Химическое название хлора. Медикаментозная помощь при отравлении. Как добывается хлор

Хлор (от греч. χλωρ?ς — «зелёный») — элемент главной подгруппы седьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 17. Обозначается символом Cl (лат. Chlorum ). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора [дословно «галоген» переводится как солерод], но оно не прижилось, и впоследствии стало общим для VII группы элементов, в которую входит и хлор ).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl 2).

История открытия хлора

Впервые газообразный безводный хлороводород собрал Дж. Присли в 1772г. (над жидкой ртутью). Впервые хлор был получен в 1774 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства.

Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия , однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.

Распространение в природе

В природе встречаются два изотопа хлора 35 Cl и 37 Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов: галита NaCI, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 · 6H2O, карналлита KCl · MgCl 2 · 6Н 2 O, каинита KCl · MgSO 4 · 3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов (содержание в морской воде 19 г/л ). На долю хлора приходится 0,025 % от общего числа атомов земной коры, кларковое число хлора — 0,017 %, а человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Физические и физико-химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

Некоторые физические свойства хлора

Свойство

Значение

Цвет (газ) Жёлто-зелёный
Температура кипения −34 °C
Температура плавления −100 °C
Температура разложения
(диссоциации на атомы)
~1400 °C
Плотность (газ, н.у.) 3,214 г/л
Сродство к электрону атома 3,65 эВ
Первая энергия ионизации 12,97 эВ
Теплоемкость (298 К, газ) 34,94 (Дж/моль·K)
Критическая температура 144 °C
Критическое давление 76 атм
Стандартная энтальпия образования (298 К, газ) 0 (кДж/моль)
Стандартная энтропия образования (298 К, газ) 222,9 (Дж/моль·K)
Энтальпия плавления 6,406 (кДж/моль)
Энтальпия кипения 20,41 (кДж/моль)
Энергия гомолитического разрыва связи Х-Х 243 (кДж/моль)
Энергия гетеролитического разрыва связи Х-Х 1150 (кДж/моль)
Энергия ионизациии 1255 (кДж/моль)
Энергия сродства к электрону 349 (кДж/моль)
Атомный радиус 0,073 (нм)
Электроотрицательность по Полингу 3,20
Электроотрицательность по Оллреду-Рохову 2,83
Устойчивые степени окисления -1, 0, +1, +3, (+4), +5, (+6), +7

Газообразный хлор относительно легко сжижается. Начиная с давления в 0,8 МПа (8 атмосфер), хлор будет жидким уже при комнатной температуре. При охлаждении до температуры в −34 °C хлор тоже становится жидким при нормальном атмосферном давлении. Жидкий хлор — жёлто-зелёная жидкость, обладающая очень высоким коррозионным действием (за счёт высокой концентрации молекул). Повышая давление, можно добиться существования жидкого хлора вплоть до температуры в +144 °C (критической температуры) при критическом давлении в 7,6 МПа.

При температуре ниже −101 °C жидкий хлор кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 Å b=4,50 Å, c=8,21 Å. Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную, имеющую пространственную группу P4 2 /ncm и параметры решётки a=8,56 Å и c=6,12 Å .

Растворимость

Степень диссоциации молекулы хлора Cl 2 → 2Cl. При 1000 К равна 2,07×10 −4 %, а при 2500 К 0,909 %.

Порог восприятия запаха в воздухе равен 0,003 (мг/л).

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Химические свойства

Строение электронной оболочки

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1s 2 2s 2 2p 6 3s 2 3p 5 , поэтому валентность равная 1 для атома хлора очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и другие валентности. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентность 4 и 6, например ClO 2 и Cl 2 O 6 . Однако, эти соединения являются радикалами, то есть у них есть один неспаренный электрон.

Взаимодействие с металлами

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

Cl 2 + 2Na → 2NaCl 3Cl 2 + 2Sb → 2SbCl 3 3Cl 2 + 2Fe → 2FeCl 3

Взаимодействие с неметаллами

C неметаллами (кроме углерода, азота, кислорода и инертных газов), образует соответствующие хлориды.

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованиемхлороводорода. Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

Cl 2 + H 2 → 2HCl 5Cl 2 + 2P → 2PCl 5 2S + Cl 2 → S 2 Cl 2

С кислородом хлор образует оксиды в которых он проявляет степень окисления от +1 до +7: Cl 2 O, ClO 2 , Cl 2 O 6 , Cl 2 O 7 . Они имеют резкий запах, термически и фотохимически нестабильны, склонны к взрывному распаду.

При реакции с фтором, образуется не хлорид, а фторид:

Cl 2 + 3F 2 (изб.) → 2ClF 3

Другие свойства

Хлор вытесняет бром и иод из их соединений с водородом и металлами:

Cl 2 + 2HBr → Br 2 + 2HCl Cl 2 + 2NaI → I 2 + 2NaCl

При реакции с монооксидом углерода образуется фосген:

Cl 2 + CO → COCl 2

При растворении в воде или щелочах, хлор дисмутирует, образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты, либо их соли:

Cl 2 + H 2 O → HCl + HClO 3Cl 2 + 6NaOH → 5NaCl + NaClO 3 + 3H 2 O

Хлорированием сухого гидроксида кальция получают хлорную известь:

Cl 2 + Ca(OH) 2 → CaCl(OCl) + H 2 O

Действие хлора на аммиак можно получить трёххлористый азот:

4NH 3 + 3Cl 2 → NCl 3 + 3NH 4 Cl

Окислительные свойства хлора

Хлор очень сильный окислитель.

Cl 2 + H 2 S → 2HCl + S

Реакции с органическими веществами

С насыщенными соединениями:

CH 3 -CH 3 + Cl 2 → C 2 H 5 Cl + HCl

Присоединяется к ненасыщенным соединениям по кратным связям:

CH 2 =CH 2 + Cl 2 → Cl-CH 2 -CH 2 -Cl

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl 3 или FeCl 3):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl

Способы получения

Промышленные методы

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO 2 + 4HCl → MnCl 2 + Cl 2 + 2H 2 O

В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl + O 2 → 2H 2 O + 2Cl 2

Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли:

2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH Анод: 2Cl − — 2е − → Cl 2 0 Катод: 2H 2 O + 2e − → H 2 + 2OH −

Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H 2 O → 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2

Применяется три варианта электрохимического метода получения хлора. Два из них электролиз с твердым катодом: диафрагменный и мембранный методы, третий — электролиз с жидким ртутным катодом (ртутный метод производства). В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути.

