Сводная таблица химические свойства кислородсодержащие органические соединения. Кислоты и их свойства. Получение многоатомных спиртов

Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

Цели. Познакомить с большой группой органических веществ, генетически связанных между собой (строением, изомерией, номенклатурой, физическими свойствами, классификацией); сформировать общее представление о спиртах, альдегидах, карбоновых кислотах; продолжить развитие общеучебных навыков; воспитывать потребности в знаниях о тех веществах, с которыми мы соприкасаемся в быту – они находятся в пищевых продуктах, лекарствах.

Демонстрационный материал. Коллекция карбоновых кислот, спиртов, фенола, формалина.

Демонстрационный эксперимент. Изучение растворимости в воде спиртов (этанола, н -пропанола и н -бутанола), кислот (муравьиной, уксусной, пропионовой, масляной, стеариновой и пальмитиновой), альдегидов (40%-й раствор муравьиного альдегида – формалин).

Наглядное обеспечение. Таблицы «Образование водородной связи», «Спирты и альдегиды»; модели молекул; рисунки с формулами наиболее часто встречаемых кислот.

Раздаточный материал. Информационная карта к занятию.

Межпредметные и внутрипредметные связи. Неорганическая химия: минеральные кислоты, водородные связи между молекулами; органическая химия: углеводороды (общие формулы, строение, номенклатура, изомерия); математика: функция; физика: физические свойства веществ, константы.

ХОД УРОКА

П р и м е р ы: муравьиная кислота, щавелевая кислота, лимонная, яблочная, молочная кислоты, «винный спирт» (этанол), формалин (40%-й раствор муравьиного альдегида в воде), глицерин, ацетон, эфир для наркоза (диэтиловый эфир), фенол.

Задание 1. Распределите следующие вещества на три группы – спирты, альдегиды, карбоновые кислоты:

Задание 2. По каким признакам классифицируют кислородсодержащие соединения? Назовите функциональные группы спиртов, альдегидов и карбоновых кислот.

Функциональные группы веществ разных классов

Спирты

Альдегиды

Карбоновые кислоты

ОН

гидроксильная

Задание 3. Как называют углеводородный фрагмент в формулах органических кислородсодержащих соединений? Например, в задании 1 (см. выше) – это фрагменты: СН 3 , С 4 Н 9 , С 5 Н 11 , С 2 Н 5 , С 7 Н 15 , С 3 Н 7 .

Обозначая углеводородный радикал буквой R, получаем общие формулы:

спиртов – ………………………. ;

альдегидов – ……………….. ;

органических кислот – …………………. .

Классификацию спиртов, альдегидов и кислот можно проводить по числу функциональных групп в молекулах. Различают одно-, двух- и трехатомные спирты:

Альдегиды с двумя альдегидными группами СНО в молекуле называют следующим образом:

Карбоновые кислоты в зависимости от числа карбоксильных групп в молекуле бывают одно-, двух- и трехосновные:

Кислородсодержащие соединения различаются по строению углеводородного радикала. Они бывают предельные (насыщенные), непредельные (ненасыщенные), циклические, ароматические.

Примеры спиртов:

Примеры альдегидов:

Примеры карбоновых кислот:

Мы будем изучать только предельные одноосновые карбоновые кислоты, одноатомные спирты и альдегиды.

Задание 4. Дайте определение насыщенных спиртов, альдегидов, карбоновых кислот.

Спирты бывают первичные, вторичные и третичные. В первичных спиртах при атоме С, связанном с гидроксильной группой ОН, один углеродный сосед; во вторичных спиртах при атоме С наряду с группой ОН два углеродных заместителя (соседа), а в третичных спиртах – три углеродных заместителя. Например:


Номенклатура
кислородсодержащих соединений

По международной номенклатуре ИЮПАК названия спиртов производят из названий соответствующих алканов с добавлением суффикса «ол».

Задание 5. Напишите молекулярные формулы и названия четырех первичных спиртов с числом атомов углерода в молекуле 4 и более.

Особенность названий альдегидов – суффикс «аль».

Задание 6. Впишите в таблицу формулы и названия по ИЮПАК следующих четырех альдегидов.

Задание 7. Впишите в таблицу формулы и названия по ИЮПАК четырех следующих кислот.

Задание 8. Почему метаналь и метановую кислоту нельзя считать гомологами? Чем они отличаются от гомологов?


Физические свойства.
Водородная связь

1) А г р е г а т н о е с о с т о я н и е линейных соединений разных классов.

