изменения программного и информационного обеспечения, а также БД, обязательные для передачи на объекты внедрения, позволяющие выполнять заявленные или дополнительные функции, а также обеспечивающие переход на новые операционные системы и информационную среду;

- развитие (очередь) – плановые изменения информационной системы, связанные с введением новых функций и улучшением эксплуатационных характеристик, переходом на новую информационную среду, внедрением новых комплексов технических средств, новых информационных технологий и пр.

В соответствии с приведенной классификацией итоговым продуктом для любой из моделей жизненного цикла является обязательная к передаче версия или очередь системы. Разработка очередями характерна при инкрементной стратегии. В качестве промежуточного программного обеспечения следует рассматривать ревизии и модификации. Как было отмечено выше, частая передача ревизий и модификаций конечным пользователям (особенно занятым другими производственными делами) нежелательна. Согласно смена версий информационных систем на железнодорожном транспорте должна выполняться не чаще одного - двух раз в год, а модификаций – не чаще раза в месяц.

3.6. Методологии, поддерживающие спиральную модель

В настоящее время имеется несколько методологий 1 разработки программного обеспечения, которые можно рекомендовать при использовании спиральной модели жизненного цикла. Наиболее известными из них являются методология быстрой разработки приложений (Rapid Application Development, RAD) и экстремальное программирование (eXtreme Programming, XP – автор Кент Бек, 1999).

3. Дайте краткую характеристику методологий и .

Следует начать с определения, Жизненный цикл программного обеспечения (Software Life Cycle Model) — это период времени, который начинается с момента принятия решения о создании программного продукта и заканчивается в момент его полного изъятия из эксплуатации. Этот цикл — процесс построения и развития ПО.

Модели Жизненного цикла программного обеспечения

Жизненный цикл можно представить в виде моделей. В настоящее время наиболее распространенными являются: каскадная , инкрементная (поэтапная модель с промежуточным контролем ) и спиральная модели жизненного цикла.

Каскадная модель

Каскадная модель (англ . waterfall model ) — модель процесса разработки программного обеспечения, жизненный цикл которой выглядит как поток, последовательно проходящий фазы анализа требований, проектирования. реализации, тестирования, интеграции и поддержки.

Процесс разработки реализуется с помощью упорядоченной последовательности независимых шагов. Модель предусматривает, что каждый последующий шаг начинается после полного завершения выполнения предыдущего шага. На всех шагах модели выполняются вспомогательные и организационные процессы и работы, включающие управление проектом, оценку и управление качеством, верификацию и аттестацию, менеджмент конфигурации, разработку документации. В результате завершения шагов формируются промежуточные продукты, которые не могут изменяться на последующих шагах.

Жизненный цикл традиционно разделяют на следующие основные этапы :

  1. Анализ требований,
  2. Проектирование,
  3. Кодирование (программирование),
  4. Тестирование и отладка,
  5. Эксплуатация и сопровождение.

Достоинства модели:

  • стабильность требований в течение всего жизненного цикла разработки;
  • на каждой стадии формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
  • определенность и понятность шагов модели и простота её применения;
  • выполняемые в логической последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие ресурсы (денежные. материальные и людские).

Недостатки модели:

  • сложность чёткого формулирования требований и невозможность их динамического изменения на протяжении пока идет полный жизненный цикл;
  • низкая гибкость в управлении проектом;
  • последовательность линейной структуры процесса разработки, в результате возврат к предыдущим шагам для решения возникающих проблем приводит к увеличению затрат и нарушению графика работ;
  • непригодность промежуточного продукта для использования;
  • невозможность гибкого моделирования уникальных систем;
  • позднее обнаружение проблем, связанных со сборкой, в связи с одновременной интеграцией всех результатов в конце разработки;
  • недостаточное участие пользователя в создании системы — в самом начале (при разработке требований) и в конце (во время приёмочных испытаний);
  • пользователи не могут убедиться в качестве разрабатываемого продукта до окончания всего процесса разработки. Они не имеют возможности оценить качество, т.к.нельзя увидеть готовый продукт разработки;
  • у пользователя нет возможности постепенно привыкнуть к системе. Процесс обучения происходит в конце жизненного цикла, когда ПО уже запущено в эксплуатацию;
  • каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, т.к. он не поддается гибкому моделированию.