Диафрагменный метод с твёрдым катодом

Полость электролизера разделена пористой асбестовой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом. В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита (раствора NaCl). В результате электрохимического процесса на аноде за счёт разложения галита выделяется хлор, а на катоде за счёт разложения воды — водород. При этом прикатодная зона обогащается гидроксидом натрия.

Мембранный метод с твёрдым катодом

Мембранный метод по сути, аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной полимерной мембраной. Мембранный метод производства эффективнее, чем диафрагменный, но сложнее в применении.

Ртутный метод с жидким катодом

Процесс проводят в электролитической ванне, которая состоит из электролизера, разлагателя и ртутного насоса, объединённых между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизёра служит поток ртути. Аноды — графитовые или малоизнашивающиеся. Вместе с ртутью через электролизёр непрерывно течет поток анолита — раствора хлорида натрия. В результате электрохимического разложения хлорида на аноде образуются молекулы хлора, а на катоде выделившийся натрий растворяется в ртути образуя амальгаму.

Лабораторные методы

В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):

2KMnO 4 + 16HCl → 2KCl + 2MnCl 2 + 5Cl 2 +8H 2 O K 2 Cr 2 O 7 + 14HCl → 3Cl 2 + 2KCl + 2CrCl 3 + 7H 2 O

Хранение хлора

Производимый хлор хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет. Следует отметить что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

Стандарты качества хлора

Согласно ГОСТ 6718-93 «Хлор жидкий. Технические условия» производятся следующие сорта хлора

Применение

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:

  • В производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы, одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты, игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан.
  • Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты: Cl 2 + H 2 O → HCl + HClO → 2HCl + O.. Этот способ отбеливания тканей, бумаги, картона используется уже несколько веков.
  • Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов — гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано ещё в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет — в 30-х годах ХХ столетия.
  • Использовался как боевое отравляющее вещество, а также для производства других боевых отравляющих веществ: иприт, фосген.
  • Для обеззараживания воды — «хлорирования». Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микроорганизмов катализирующие окислительно-восстановительные процессы. Для обеззараживания питьевой воды применяют: хлор, двуокись хлора, хлорамин и хлорную известь. СанПиН 2.1.4.1074-01 устанавливает следующие пределы (коридор)допустимого содержания свободного остаточного хлора в питьевой воде централизованного водоснабжения 0.3 — 0.5 мг/л. Ряд учёных и даже политиков в России критикуют саму концепцию хлорирования водопроводной воды, но альтернативы дезинфицирующему последействию соединений хлора предложить не могут. Материалы, из которых изготовлены водопроводные трубы, по разному взаимодействуют с хлорированной водопроводной водой. Свободный хлор в водопроводной воде существенно сокращает срок службы трубопроводов на основе полиолефинов: полиэтиленовых труб различного вида, в том числе сшитого полиэтилена, большие известного как ПЕКС (PEX, PE-X). В США для контроля допуска трубопроводов из полимерных материалов к использованию в водопроводах с хлорированной водой вынуждены были принять 3 стандарта: ASTM F2023 применительно к трубам из сшитого полиэтилена (PEX) и горячей хлорированной воде, ASTM F2263 применительно к полиэтиленовым трубам всем и хлорированной воде и ASTM F2330 применительно к многослойным (металлополимерным) трубам и горячей хлорированной воде. В части долговечности при взаимодействии с хлорированной водой положительные результаты демонстрируют медные водопроводные трубы.
  • В пищевой промышленности зарегистрирован в качестве пищевой добавки E925 .
  • В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений.
  • В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.
  • Как индикатор солнечных нейтрино в хлор-аргонных детекторах.

Многие развитые страны стремятся ограничить использование хлора в быту, в том числе потому, что при сжигании хлорсодержащего мусора образуется значительное количество диоксинов.

Биологическая роль

Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов.

У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения черезмембрану клеток. Именно этим объясняется его совместное участие с ионами натрия и калия в создании постоянного осмотического давления и регуляции водно-солевого обмена. Под воздействием ГАМК (нейромедиатор) ионы хлора оказывают тормозящий эффект на нейроны путём снижения потенциала действия. Вжелудке ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы представлены во многих типах клеток, митохондриальных мембранах и скелетных мышцах. Эти каналы выполняют важные функции в регуляции объёма жидкости, трансэпителиальном транспорте ионов и стабилизации мембранных потенциалов, участвуют в поддержании рН клеток. Хлор накапливается в висцеральной ткани, коже и скелетных мышцах. Всасывается хлор, в основном, в толстом кишечнике. Всасывание и экскреция хлора тесно связаны с ионами натрия и бикарбонатами, в меньшей степени с минералокортикоидами и активностью Na + /K + — АТФ-азы. В клетках аккумулируется 10-15 % всего хлора, из этого количества от 1/3 до 1/2 — в эритроцитах. Около 85 % хлора находятся во внеклеточном пространстве. Хлор выводится из организма в основном с мочой (90-95 %), калом (4-8 %) и через кожу (до 2 %). Экскреция хлора связана с ионами натрия и калия, и реципрокно с HCO 3 − (кислотно-щелочной баланс).

