Сравнение мнк и критерия хи квадрат. Классические методы статистики: критерий хи-квадрат

В настоящей заметке χ 2 -распределение используется для проверки согласованности набора данных с фиксированным распределением вероятностей. В критерии согласия часто ты, принадлежащие определенной категории, сравниваются с частотами, которые являются теоретически ожидаемыми, если бы данные действительно имели указанное распределение.

Проверка с помощью критерия согласия χ 2 выполняется в несколько этапов. Во-первых, определяется конкретное распределение вероятностей, которое сравнивается с исходными данными. Во-вторых, выдвигается гипотеза о параметрах выбранного распределения вероятностей (например, о ее математическом ожидании) или проводится их оценка. В-третьих, на основе теоретического распределения определяется теоретическая вероятность, соответствующая каждой категории. В заключение, для проверки согласованности данных и распределения применяется тестовая χ 2 -статистика:

где f 0 - наблюдаемая частота, f е - теоретическая, или ожидаемая частота, k - количество категорий, оставшихся после объединения, р - количество оцениваемых параметров.

Скачать заметку в формате или , примеры в формате

Использование χ 2 -критерия согласия для распределения Пуассона

Для расчета по этой формуле в Excel удобно воспользоваться функцией =СУММПРОИЗВ() (рис. 1).

Для оценки параметра λ можно воспользоваться оценкой . Теоретическую частоту X успехов (Х = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и более), соответствующую параметру λ = 2,9 можно определить с помощью функции =ПУАССОН.РАСП(Х;;ЛОЖЬ). Умножив пуассоновскую вероятность на объем выборки n , получим теоретическую частоту f e (рис. 2).

Рис. 2. Фактические и теоретические частоты прибытий в минуту

Как следует из рис. 2, теоретическая частота девяти и более прибытий не превосходит 1,0. Для того чтобы каждая категория содержала частоту, равную 1,0 или большему числу, категорию «9 и более» следует объединить с категорией «8». То есть, остается девять категорий (0, 1, 2, 3, 4, 5, 6, 7, 8 и более). Поскольку математическое ожидание распределения Пуассона определяется на основе выборочных данных, количество степеней свободы равно k – р – 1 = 9 – 1 – 1 = 7. Используя уровень значимости, равный 0,05 находим критическое значение χ 2 -статистики, имеющей 7 степеней свободы по формуле =ХИ2.ОБР(1-0,05;7) = 14,067. Решающее правило формулируется следующим образом: гипотеза Н 0 отклоняется, если χ 2 > 14,067, в противном случае гипотеза Н 0 не отклоняется.

Для расчета χ 2 воспользуемся формулой (1) (рис. 3).

Рис. 3. Расчет χ 2 -критерия согласия для распределения Пуассона

Так как χ 2 = 2,277 < 14,067, следует, что гипотезу Н 0 отклонять нельзя. Иначе говоря, у нас нет оснований утверждать, что прибытие клиентов в банк не подчиняется распределению Пуассона.

Применение χ 2 -критерия согласия для нормального распределения

В предыдущих заметках при проверке гипотез о числовых переменных использовалось предположение о том, что исследуемая генеральная совокупность имеет нормальное распределение. Для проверки этого предположения можно применять графические средства, например, блочную диаграмму или график нормального распределения (подробнее см. ). При больших объемах выборок для проверки этих предположений можно использовать χ 2 -критерий согласия для нормального распределения.

Рассмотрим в качестве примера данные о 5-летней доходности 158 инвестиционных фондов (рис. 4). Предположим, требуется поверить, имеют ли эти данные нормальное распределение. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : 5-летняя доходность подчиняется нормальному распределению, Н 1 : 5-летняя доходность не подчиняется нормальному распределению. Нормальное распределение имеет два параметра - математическое ожидание μ и стандартное отклонение σ, которые можно оценить на основе выборочных данных. В данном случае = 10,149 и S = 4,773.

Рис. 4. Упорядоченный массив, содержащий данные о пятилетней среднегодовой доходности 158 фондов

Данные о доходности фондов можно сгруппировать, разбив, например на классы (интервалы) шириной 5% (рис. 5).