Задание 9. Почему среди алканов так много газов? Почему существует газообразный альдегид при нормальных условиях (0 °С, 1 атм)? С чем это может быть связано?

2) Т е м п е р а т у р ы к и п е н и я (°С) первых пяти гомологов веществ четырех классов.

Задание 10. Сравните температуры кипения соответствующих (по числу атомов С) алканов, спиртов, альдегидов и карбоновых кислот. Какие особенности этой характеристики у веществ разных гомологических рядов?

3) В о д о р о д н а я с в я з ь в ряду рассматриваемых соединений – это межмолекулярная связь между кислородом одной молекулы и гидроксильным водородом другой молекулы.

Справочная информация – электроотрицательность атомов: С – 2,5; Н – 2,1; О – 3,5.

Распределение электронной плотности в молекулах спиртов и карбоновых кислот неравномерное:

Водородную связь в спиртах и кислотах изображают так:

В ы в о д. В гомологических рядах спиртов и карбоновых кислот отсутствуют газообразные вещества и температуры кипения веществ высокие. Это связано с наличием водородных связей между молекулами. За счет водородных связей молекулы оказываются ассоциированными (как бы сшитыми), поэтому, чтобы молекулы стали свободными и приобрели летучесть, необходимо затратить дополнительную энергию на разрыв этих связей.

4) Р а с т в о р и м о с т ь в в о д е демонстрируется экспериментально на примере растворимости в воде спиртов – этилового, пропилового, бутилового и кислот – муравьиной, уксусной, пропионовой, масляной и стеариновой. Демонстрируется также раствор муравьиного альдегида в воде.

Задание 11. Что можно сказать о растворимости спиртов, альдегидов и карбоновых кислот в воде? Чем объясняется растворимость этих веществ?

При ответе используйте схему образования водородных связей между молекулами кислоты и воды:

Необходимо отметить, что с увеличением молекулярной массы растворимость в воде спиртов и кислот уменьшается. Чем больше углеводородный радикал в молекуле спирта или кислоты, тем труднее группе ОН держать молекулу в растворе за счет образования слабых водородных связей.


Строение спиртов, альдегидов,
карбоновых кислот

Задание 12. Аналогичную таблицу составьте дома для вторых членов гомологических рядов спиртов, альдегидов и карбоновых кислот.


Изомерии спиртов, альдегидов
и карбоновых кислот

1) И з о м е р и я с п и р т о в на примере пентанола С 5 Н 11 ОН (приведены углеродные цепи изомеров):

Задание 13. По углеродным цепям назовите разветвленные изомеры спиртов состава С 5 Н 11 ОН:

Задание 14. Являются ли данные вещества изомерами:

Задание 15. Какие виды изомерии характерны для спиртов?

2) И з о м е р и я а л ь д е г и д о в на примере н -пентаналя, или валерианового альдегида н -С 4 Н 9 СНО:

Задание 16. Какие виды изомерии характерны для альдегидов?

3) И з о м е р и я к а р б о н о в ы х к и с л о т на примере н -пентановой, или валериановой, кислоты н -С 4 Н 9 СООН:

Задание 17. Какие виды изомерии характерны для карбоновых кислот?

Задание 18. Напишите структурные формулы следующих веществ:

а) 2,4-диметил-3-этилгексаналь;

б) 2,2,4-триметил-3-изопропилпентаналь;

в) 2,3,4-триметил-3-этилпентандиол-1,2;

г) 2,3,4-триметил-3-изопропилгексантриол-1,2,4;

д) 3,4,5,5-тетраметил-3,4-диэтилгептановая кислота;

е) 2,4-диметилгексен-3-овая кислота.


Домашнее задание

Выучить тривиальные названия пяти первых альдегидов и карбоновых кислот.

Заполнить таблицу «Строение спиртов, альдегидов, карбоновых кислот» для вторых членов данных гомологических рядов (см. задание 12).

Написать все возможные изомеры для бутанола С 4 Н 10 О, бутаналя С 4 Н 8 О и бутановой кислоты С 4 Н 8 О 2 , назвать их по ИЮПАК.

Р е ш и т ь з а д а ч у. Один из многоатомных спиртов используют для приготовления антифризов – жидкостей, замерзающих при низкой температуре. Антифризы используют в зимних условиях для охлаждения автомобильных двигателей. Найдите молекулярную формулу этого спирта, если массовая доля углерода в нем составляет 38,7%, водорода – 9,7%, кислорода – 51,6%. Относительная плотность его паров по водороду равна 31. Напишите структурную формулу спирта и назовите его.