Человек потребляет 5-10 г NaCl в сутки. Минимальная потребность человека в хлоре составляет около 800 мг в сутки. Младенец получает необходимое количество хлора через молоко матери, в котором содержится 11 ммоль/л хлора. NaCl необходим для выработки в желудке соляной кислоты, которая способствует пищеварению и уничтожению болезнетворных бактерий. В настоящее время участие хлора в возникновении отдельных заболеваний у человека изучено недостаточно хорошо, главным образом из-за малого количества исследований. Достаточно сказать, что не разработаны даже рекомендации по норме суточного потребления хлора. Мышечная ткань человека содержит 0,20-0,52 % хлора, костная — 0,09 %; в крови — 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

Ионы хлора жизненно необходимы растениям. Хлор участвует в энергетическом обмене у растений, активируя окислительное фосфорилирование. Он необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами, стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием энергии. Хлор положительно влияет на поглощение корнями кислорода, соединений калия, кальция, магния. Чрезмерная концентрация ионов хлора в растениях может иметь и отрицательную сторону, например, снижать содержание хлорофилла, уменьшать активность фотосинтеза, задерживать рост и развитие растений.

Но существуют растения, которые в процессе эволюции либо приспособились к засолению почв, либо в борьбе за пространство заняли пустующие солончаки на которых нет конкуренции. Растения произрастающие на засоленных почвах называются — галофиты, они накапливают хлориды в течение вегетационного сезона, а потом избавляются от излишков посредствомлистопада или выделяют хлориды на поверхность листьев и веток и получают двойную выгоду притеняя поверхности от солнечного света.

Среди микроорганизмов, так же известны галофилы — галобактерии — которые обитают в сильносоленых водах или почвах.

Особенности работы и меры предосторожности

Хлор — токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной растворомсульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 .

ПДК хлора в атмосферном воздухе следующие: среднесуточная — 0,03 мг/м³; максимально разовая — 0,1 мг/м³; в рабочих помещениях промышленного предприятия — 1 мг/м³.

Обсуждение темы чем вредна хлорка стоит начать с уточнения того, что, собственно, это такое. Хлор это химический элемент, которого очень много в природе. Люди уже давно открыли хлор и в быту чаще всего используют именно его для целей дезинфекции. К сожалению, потенциал токсичности хлора не ограничивается борьбой с плесенью и грибками, а фактически вредные свойства хлора действительно можно связывать с серьезной опасностью для здоровья человека.

Что такое хлор: общие факты

Хлор является химическое веществом, используемым в промышленности и в бытовых чистящих средствах. При комнатной температуре хлор представляет собой газ желто-зеленого цвета с острым, раздражающим запахом, похожим на запах отбеливателя. Как правило, хлор хранят под давлением и охлаждением и отгружается в форме жидкости янтарного цвета. Хлор сам по себе не сильно горюч, но в сочетании с другими веществами, образовывает взрывоопасные соединения.

Использование хлора

Хлор имеет множество применений. Он используется для дезинфекции воды и является частью процесса санитарии для сточных вод и промышленных отходов. При производстве бумаги и ткани, хлор используется в качестве отбеливающего агента. Он также используется в моющих средствах, в том числе как бытовой отбеливатель, который и есть хлор, растворенный в воде. Хлор используется для приготовления хлоридов, хлорированных растворителей, пестицидов, полимеров, синтетических каучуков, и хладагентов.

Чем хлор опасен для людей

Из-за своего широкого использования в промышленных и коммерческих помещениях, воздействие хлора может произойти от случайного разлива или выброса, или сознательного действия. Наиболее вредное воздействие хлора от вдыхания газообразного хлора. Проблемы могут также возникнуть от контакта кожи или глаз с газообразным хлором или после глотания пищи или воды с хлоркой.

Газообразный хлор тяжелее воздуха и первоначально остается в низменных районах, если ветер или другие условия не способствуют движению воздуха.

Чем вредна хлорка: что происходит с хлором в организме

Когда хлор поступает в организм в результате дыхания, глотания, или при контакте с кожей, он реагирует с водой с образованием кислот. Кислоты способствуют коррозии и повреждению клеток в организме при контакте.

Вред хлорки: ближайшие последствия для здоровья воздействия хлора

Большинство вредных воздействия хлора являются результатом вдыхания. Последствия для здоровья, как правило, начинаются в течение нескольких секунд до минут. После воздействия хлора, отмечаются наиболее распространенные симптомы:

  • Раздражение дыхательных путей
  • Хрипы
  • Затрудненное дыхание
  • Боль горла
  • Кашель
  • Стеснение в груди
  • Раздражение глаз
  • Раздражение кожи

Тяжесть последствий для здоровья зависит от способа воздействия, дозы и продолжительности воздействия хлора. Вдыхание большого количества хлора вызывает накопление жидкости в легких, состояние, известное как отек легких. Развитие отека легких может быть отложено на несколько часов после воздействия хлора. Контакт со сжатым жидким хлором может привести к обморожению кожи и глаз.

Что делать, если вы подверглись воздействию хлора

Если вы уже сталкивались с выделениями хлора, выполните следующие действия:

Как лечится отравление хлором

Чтобы ограничить последствия для здоровья от воздействия хлора, промойте глаза и кожу как можно быстрее с большими объемами воды.

Современная медицина не знает противоядия при отравлении хлором, но эффекты хлора поддается лечению, и большинство людей после отравления хлором, выздоравливает. Людям, которые испытывают серьезные последствия для здоровья (например, тяжелые формы раздражения глаз и дыхательных путей, очень сильный кашель, затрудненное дыхание, отек легких), возможно, потребуется стационарное лечение.

Лабораторные тесты для принятия решения о лечении, если кто-то подвергается воздействию хлора

Лабораторные испытания по поводу воздействия хлора не будут полезны в принятии решений по лечению. Человека, который подвергается воздействию вредного количества хлора, заметят сразу из-за неприятного запаха и проблем кожи, глаз, носа и / или раздражения горла. Таким образом, диагностика и лечение отравления хлором в первую очередь будет основываться на истории болезни пациента и последствий воздействия хлорки для здоровья.

Вред хлорки в качестве дезинфицирующего средства

Хлор содержится во многих бытовых чистящих средствах, он используется как фумигант, и, так как он препятствует росту бактерий, таких как е. палочка и лямблии, то часто добавляется в водные системы как дезинфицирующее средство. В то время как дезинфекция питьевой воды является необходимой мерой для снижения заболеваний, проблемы безопасности хлора связаны с некоторыми серьезными неблагоприятными последствиями для здоровья, в том числе деменцией у пожилых пациентов.