Рис. 5. Распределение частот для пятилетней среднегодовой доходности 158 фондов

Поскольку нормальное распределение является непрерывным, необходимо определить площадь фигур, ограниченных кривой нормального распределения и границами каждого интервала. Кроме того, поскольку нормальное распределение теоретически изменяется от –∞ до +∞, необходимо учитывать площадь фигур, выходящих за пределы классов. Итак, площадь, лежащая под нормальной кривой слева от точки –10, равна площади фигуры, лежащей под стандартизованной нормальной кривой слева от величины Z, равной

Z = (–10 – 10,149) / 4,773 = –4,22

Площадь фигуры, лежащей под стандартизованной нормальной кривой слева от величины Z = –4,22 определяется по формуле =НОРМ.РАСП(-10;10,149;4,773;ИСТИНА) и приближенно равна 0,00001. Для того чтобы вычислить площадь фигуры, лежащей под нормальной кривой между точками –10 и –5, сначала необходимо вычислить площадь фигуры, лежащей слева от точки –5: =НОРМ.РАСП(-5;10,149;4,773;ИСТИНА) = 0,00075. Итак, площадь фигуры, лежащей под нормальной кривой между точками –10 и –5, равна 0,00075 – 0,00001 = 0,00074. Аналогично можно вычислить площадь фигуры, ограниченной границами каждого класса (рис. 6).

Рис. 6. Площади и ожидаемые частоты для каждого класса 5-летней доходности

Видно, что теоретические частоты в четырех крайних классах (два минимальных и два максимальных) меньше 1, поэтому проведем объединение классов, как показано на рис 7.

Рис. 7. Вычисления, связанные с применением χ 2 -критерия согласия для нормального распределения

Используем χ 2 -критерий согласия данных с нормальным распределением с помощью формулы (1). В нашем примере после объединения остаются шесть классов. Поскольку математическое ожидание и стандартное отклонение оцениваются на основе выборочных данных, количество степеней свободы равно k p – 1 = 6 – 2 – 1 = 3. Используя уровень значимости, равный 0,05, находим, что критическое значение χ 2 -статистики, имеющее три степени свободы =ХИ2.ОБР(1-0,05;F3) = 7,815. Вычисления, связанные с применением χ 2 -критерия согласия, приведены на рис. 7.

Видно, что χ 2 -статистика = 3,964 < χ U 2 7,815, следовательно гипотезу Н 0 отклонять нельзя. Иначе говоря, у нас нет оснований утверждать, что 5-летняя доходность инвестиционных фондов, ориентированных на быстрый рост, не подчиняется нормальному распределению.

В нескольких последних заметках рассмотрены разные подходы к анализу категорийных данных. Описаны методы проверки гипотез о категорийных данных, полученных на основе анализа двух или нескольких независимых выборок. Кроме критериев «хи-квадрат», рассмотрены непараметрические процедуры. Описан ранговый критерий Уилкоксона, который используется в ситуациях, когда не выполняются условия применения t -критерия для поверки гипотезы о равенстве математических ожиданий двух независимых групп, а также критерий Крускала-Уоллиса, который является альтернативой однофакторному дисперсионному анализу (рис. 8).

Рис. 8. Структурная схема методов проверки гипотез о категорийных данных

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 763–769

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.
Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

В практике биологических исследований часто бывает необ­ходимо проверить ту или иную гипотезу, т. е. выяснить, насколь­ко полученный экспериментатором фактический материал под­тверждает теоретическое предположение, насколько анализиру­емые данные совпадают с теоретически ожидаемыми. Возника­ет задача статистической оценки разницы между фактическими данными и теоретическим ожиданием, установления того, в ка­ких случаях и с какой степенью вероятности можно считать эту разницу достоверной и, наоборот, когда ее следует считать не­существенной, незначимой, находящейся в пределах случайнос­ти. В последнем случае сохраняется гипотеза, на основе кото­рой рассчитаны теоретически ожидаемые данные или показа­тели. Таким вариационно-статистическим приемом проверки гипо­тезы служит метод хи-квадрат (χ 2). Этот показатель часто на­зывают «критерием соответствия» или «критерием согласия» Пирсона. С его помощью можно с той или иной вероятностью судить о степени соответствия эмпирически полученных данных теоретически ожидаемым.

С формальных позиций сравниваются два вариационных ряда, две совокупности: одна – эмпирическое распределение, другая представляет собой выборку с теми же параметрами (n , M , S и др.), что и эмпирическая, но ее частотное распределение построено в точном соответствии с выбранным теоретическим законом (нормальным, Пуассона, биномиальным и др.), которому предположительно подчиняется поведение изучаемой случайной величины.

В общем виде формула критерия соответствия может быть записана следующим образом:

где a – фактическая частота наблюдений,

A – теоретически ожидаемая частота для данного класса.