Реализовать Каскадную модель жизненного цикла затруднительно ввиду сложности разработки ПС без возвратов к предыдущим шагам и изменения их результатов для устранения возникающих проблем.

Область применения Каскадной модели

Ограничение области применения каскадной модели определяется её недостатками. Её использование наиболее эффективно в следующих случаях:

  1. при разработке проектов с четкими, неизменяемыми в течение жизненного цикла требованиями, понятными реализацией и техническими методиками;
  2. при разработке проекта, ориентированного на построение системы или продукта такого же типа, как уже разрабатывались разработчиками ранее;
  3. при разработке проекта, связанного с созданием и выпуском новой версии уже существующего продукта или системы;
  4. при разработке проекта, связанного с переносом уже существующего продукта или системы на новую платформу;
  5. при выполнении больших проектов, в которых задействовано несколько больших команд разработчиков.

Инкрементная модель

(поэтапная модель с промежуточным контролем)

Инкрементная модель (англ . increment — увеличение, приращение) подразумевает разработку программного обеспечения с линейной последовательностью стадий, но в несколько инкрементов (версий), т.е. с запланированным улучшением продукта за все время пока Жизненный цикл разработки ПО не подойдет к окончанию.


Разработка программного обеспечения ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах, время жизни каждого из этапов растягивается на весь период разработки.

В начале работы над проектом определяются все основные требования к системе, подразделяются на более и менее важные. После чего выполняется разработка системы по принципу приращений, так, чтобы разработчик мог использовать данные, полученные в ходе разработки ПО. Каждый инкремент должен добавлять системе определенную функциональность. При этом выпуск начинают с компонентов с наивысшим приоритетом. Когда части системы определены, берут первую часть и начинают её детализировать, используя для этого наиболее подходящий процесс. В то же время можно уточнять требования и для других частей, которые в текущей совокупности требований данной работы были заморожены. Если есть необходимость, можно вернуться позже к этой части. Если часть готова, она поставляется клиенту, который может использовать её в работе. Это позволит клиенту уточнить требования для следующих компонентов. Затем занимаются разработкой следующей части системы. Ключевые этапы этого процесса — простая реализация подмножества требований к программе и совершенствование модели в серии последовательных релизов до тех пор, пока не будет реализовано ПО во всей полноте.

Жизненный цикл данной модели характерен при разработке сложных и комплексных систем, для которых имеется четкое видение (как со стороны заказчика, так и со стороны разработчика) того, что собой должен представлять конечный результат. Разработка версиями ведется в силу разного рода причин:

  • отсутствия у заказчика возможности сразу профинансировать весь дорогостоящий проект;
  • отсутствия у разработчика необходимых ресурсов для реализации сложного проекта в сжатые сроки;
  • требований поэтапного внедрения и освоения продукта конечными пользователями. Внедрение всей системы сразу может вызвать у её пользователей неприятие и только “затормозить” процесс перехода на новые технологии. Образно говоря, они могут просто “не переварить большой кусок, поэтому его надо измельчить и давать по частям”.

Достоинства и недостатки этой модели (стратегии) такие же, как и у каскадной (классической модели жизненного цикла). Но в отличие от классической стратегии заказчик может раньше увидеть результаты. Уже по результатам разработки и внедрения первой версии он может незначительно изменить требования к разработке, отказаться от нее или предложить разработку более совершенного продукта с заключением нового договора.

Достоинства:

  • затраты, которые получаются в связи с изменением требований пользователей, уменьшаются, повторный анализ и совокупность документации значительно сокращаются по сравнению с каскадной моделью;
  • легче получить отзывы от клиента о проделанной работе — клиенты могут озвучить свои комментарии в отношении готовых частей и могут видеть, что уже сделано. Т.к. первые части системы являются прототипом системы в целом.
  • у клиента есть возможность быстро получить и освоить программное обеспечение — клиенты могут получить реальные преимущества от системы раньше, чем это было бы возможно с каскадной моделью.