Почему можно отравиться хлокой в бассейне?

Вода плавательных бассейнов должна быть очищена с помощью некоторых средств, чтобы предотвратить загрязнение и бактериального роста. Хлор не самый безопасный метод, но, вероятно, наиболее распространенный. Помните, что хлор это яд. Разбавляйте его достаточно, чтобы он был достаточно сильным, но не настолько, чтобы убить человека.

Некоторые исследования подтверждает, что долгосрочное купание в хлорированных бассейнах может вызвать симптомы астмы у пловцов. Это может повлиять на спортсменов, которые ранее были здоровы, особенно на подростков. Кроме того, есть гипотеза, что раздражение глаз и кожи в пловцов также связаны с хлоркой.
Кстати, ученые Колледж стоматологии Нью-Йоркского университета выявили, что хлорированная вода пагубно влияет на зубную эмаль.

Чем хлор опасен дома

Миллионы несчастных случаев и травм происходят каждый год в жилых помещениях и многие из них связаны воздействием токсичных химических веществ, в частности в отбеливателе. Его состав может выпустить газообразный хлор, который раздражает дыхательную систему при вдыхании. Если вы когда-либо использовали хлорку, чтобы очистить ванну в замкнутом пространстве, вы, вероятно, испытали ожог хлором. Помните, что хлор достаточно токсичны, чтобы считаться настоящим химическим оружием и классифицируется как агент остановки дыхания. Вдыхание хлора может вызвать затрудненное дыхание, боль в груди, кашель, раздражение глаз, повышение сердцебиения, учащенное дыхание и даже смерть. Долго нюхать отбеливатель или чистящее средство будет очень травмирующим опытом. Кстати, отравление хлором имеет повторяющиеся симптомы.

Как обезопасить себя от воздействия хлора

  1. Постарайтесь в быту снизить риски воздействия хлорки. Если у вас есть бассейн, избегайте продуктов, содержащих хлор. Существуют альтернативные методы, которые могут быть использованы, чтобы дезинфицировать воду, в том числе с помощью ионов серебра, генераторов меди и соленой воды.
  2. Чтобы защитить себя в хлорированных бассейнах, наденьте маску чтобы оградить ваши глаза, а после купания, оставьте бассейн и вдыхайте свежий воздух, чтобы избавиться от газа из вашей "системы". Душ быстро и тщательно смоет хлор с вашей кожи.
  3. Крем для загара не будет защищать вас от воздействия хлора. Выбирайте общественные бассейны, которые очищаются не хлором, а более современными и безопасными методами дезинфекции. Многие используют генератор серебряных и медных ионов.
  4. Избегайте домашних чистящих средств, содержащих хлор. Есть природные и органические альтернативы. Вы даже можете сделать свое ​​собственное.
  5. Одним из наиболее значимых мероприятий, которые можно предпринять, чтобы всегда пить очищенную воду, это решить вопрос с установкой системы очистки воды для вашего дома. Это поможет снизить количество токсинов, прежде чем вода даже поступит в кран.

Отказ от ответственности: Информация, представленная в этой статье про вред хлорки, предназначена только для информирования читателя. Она не может быть заменой для консультации профессиональным медицинским работником.

ОПРЕДЕЛЕНИЕ

Хлор – химический элемент VII группы 3 периода Периодической системы химических элементов Д.И. Менделеева. Неметалл.

Относится к элементам – p -семейства. Галоген. Порядковый номер – 17. Строение внешнего электронного уровня – 3s 2 3 p 5 . Относительная атомная масса – 35,5 а.е.м. Молекула хлора двухатомна – Cl 2 .

Химические свойства хлора

Хлор реагирует с простыми веществами металлами:

Cl 2 + 2Sb = 2SbCl 3 (t);

Cl 2 + 2Fe = 2FeCl 3 ;

Cl 2 + 2Na = 2NaCl.

Хлор взаимодействует с простыми веществами неметаллами. Так, при взаимодействии с фосфором и серой образуются соответствующие хлориды, с фтором – фториды, с водородом – хлороводород, с кислородом – оксиды и т.д.:

5Cl 2 + 2P = 2HCl 5 ;

Cl 2 + 2S = SCl 2 ;

Cl 2 + H 2 = 2HCl;

Cl 2 + F 2 = 2ClF.

Хлор способен вытеснять бром и йод из их соединений с водородом и металлами:

Cl 2 + 2HBr = Br 2 + 2HCl;

Cl 2 + 2NaI = I 2 + 2NaCl.

Хлор способен растворяться в воде и щелочах, при этом происходят реакции диспропорционирования хлора, а состав продуктов реакции зависит от условий её проведения:

Cl 2 + H 2 O ↔ HCl + HClO;

Cl 2 + 2NaOH = NaCl + NaClO + H 2 O;

3 Cl 2 + 6NaOH = 5NaCl + NaClO 3 + 3H 2 O.

Хлор взаимодействует с несолеобразующим оксидом – СО с образованием вещества с тривиальным названием – фосген, с аммиаком с образованием трихлорида аммония:

Cl 2 + CO = COCl 2 ;

3 Cl 2 + 4NH 3 = NCl 3 + 3NH 4 Cl.

В реакциях хлор проявляет свойства окислителя:

Cl 2 + H 2 S = 2HCl + S.

Хлор вступает в реакции взаимодействия с органическими веществами класса алканов, алкенов и аренов:

CH 3 -CH 3 + Cl 2 = CH 3 -CH 2 -Cl + HCl (условие – УФ-излучение);

CH 2 = CH 2 + Cl 2 = CH 2 (Cl)-CH 2 -Cl;

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl (kat = FeCl 3 , AlCl 3);

C 6 H 6 + 6Cl 2 = C 6 H 6 Cl 6 + 6HCl (условие – УФ-излучение).

Физические свойства хлора

Хлор – газ желто-зеленого цвета. Термически устойчив. При насыщении охлажденной воды хлором образуется твердый кларат. Хорошо растворяется в воде, в большой степени подвергается дисмутации («хлорная вода»). Растворяется тетрахлориде углерода, жидких SiCl 4 и TiCl 4 . Плохо растворяется в насыщенном растворе хлорида натрия. Не реагирует с кислородом. Сильный окислитель. Температура кипения — -34,1С, плавления — -101,03С.