    Органические вещества класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов). Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя ученые … Википедия

    Один из важнейших типов органических соединений. В их состав входит азот. Они содержат в молекуле связь углерод водород и азот углерод. В нефти содержится азотсодержащий гетероцикл пиридин. Азот входит в состав белков,нуклеиновых кислот и… … Википедия

    Германийорганические соединения металлоорганические соединения содержащие связь «германий углерод». Иногда ими называются любые органические соединения, содержащие германий. Первое германоорганическое соединение тетраэтилгерман, было… … Википедия

    Кремнийорганические соединения соединения, в молекулах которых имеется непосредственная связь кремний углерод. Кремнийорганические соединения иногда называют силиконами, от латинского названия кремния силициум. Кремнийорганические соединения… … Википедия

    Органические соединения, органические вещества класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Содержание 1 История 2 Класси … Википедия

    Металлорганические соединения (МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 … Википедия

    Галогенорганические соединения органические вещества, содержащие хотя бы одну связь C Hal углерод галоген. Галогенорганические соединения, в зависимости от природы галогена, подразделяют на: Фторорганические соединения;… … Википедия

    Металлоорганические соединения(МОС) органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода. Содержание 1 Типы металлоорганических соединений 2 Способы получения … Википедия

    Органические соединения, в которых присутствует связь олово углерод, могут содержать как двухвалентное, итак и четырёхвалентное олово. Содержание 1 Методы синтеза 2 Типы 3 … Википедия

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

1.

2. Спирты.

А) Классификация. Определение.

Б) Изомерия и номенклатура

В) Получение спиртов

Г) Физические и химические свойства. Качественные реакции спиртов.

Д) Применение. Влияние на окружающую среду и здоровье человека.

Классификация кислородсодержащих органических соединений

1. Спирты – это кислородсодержащие органические соединения, содержащие в своем составе гидроксильную группу.

2. Альдегиды характеризуются наличием альдегидной группы:

4. Карбоновые кислоты отличает от других кислородсодержащих органических соединений карбоксильная группа.

5. Эфиры: а) простые R-O-R` б) сложные

Химические свойства этих соединений определяются наличием в их молекулах различных функциональных групп.

Класс соединений

Функциональная группа

Название функциональной группы

гидроксильная

Альдегиды

альдегидная

карбонильная

Карбоновые кислоты

карбоксильная

Спирты – это кислородсодержащие производные углеводородов, в которых гидроксигруппа присоединяется к углеводородному радикалу.

Спирты классифицируются:

Ø по характеру углеродного атома, связанного с гидроксигруппой

а) первичные спирты – ОН-группа в таких соединениях связана с первичным атомом углерода

б) вторичные спирты – гидроксигруппа связана с вторичным атомом углерода

в) третичные спирты – гидроксигруппа в третичных спиртах связана с третичным углеродным атомом.

Ø по числу гидроксигрупп в молекуле спирта

а) одноатомные спирты содержат в молекуле одну ОН-группу, все представленные выше соединения являются одноатомными.

б) двухатомные – в состав таких спиртов входит две гидроксигруппы, например этиленгликоль (входит в состав незамерзающих растворов – антифризов)

https://pandia.ru/text/78/359/images/image009_3.gif" width="118" height="48 src=">

Ø по строению радикала, связанного с функциональной группой

а) насыщенные СН3-СН2-ОН (этанол)

б) ненасыщенные СН2=СН-СН2-ОН (2-пропен-1-ол)

в) ароматические Водород" href="/text/category/vodorod/" rel="bookmark">водорода в метаноле, по их старшинству с прибавлением слова-основы карбинол.

Номенклатура ИЮПАК

Согласно номенклатуре ИЮПАК:

В качестве главной цепи выбирают ту, в которой содержится наибольшее число гидроксигрупп и радикалов.

Нумерацию цепи начинают с того конца, ближе к которому находится старший заместитель – в нашем случае ОН-группа.

Название спирта строится от названия соответствующего алкана, с которым связана гидроксигруппа. Чтобы показать, что соединение относится к классу спиртов добавляется окончание –ол.

Т. к. спиртам характерна изомерия положения гидроксигруппы, то она обозначается цифрой.