Недостатки модели:

  • менеджеры должны постоянно измерять прогресс процесса. в случае быстрой разработки не стоит создавать документы для каждого минимального изменения версии;
  • структура системы имеет тенденцию к ухудшению при добавлении новых компонентов — постоянные изменения нарушают структуру системы. Чтобы избежать этого требуется дополнительное время и деньги на рефакторинг. Плохая структура делает программное обеспечение сложным и дорогостоящим для последующих изменений. А прерванный Жизненный цикл ПО приводит еще к большим потерям.

Схема не позволяет оперативно учитывать возникающие изменения и уточнения требований к ПО. Согласование результатов разработки с пользователями производится только в точках, планируемых после завершения каждого этапа работ, а общие требования к ПО зафиксированы в виде технического задания на всё время её создания. Таким образом, пользователи зачастую получаю ПП, не удовлетворяющий их реальным потребностям.

Спиральная модель

Спиральная модель: Жизненный цикл — на каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка. Особое внимание уделяется начальным этапам разработки — анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов.


Данная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипировнаие с целью сочетания преимуществ восходящей и нисходящей концепции, делающая упор на начальные этапы жизненного цикла: анализ и проектирование. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла.

На этапах анализа и проектирования реализуемость технических решений и степень удовлетворения потребностей заказчика проверяется путем создания прототипов. Каждый виток спирали соответствует созданию работоспособного фрагмента или версии системы. Это позволяет уточнить требования, цели и характеристики проекта, определить качество разработки, спланировать работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который удовлетворяет действительным требованиям заказчика и доводится до реализации.

Жизненный цикл на каждом витке спирали — могут применяться разные модели процесса разработки ПО. В конечном итоге на выходе получается готовый продукт. Модель сочетает в себе возможности модели прототипирования и водопадной модели . Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. Главная задача — как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Достоинства модели:

  • позволяет быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований;
  • допускает изменение требований при разработке программного обеспечения, что характерно для большинства разработок, в том числе и типовых;
  • в модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели;
  • позволяет получить более надежную и устойчивую систему. По мере развития программного обеспечения ошибки и слабые места обнаруживаются и исправляются на каждой итерации;
  • эта модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий;
  • уменьшаются риски заказчика. Заказчик может с минимальными для себя финансовыми потерями завершить развитие неперспективного проекта;
  • обратная связь по направлению от пользователей к разработчикам выполняется с высокой частотой и на ранних этапах модели, что обеспечивает создание нужного продукта высокого качества.

Недостатки модели:

  • если проект имеет низкую степень риска или небольшие размеры, модель может оказаться дорогостоящей. Оценка рисков после прохождения каждой спирали связана с большими затратами;
  • Жизненный цикл модели имеет усложненную структуру, поэтому может быть затруднено её применение разработчиками, менеджерами и заказчиками;
  • спираль может продолжаться до бесконечности, поскольку каждая ответная реакция заказчика на созданную версию может порождать новый цикл, что отдаляет окончание работы над проектом;
  • большое количество промежуточных циклов может привести к необходимости в обработке дополнительной документации;
  • использование модели может оказаться дорогостоящим и даже недопустимым по средствам, т.к. время. затраченное на планирование, повторное определение целей, выполнение анализа рисков и прототипирование, может быть чрезмерным;
  • могут возникнуть затруднения при определении целей и стадий, указывающих на готовность продолжать процесс разработки на следующей и

Основная проблема спирального цикла — определение момента перехода на следующий этап. Для её решения вводятся временные ограничения на каждый из этапов жизненного цикла и переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. Планирование производится на основе статистических данных, полученных в предыдущих проектах и личного опыта разработчиков.

Область применения спиральной модели

Применение спиральной модели целесообразно в следующих случаях:

  • при разработке проектов, использующих новые технологии;
  • при разработке новой серии продуктов или систем;
  • при разработке проектов с ожидаемыми существенными изменениями или дополнениями требований;
  • для выполнения долгосрочных проектов;
  • при разработке проектов, требующих демонстрации качества и версий системы или продукта через короткий период времени;
  • при разработке проектов. для которых необходим подсчет затрат, связанных с оценкой и разрешением рисков.