Получение хлора

Ранее хлор получали по методу Шееле (реакция взаимодействия оксида марганца (VI) c соляной кислотой) или по методу Дикона (реакция взаимодействия хлороводорода с кислородом):

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O;

4HCl + O 2 = 2H 2 O + 2 Cl 2 .

В наше время для получения хлора используют следующие реакции:

NaOCl + 2HCl = NaCl + Cl 2 + H 2 O;

2KMnO 4 + 16HCl = 2KCl + 2MnCl 2 +5 Cl 2 +8H 2 O;

2NaCl + 2H 2 O = 2NaOH + Cl 2 + H 2 (условие – электролиз).

Применение хлора

Хлор нашел широкое применение в различных областях промышленности, так его используют в производстве полимерных материалов (поливинилхлорид), отбеливателей, хлорорганических инсектицидов (гексахлоран), боевых отравляющих веществ (фосген), для обеззараживания воды, в пищевой промышленности, в металлургии и т.д.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Какой объем, масса и количество вещества хлора выделится (н.у.) при взаимодействии 17,4 г оксида марганца (IV) с соляной кислотой, взятой в избытке?
Решение Запишем уравнение реакции взаимодействия оксида марганца (IV) с соляной кислотой:

4HCl + MnO 2 = MnCl 2 + Cl 2 + 2H 2 O.

Молярные массы оксида марганца (IV) и хлора, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 87 и 71 г/моль, соответственно. Рассчитаем количество вещества оксида марганца (IV):

n(MnO 2) = m(MnO 2) / M(MnO 2);

n(MnO 2) = 17,4 / 87 = 0,2 моль.

Согласно уравнению реакции n(MnO 2): n(Cl 2) = 1:1, следовательно, n(Cl 2) = n(MnO 2) = 0,2 моль. Тогда масса и объем хлора будут равны:

m(Cl 2) = 0,2 × 71 = 14,2 г;

V(Cl 2) = n(Cl 2)×V m = 0,2×22,4 = 4,48 л.

Ответ Количество вещества хлора – 0,2 моль, масса – 14,2 г, объем – 4,48 л.

На западе Фландрии лежит крошечный городок. Тем не менее его название известно всему миру и долго еще будет сохраняться в памяти человечества как символ одного из величайших преступлений против человечества. Этот городок – Ипр. Креси (в битве при Креси в 1346 г. английскими войсками впервые в Европе применено огнестрельное оружие.) – Ипр – Хиросима – вехи на пути превращения войны в гигантскую машину уничтожения.

В начале 1915 г. на линии западного фронта образовался так называемый Ипрский выступ. Союзные англо-французские войска к северо-востоку от Ипра вклинились на территорию, запятую германской армией. Германское командование решило нанести контрудар и выровнять линию фронта. Утром 22 апреля, когда дул ровный норд-ост, немцы начали необычную подготовку к наступлению – они провели первую в истории войн газовую атаку. На ипрском участке фронта были одновременно открыты 6000 баллонов хлора. В течение пяти минут образовалось огромное, весом в 180 т, ядовитое желто-зеленое облако, которое медленно двигалось по направлению к окопам противника.

Этого никто не ожидал. Войска французов и англичан готовились к атаке, к артиллерийскому обстрелу, солдаты надежно окопались, но перед губительным хлорным облаком они были абсолютно безоружными. Смертоносный газ проникал во все щели, во все укрытия. Результаты первой химической атаки (и первого нарушения Гаагской конвенции 1907 г. о неприменении отравляющих веществ!) были ошеломляющими – хлор поразил около 15 тысяч человек, причем примерно 5 тысяч – на смерть. И все это – ради того, чтобы выровнять линию фронта длиной в 6 км! Спустя два месяца немцы предприняли хлорную атаку и на восточном фронте. А через два года Ипр приумножил свою печальную известность. Во время тяжелого сражения 12 июля 1917 г. в районе этого города было впервые применено отравляющее вещество, названное впоследствии ипритом. Иприт – это производное хлора, дихлордиэтилсульфид.

Об этих эпизодах истории, связанных с одним маленьким городком и одним химическим элементом, мы напомнили для того, чтобы показать, как опасен может быть элемент №17 в руках воинствующих безумцев. Это – самая мрачная страница истории хлора.

Но было бы совершенно неверно видеть в хлоре только отравляющее вещество и сырье для производства других отравляющих веществ...

История хлора

История элементарного хлора сравнительно коротка, она ведет начало с 1774 г. История соединений хлора стара, как мир. Достаточно вспомнить, что хлористый натрий – это поваренная соль. И, видимо, еще в доисторические времена была подмечена способность соли консервировать мясо и рыбу.

Самые древние археологические находки – свидетельства использования соли человеком относятся примерно к 3...4 тысячелетию до н.э. А самое древнее описание добычи каменной соли встречается в сочинениях греческого историка Геродота (V в. до н.э.). Геродот описывает добычу каменной соли в Ливии. В оазисе Синах в центре Ливийской пустыни находился знаменитый храм бога Аммона-Ра. Поэтому-то Ливия и именовалась «Ammonia», и первое название каменной соли было «sal ammoniacum». Позднее, начиная примерно с XIII в. н.э., это название закрепилось за хлористым аммонием.

В «Естественной истории» Плиния Старшего описан метод отделения золота от неблагородных металлов при прокаливании с солью и глиной. А одно из первых описаний очистки хлористого натрия находим в трудах великого арабского врача и алхимика Джабир ибн-Хайяна (в европейском написании – Гебер).

Весьма вероятно, что алхимики сталкивались и с элементарным хлором, так как в странах Востока уже в IX, а в Европе в XIII в. была известна «царская водка» – смесь соляной и азотной кислот. В выпущенной в 1668 г. книге голландца Ван-Гельмонта «Hortus Medicinae» говорится, что при совместном нагревании хлористого аммония и азотной кислоты получается некий газ. Судя по описанию, этот газ очень похож на хлор.