Если в молекуле несколько гидроксигрупп, то их число обозначается греческими приставками (ди-, три-) Эта приставка ставится перед окончанием –ол цифрой показывается их расположение.

Например, спирты состава С4Н9ОН имеют следующее строение и названия по номенклатуре ИЮПАК.

1) соединения с нормальной цепью

2) соединения с разветвленной цепью

Таким способом называют и более сложные соединения:

Эту реакцию и ее механизм мы подробно изучили в I модуле.

Следующий промышленный способ получения спиртов – гидрирование СО.

Смесь оксида углерода (II) с водородом подвергается нагреванию. При использовании разных катализаторов продукты отличаются по составу, это иллюстрирует схема представленная ниже.

Гидролиз галогенпроизводных алканов.

Гидролиз осуществляется действием воды или водным раствором щелочей, при нагревании. Легче всего реакция проходит для первичных галогенпроизводных.

Восстановление карбонильных соединений

Альдегиды, кетоны, карбоновые кислоты и их производные (сложные эфиры) легко восстанавливаются до спиртов.

Восстановителем альдегидов и кетонов служит молекулярный водород, катализатором – никель, платина или палладий. Для восстановления эфиров используется атомарный водород, который получается при непосредственном взаимодействии натрия со спиртом.

Из уравнений видно, что из альдегидов и карбоновых кислот получаются первичные спирты, кетоны являются исходными веществами для вторичных спиртов. Так получают спирты в лабораторных условиях. Однако получить третичные спирты таким способом нельзя. Их получают способом, представленным ниже.

Взаимодействие реактивов Гриньяра с карбонильными соединениями.

Синтезы на основе реактивов Гриньяра являются надежным лабораторным способом получения спиртов.

При использовании в качестве карбонильного соединения муравьиного альдегида продуктом реакции будет первичный спирт.

Другие альдегиды приводят к образованию вторичных спиртов.

Из кетонов в таких синтезах получаются третичные спирты.

Чтобы понять, как осуществляются подобные превращения, необходимо рассмотреть электронные эффекты в реагирующих молекулах: за счет высокой электроотрицательности атома кислорода, электронная плотность смещается в сторону кислорода от углеродного атома карбонильной группы (-М-эффект). В молекуле реактива Гриньяра частично отрицательный заряд оказывается на атоме углерода, положительный – на магнии за счет положительного индуктивного эффекта (+I-эффект).

Ферментативный способ

Это сбраживание сахаристых веществ. Этанол получают брожением в присутствии дрожжей. Сущность брожения заключается том, что получаемая из крахмала глюкоза под действием ферментов распадается на спирт и СО2. результат этого процесса выражается схемой:

Физические свойства

Низкомолекулярные спирты (С1-С3) являются жидкостями с характерными запахом и вкусом и смешиваются с водой в любых соотношениях.

Температуры кипения спиртов не превышают 100°С, однако они выше чем температуры кипения эфиров или углеводородов, с такой же молекулярной массой.

Причиной этого являются межмолекулярные водородные связи, возникающие между водородными и кислородными атомами гидроксильных групп различных молекул спирта (происходит с участием неподеленных пар электронов кислорода).

Хорошая растворимость спиртов в воде объясняется образованием водородных связей между молекулами спирта и воды.

Спирты с С11 и выше – твердые вещества.

Химические свойства спиртов.

Химические свойства спиртов обусловлены присутствием гидроксигруппы. Поэтому для спиртов характерны реакции:

1) с разрывом связи –СО-Н

2) с разрывом связи С-ОН

3) реакции окисления

1. Кислотно-основные свойства спиртов.

Спирты являются амфотерными соединениями. Они способны выступать в роли как кислот, так и оснований.

Они проявляют кислотные свойства при взаимодействии со щелочными металлами и щелочами. Водород гидроксила замещается на металл с образованием алкоголятов (которые легко разлагаются водой).

2C2H5OH + 2Na = 2C2H5ONa + H2

этилат натрия

Спирты более слабые кислоты, чем вода. Их кислотные свойства в убывают в следующем порядке: СН3ОН < СН3СН2ОН < (СН3)2СНОН < (СН3)3СОН. Т. е. разветвление углеродного скелета снижает кислотные свойства.

Свойства оснований спирт проявляют по отношению к кислотам. Сильнее минеральные кислоты протонируют атом кислорода ОН-группы:

Спирты – нуклеофильные реагенты.

Реакции с карбонильными соединениями.