Нулевая гипотеза предполагает, что достоверных различий между сравниваемыми распределениями нет. Для оценки существенности этих различий следует обра­титься к специальной таблице критических значений хи-квад­рат (табл. 9П ) и, сравнив вычисленную величину χ 2 с табличной, решить, достоверно или не достоверно отклоня­ется эмпирическое распределение от теоретического. Тем самым гипотеза об отсутствии этих различий будет либо опровергнута, либо оставлена в силе. Если вычисленная величина χ 2 равна или превышает табличную χ ² (α , df ) , решают, что эмпирическое распределение от теоретического отличается достоверно. Тем самым гипотеза об отсутствии этих различий будет опровергнута. Если же χ ² < χ ² (α , df ) , нулевая гипотеза остается в силе. Обычно принято считать допустимым уро­вень значимости α = 0.05, т. к. в этом случае остается только 5% шансов, что нулевая гипотеза правильна и, следовательно, есть достаточно оснований (95%), чтобы от нее отказаться.


Определенную проблему составляет правильное определение числа степеней свободы (df ), для которых из таблицы берут значения критерия. Для определения числа степеней свободы из общего числа классов k нужно вычесть число ограничений (т. е. число параметров, использованных для расчета теоретических частот).

В зависимости от типа распределения изучаемого признака формула для расчета числа степеней свободы будет меняться. Для альтернативного распределения (k = 2) в расчетах участвует только один параметр (объем выборки), следовательно, число степеней свободы составляет df = k −1=2−1=1. Для полиномиального распределения формула аналогична: df = k −1. Для проверки соответствия вариационного ряда распределению Пуассона используются уже два параметра – объем выборки и среднее значение (числен­но совпадающее с дисперсией); число степеней свободы df = k −2. При проверке соответ­ствия эмпирического распределения вариант нормальному или биномиальному закону число степеней свободы берется как число фактических классов минус три условия построения рядов – объем выборки, сред­няя и дисперсия, df = k −3. Сразу стоит отметить, что критерий χ² работает только для выборок объемом не менее 25 вариант , а частоты отдельных классов должны быть не ниже 4 .

Вначале проиллюстрируем применение критерия хи-квадрат на примере анали­за альтернативной изменчивости . В одном из опытов по изуче­нию наследственности у томатов было обнаружено 3629 крас­ных и 1176 желтых плодов. Теоретическое соотношение частот при расщеплении признаков во втором гибридном поколении должно быть 3:1 (75% к 25%). Выполняется ли оно? Иными словами, взята ли данная выборка из той генеральной совокупности, в которой соотношение частот 3:1 или 0.75:0.25?

Сформируем таблицу (табл. 4), заполнив значениями эмпирических частот и результатами расчета теоретических частот по формуле:

А = n∙p,

где p – теоретические частости (доли вариант данного типа),

n – объем выборки.

Например, A 2 = n∙p 2 = 4805∙0.25 = 1201.25 ≈ 1201.

23. Понятие распределения хи-квадрат и Стьюдента, и графический вид

1) Распределение (хи-квадрат) с n степенями свободы - это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Распределение (хи – квадрат) – распределение случайной величины (причем математическое ожидание каждой из них равно 0, а среднее квадратическое отклонение-1)

где случайные величины независимы и имеют одно и тоже распределение. При этом число слагаемых, т.е., называется "числом степеней свободы" распределения хи-квадрат. Число хи-квадрат опредляется одни параметром-числом степеней свободы. С увеличением числа степеней свободы распределение медленно приближается к нормальному.

Тогда сумма их квадратов

является случайной величиной, распределенной по так называемому закону «хи-квадрат» с k = n степенями свободы; если же слагаемые связаны каким-либо соотношением (например, ), то число степеней свободы k = n – 1.

Плотность этого распределения

Здесь - гамма-функция; в частности, Г(п + 1) = п! .

Следовательно, распределение «хи-квадрат» определяется одним параметром – числом степеней свободы k.

Замечание 1. С увеличением числа степеней свободы распределение «хи-квадрат» постепенно приближается к нормальному.

Замечание 2. С помощью распределения «хи-квадрат» определяются многие другие распреде-ления, встречающиеся на практике, например, распределение случайной величины - длины случайного вектора (Х1, Х2,…, Хп), координаты которого независимы и распределены по нормальному закону.

Впервые χ2-распределение было рассмотрено Р.Хельмертом (1876) и К.Пирсоном (1900).

Мат.ожид.=n; D=2n

2) Распределение Стьюдента

Рассмотрим две независимые случайные величины: Z, имеющую нормальное распределение и нормированную (то есть М(Z) = 0, σ(Z) = 1), и V, распределенную по закону «хи-квадрат» с k степенями свободы. Тогда величина

имеет распределение, называемое t – распределением или распределением Стьюдента с k степенями свободы. При этом k называется "числом степеней свободы" распределения Стьюдента.

С возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, "ноу-хау" в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом "Стьюдент". История Госсета – Стьюдента показывает, что еще сто лет назад менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.