Подробно хлор впервые описан шведским химиком Шееле в его трактате о пиролюзите. Нагревая минерал пиролюзит с соляной кислотой, Шееле заметил запах, характерный для царской водки, собрал и исследовал желто-зеленый газ, порождавший этот запах, и изучил его взаимодействие с некоторыми веществами. Шееле первым обнаружил действие хлора на золото и киноварь (в последнем случае образуется сулема) и отбеливающие свойства хлора.

Шееле не считал вновь открытый газ простым веществом и назвал его «дефлогистонированной соляной кислотой». Говоря современным языком, Шееле, а вслед за ним и другие ученые того времени полагали, что новый газ – это окисел соляной кислоты.

Несколько позже Бертоле и Лавуазье предложили считать этот газ окислом некоего нового элемента «мурия». В течение трех с половиной десятилетий химики безуспешно пытались выделить неведомый мурий.

Сторонником «окиси мурия» был поначалу и Дэви, который в 1807 г. разложил электрическим током поваренную соль на щелочной металл натрий и желто-зеленый газ. Однако, спустя три года, после многих бесплодных попыток получить мурий Дэви пришел к выводу, что газ, открытый Шееле, – простое вещество, элемент, и назвал его chloric gas или chlorine (от греческого χλωροζ – желто-зеленый). А еще через три года Гей-Люссак дал новому элементу более короткое имя – хлор. Правда, еще в 1811 г. немецкий химик Швейгер предложил для хлора другое название – «галоген» (дословно оно переводится как солерод), но это название поначалу не привилось, а впоследствии стало общим для целой группы элементов, в которую входит и хлор.

«Личная карточка» хлора

На вопрос, что же такое хлор, можно дать минимум десяток ответов. Во-первых, это галоген; во-вторых, один из самых сильных окислителей; в-третьих, чрезвычайно ядовитый газ; в-четвертых, важнейший продукт основной химической промышленности; в-пятых, сырье для производства пластмасс и ядохимикатов, каучука и искусственного волокна, красителей и медикаментов; в-шестых, вещество, с помощью которого получают титан и кремний, глицерин и фторопласт; в-седьмых, средство для очистки питьевой воды и отбеливания тканей...

Это перечисление можно было бы продолжить.

При обычных условиях элементарный хлор – довольно тяжелый желто-зеленый газ с резким характерным запахом. Атомный вес хлора 35,453, а молекулярный – 70,906, потому что молекула хлора двухатомна. Один литр газообразного хлора при нормальных условиях (температура 0°C и давление 760 мм ртутного столба) весит 3,214 г. При охлаждении до температуры –34,05°C хлор конденсируется в желтую жидкость (плотностью 1,56 г/см 3), а при температуре – 101,6°C затвердевает. При повышенном давлении хлор можно превратить в жидкость и при более высоких температурах вплоть до +144°C. Хлор хорошо растворяется в дихлорэтане и некоторых других хлорсодержащих органических растворителях.

Элемент №17 очень активен – он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений. Самые распространенные минералы, содержащие хлор, галит NaCI, сильвинит KCl · NaCl, бишофит MgCl 2 · 6H 2 O, карналлит KCl · MgCl 2 · 6Н 2 O, каинит KCl · МgSO 4 · 3Н 2 О. Это их в первую очередь «вина» (или «заслуга»), что содержание хлора в земной коре составляет 0,20% по весу. Для цветной металлургии очень важны некоторые относительно редкие хлорсодержащие минералы, например роговое серебро AgСl.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра.

Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

И напоследок – об изотопах хлора.

Сейчас известны девять изотопов этого элемента, но в природе встречаются только два – хлор-35 и хлор-37. Первого примерно в три раза больше, чем второго.

Остальные семь изотопов получены искусственно. Самый короткоживущий из них – 32 Cl имеет период полураспада 0,306 секунды, а самый долгоживущий – 36 Cl – 310 тыс. лет.

Как получают хлор

Первое, на что обращаешь внимание, попав на хлорный завод, это многочисленные линии электропередачи. Хлорное производство потребляет много электроэнергии – она нужна для того, чтобы разложить природные соединения хлора.

Естественно, что основное хлорное сырье – это каменная соль. Если хлорный завод расположен вблизи реки, то соль завозят не по железной дороге, а на баржах – так экономичнее. Соль – продукт недорогой, а расходуется ее много: чтобы получить тонну хлора, нужно примерно 1,7...1,8 т соли.

Соль поступает на склады. Здесь хранятся трех – шестимесячные запасы сырья – хлорное производство, как правило, многотоннажное.

Соль измельчают и растворяют в теплой воде. Этот рассол по трубопроводу перекачивается в цех очистки, где в огромных, высотой с трехэтажный дом баках рассол очищают от примесей солей кальция и магния и осветляют (дают ему отстояться). Чистый концентрированный раствор хлористого натрия перекачивается в основной цех хлорного производства – в цех электролиза.

В водном растворе молекулы поваренной соли превращаются в ионы Na + и Сl – . Ион Сl – отличается от атома хлора только тем, что имеет один лишний электрон. Значит, для того чтобы получить элементарный хлор, необходимо оторвать этот лишний электрон. Происходит это в электролизере на положительно заряженном электроде (аноде). С него как бы «отсасываются» электроны: 2Cl – → Cl 2 + 2ē . Аноды сделаны из графита, потому что любой металл (кроме платины и ее аналогов), отбирая у ионов хлора лишние электроны, быстро корродирует и разрушается.

Существуют два типа технологического оформления производства хлора: диафрагменный и ртутный. В первом случае катодом служит перфорированный железный лист, а катодное и анодное пространства электролизера разделены асбестовой диафрагмой. На железном катоде происходит разряд ионов водорода и образуется водный раствор едкого натра. Если в качестве катода применяют ртуть, то на нем разряжаются ионы натрия и образуется амальгама натрия, которая потом разлагается водой. Получаются водород и едкий натр. В этом случае разделительная диафрагма не нужна, а щелочь получается более концентрированной, чем в диафрагменных электролизерах.

Итак, производство хлора – это одновременно производство едкого натра и водорода.