Спирты легко реагируют с карбоновыми кислотами, с образованием сложного эфира, такая реакция называется реакцией этерификации. Эта реакция обратима. Молекула воды образуется за счет отщепления ОН-группы от карбоновой кислоты и протона от молекулы спирта. Катализатором служит сильная минеральная кислота.

метиловый эфир уксусной кислоты

Реакции с неорганическими кислотами.

Взаимодействие спиртов с неорганическими кислотами также приводит к образованию сложных эфиров (но уже неорганических кислот).

серноэтиловый эфир

Нуклеофильное замещение гидроксигруппы .

Дегидратация спиртов.

Дегидратация спиртов протекает под действием сильных минеральных кислот (серной, ортофосфорной), при нагревании.

Отщепление может проходить внутримолекулярно . Рассмотрим механизм на примере бутанола-2: сначала происходит протонирование молекулы спирта водородом кислоты, затем отщепление воды от оксониевого иона с образованием алкил-катиона и быстрое отщепление протона с образованием алкена .

В случае отщепления Н2О применяется правило Марковникова. Это дает возможность переходить от одних спиртов к другим. Например, возможен переход от изобутилового спирта к трет-бутиловому (напишите самостоятельно)

Межмолекулярная дегидратация .

В случае межмолекулярной дегидратации продуктами реакции являются простые эфиры. Реакция протекает в тех же условиях, но отличается температурным режимом.

Окисление

Окислению подвергаются все спирт, но легче всего первичные.

Первичные спирты окисляются до альдегидов и далее до карбоновых кислот (на этой реакции основан метаболизм в организме).

Вторичные спирты в таких реакциях дают кетоны, третичные окисляются с расщеплением С-С-связи и образованием смеси кетонов и кислот.

Качественные реакции на спирты.

Как было сказано ранее, спирты могут реагировать с разрывом связей

–С –ОН и СО – Н. В качественном анализе используются и те и другие реакции.

1. Ксантогеновая проба – это наиболее чувствительная реакция на спиртовую группу. Спирт смешивают с сероуглеродом, добавляют кусочек КОН, слегка нагревают и приливают раствор CuSO4 голубого цвета. При положительной реакции возникает коричневая окраска ксантогената меди.

2 Проба Льюиса .

В реакции используется смесь концентрированной соляной кислоты и хлорида цинка. Эта реакция используется как аналитический метод установления типа спирта: является ли он первичным, вторичным или третичным.

Третичные спирты реагируют почти мгновенно с выделением тепла и образованием маслянистого слоя галогеналкана.

Вторичные реагируют в течение 5 мин (также образуется маслянистый слой).

Первичные спирты при комнатной температуре не реагируют, но вступают в реакцию при нагревании.

Применение спиртов.

Метанол применяют для производства формальдегида, уксусной кислоты, растворителя в производстве лаков и красок, служит полупродуктом для синтеза красителей, фармацевтических препаратов, душистых веществ. Сильный яд.

Этанол – сильный антисептик (в хирургии для мытья рук хирурга и инструментов) и хороший растворитель. Используется для производства дивинила (компонент каучука), хлороформа, этилового эфира (используется в медицине). Некоторое количество спирта идет на употребление в пищевой промышленности (изготовление пропитки, ликеров).

н-Пропанол применяют для производства пестицидов, лекарств, растворителя для восков, смол различной природы.

Влияние на здоровье человека. Механизм действия спиртов.

Одноатомные спирты – наркотики. Их токсичность возрастает с увеличением числа атомов углерода.

Метиловый спирт – сильный нервный и сосудистый яд, снижает насыщаемость крови кислородом. Метанол принятый внутрь взывает опьянение и тяжелое отравление сопровождаемое потерей зрения.

Метанол в пищеварительном тракте окисляется в токсичнее продукт – формальдегид и муравьиную кислоту, которые в небольших количествах взывают тяжелые отравления организма и смерть:

Этиловый спирт – наркотик, взывает паралич нервной системы.

Попадая в организм человека, спирт действует сначала возбуждающе, а затем угнетающе на ЦНС, притупляет чувствительность, ослабляет функцию головного мозга, значительно ухудшает реакцию.

Главной причиной поражения организма этанолом является образование ацетальдегида, который оказывает токсическое воздействие и взаимодействует со многими метаболитами. Ацетальдегид образуется в результате действия фермента алкогольдегидрогеназы (содержится в печени).

Пропиловый спирт действует на организм аналогично этиловому, но сильнее последнего.