Водород отводят по металлическим, а хлор по стеклянным или керамическим трубам. Свежеприготовленный хлор насыщен парами воды и потому особенно агрессивен. В дальнейшем его сначала охлаждают холодной водой в высоких башнях, выложенных изнутри керамическими плитками и наполненных керамической насадкой (так называемыми кольцами Рашига), а затем сушат концентрированной серной кислотой. Это единственный осушитель хлора и одна из немногих жидкостей, с которыми хлор но взаимодействует.

Сухой хлор уже не так агрессивен, он не разрушает, например, стальную аппаратуру.

Транспортируют хлор обычно в жидком состоянии в железнодорожных цистернах или баллонах под давлением до 10 атм.

В России производство хлора было впервые организовано еще в 1880 г. на Бондюжском заводе. Хлор получали тогда в принципе тем же способом, каким в свое время получил его Шееле – при взаимодействии соляной кислоты с пиролюзитом. Весь производимый хлор расходовался на получение хлорной извести. В 1900 г. на заводе «Донсода» впервые в России был введен в эксплуатацию цех электролитического производства хлора. Мощность этого цеха была всего 6 тыс. т в год. В 1917 г. все хлорные заводы России выпускали 12 тыс. т хлора. А в 1965 г. в СССР было произведено около 1 млн т хлора...

Один из многих

Все многообразие практического применения хлора можно без особой натяжки выразить одной фразой: хлор необходим для производства хлорпродуктов, т.е. веществ, содержащих «связанный» хлор. А вот говоря об этих самых хлорпродуктах, одной фразой не отделаешься. Они очень разные – и по свойствам, и по назначению.

Рассказать обо всех соединениях хлора не позволяет ограниченный объем нашей статьи, но без рассказа хотя бы о некоторых веществах, для получения которых нужен хлор, наш «портрет» элемента №17 был бы неполным и неубедительным.

Взять, к примеру, хлорорганические инсектициды – вещества, убивающие вредных насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора.

Один из самых важных инсектицидов – гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано еще в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет – в 30-х годах нашего столетия.

Сейчас гексахлоран получают, хлорируя бензол. Подобно водороду, бензол очень медленно реагирует с хлором в темноте (и в отсутствие катализаторов), но при ярком освещении реакция хлорирования бензола (С 6 Н 6 + 3Сl 2 → С 6 Н 6 Сl 6) идет достаточно быстро.

Гексахлоран, так же как и многие другие инсектициды, применяется в виде дустов с наполнителями (тальком, каолином), или в виде суспензий и эмульсий, или, наконец, в виде аэрозолей. Гексахлоран особенно эффективен при протравливании семян и при борьбе с вредителями овощных и плодовых культур. Расход гексахлорана составляет всего 1...3 кг на гектар, экономический эффект от его применения в 10...15 раз превосходит затраты. К сожалению, гексахлоран не безвреден для человека...

Поливинилхлорид

Если попросить любого школьника перечислить известные ему пластики, он одним из первых назовет поливинилхлорид (иначе, винипласт). С точки зрения химика, ПВХ (так часто поливинилхлорид обозначают в литературе) – это полимер, в молекуле которого на цепочку углеродных атомов «нанизаны» атомы водорода и хлора:

В этой цепочке может быть несколько тысяч звеньев.

А с потребительской точки зрения ПВХ – это изоляция для проводов и плащи-дождевики, линолеум и граммпластинки, защитные лаки и упаковочные материалы, химическая аппаратура и пенопласты, игрушки и детали приборов.

Поливинилхлорид образуется при полимеризации винилхлорида, который чаще всего получают, обрабатывая ацетилен хлористым водородом: HC ≡ CH + HCl → CH 2 = CHCl. Существует и другой способ получения винилхлорида – термический крекинг дихлорэтана.

CH 2 Cl – CH 2 Сl → CH 2 = CHCl + HCl. Представляет интерес сочетание двух этих методов, когда в производстве винилхлорида по ацетиленовому способу используют HCl, выделяющийся при крекинге дихлорэтана.

Хлористый винил – бесцветный газ с приятным, несколько пьянящим эфирным запахом, легко полимеризуется. Для получения полимера жидкий винилхлорид под давлением нагнетают в теплую воду, где он дробится на мельчайшие капельки. Чтобы они не сливались, в воду добавляют немного желатины или поливинилового спирта, а чтобы начала развиваться реакция полимеризации, туда же вводят инициатор полимеризации – перекись бензоила. Через несколько часов капельки затвердевают, и образуется суспензия полимера в воде. Порошок полимера отделяют на фильтре или на центрифуге.

Полимеризация обычно происходит при температуре от 40 до 60°C, причем, чем ниже температура полимеризации, тем длиннее образующиеся полимерные молекулы...

Мы рассказали только о двух веществах, для получения которых необходим элемент №17. Только о двух из многих сотен. Подобных примеров можно привести очень много. И все они говорят о том, что хлор – это не только ядовитый и опасный газ, но очень важный, очень полезный элемент.

Элементарный расчет

При получении хлора электролизом раствора поваренной соли одновременно получаются водород и едкий натр: 2NACl + 2H 2 О = H 2 + Cl 2 + 2NaOH. Конечно, водород – очень важный химический продукт, но есть более дешевые и удобные способы производства этого вещества, например конверсия природного газа... А вот едкий натр получают почти исключительно электролизом растворов поваренной соли – на долю других методов приходится меньше 10%. Поскольку производства хлора и NaOH полностью взаимосвязаны (как следует из уравнения реакции, получение одной грамм-молекулы – 71 г хлора – неизменно сопровождается получением двух грамм-молекул – 80 г электролитической щелочи), зная производительность цеха (или завода, или государства) по щелочи, можно легко рассчитать, сколько хлора он производит. Каждой тонне NaOH «сопутствуют» 890 кг хлора.

Ну и смазка!

Концентрированная серная кислота – практически единственная жидкость, не взаимодействующая с хлором. Поэтому для сжатия и перекачивания хлора на заводах используют насосы, в которых роль рабочего тела и одновременно смазки выполняет серная кислота.

Псевдоним Фридриха Вёлера

Исследуя взаимодействие органических веществ с хлором, французский химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий... Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса (по выражению французского химика Лорана, открытие хлоруксусной кислоты было подобно метеору, который разрушил всю старую школу). Берцелиус, его ученики и последователи бурно оспаривали правильность работ Дюма. В немецком журнале «Annalen der Chemie und Pharmacie» появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S.С.Н. Windier (по немецки «Schwindler» значит «лжец», «обманщик»). В нем сообщалось, что автору удалось заместить в клетчатке (С 6 Н 10 O 5) и все атомы углерода. водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей... из чистого хлора.

Хлор и вода

Хлор заметно растворяется в воде. При 20°C в одном объеме воды растворяется 2,3 объема хлора. Водные растворы хлора (хлорная вода) – желтого цвета. Но со временем, особенно при хранении на свету, они постепенно обесцвечиваются. Объясняется это тем, что растворенный хлор частично взаимодействует с водой, образуются соляная и хлорноватистая кислоты: Cl 2 + H 2 O → HCl + HOCl. Последняя неустойчива и постепенно распадается на HCl и кислород. Поэтому раствор хлора в воде постепенно превращается в раствор соляной кислоты.

Но при низких температурах хлор и вода образуют кристаллогидрат необычного состава – Cl 2 · 5 3 / 4 H 2 O. Эти зеленовато-желтые кристаллы (устойчивые только при температурах ниже 10°C) можно получить, пропуская хлор через воду со льдом. Необычная формула объясняется структурой кристаллогидрата, а она определяется в первую очередь структурой льда. В кристаллической решетке льда молекулы Н 2 О могут располагаться таким образом, что между ними появляются закономерно расположенные пустоты. Элементарная кубическая ячейка содержит 46 молекул воды, между которыми есть восемь микроскопических пустот. В этих пустотах и оседают молекулы хлора. Точная формула кристаллогидрата хлора поэтому должна быть записана так: 8Сl 2 · 46Н 2 О.

Отравление хлором

Присутствие в воздухе уже около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резко ухудшает аппетит, придает зеленоватый оттенок коже. Если содержание хлора в воздухе составляет 0,1°/о, то может наступить острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой; полезно вдыхать кислород, или аммиак (нюхая нашатырный спирт), или пары спирта с эфиром. По существующим санитарным нормам содержание хлора в воздухе производственных помещений не должно превышать 0,001 мг/л, т.е. 0,00003%.

Не только яд

«Что волки жадны, всякий знает». Что хлор ядовит – тоже. Однако в небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

Анализ на хлор

Для определения содержания хлора пробу воздуха пропускают через поглотители с подкисленным раствором йодистого калия. (Хлор вытесняет йод, количество последнего легко определяется титрованием с помощью раствора Nа 2 S 2 O 3). Для определения микроколичеств хлора в воздухе часто применяется колориметрический метод, основанный на резком изменении окраски некоторых соединений (бензидина, ортотолуидина, метилоранжа) при окислении их хлором. Например, бесцветный подкисленный раствор бензидина приобретает желтый цвет, а нейтральный – синий. Интенсивность окраски пропорциональна количеству хлора.

Жители современных городов ежедневно подвергаются воздействию веществ, которые добавляются в водопроводную воду для ее обеззараживания. Информация о том, чем в воде опасен хлор, применяемый для дезинфекции, известна далеко не всем. Однако при частом применении именно этот элемент может стать причиной многих серьезных заболеваний.

Из этой статьи вы узнаете:

    Что представляет собой хлор и где он применяется

    Чем опасен хлор в воде для человека и какие степени отравления хлором существуют

    Чем опасен хлор в воде для детей и беременных женщин

Что такое хлор и где он применяется

Хлор представляет собой простое химическое вещество, обладающее опасными токсичными свойствами. Чтобы сделать хлор безопасным при хранении, его подвергают давлению и пониженной температуре, после чего он превращается в жидкость янтарного цвета. Если эти меры не соблюдать, при комнатной температуре хлор превращается в желто-зеленый летучий газ, обладающий резким запахом.

Хлор используется во многих отраслях промышленности. В бумажном и текстильном производствах он применяется в качестве отбеливателя. Кроме того, хлор используют при создании хлоридов, хлорированных растворителей, пестицидов, полимеров, синтетических каучуков и хладагентов.

Открытие, позволившее применять хлор в качестве обеззараживающего вещества, можно назвать одним из самых знаменательных достижений науки ХХ века. Благодаря хлорированию водопроводной воды удалось снизить уровень заболеваемости кишечными инфекциями, которые были широко распространены во всех городах.

Поступающая из природных водоемов в городской водопровод вода содержит множество отравляющих веществ и возбудителей инфекционных заболеваний. Пить такую воду без обработки крайне опасно любому человеку. Для обеззараживания воды используются хлор, фтор, озон и другие вещества. Из-за низкой стоимости хлора он активно применяется для дезинфекции воды и для очищения водопроводных труб от скопления попавшей туда растительности. Такой метод помогает снизить вероятность засорения городского водопровода.

Чем опасен хлор в воде для организма человека

Благодаря хлорированию современный человек может без боязни утолять жажду водой прямо из-под крана. Однако хлор в воде опасен тем, что он может стать источником многих заболеваний. При химической реакции с органическими веществами хлор создает соединения, способные вызвать тяжелые болезни. Кроме того, взаимодействуя с лекарствами, витаминами или продуктами, хлор способен менять их свойства с безвредных на опасные. Результатом такого влияния могут стать изменения обмена веществ, а также сбой иммунной и гормональной систем.

Попадая в организм человека через дыхательные пути или кожные покровы, хлор может спровоцировать воспаления слизистых оболочек рта, пищевода, способствовать обострению или развитию бронхиальной астмы, появлению кожных воспалительных процессов и повышению уровня холестерина в крови.

Если в организм человека с водой попадает большое количество хлора, это может проявиться в раздражении дыхательных путей, хрипах, затрудненном дыхании, болях в горле, кашле, стеснении в груди, раздражении глаз и кожи. Тяжесть последствий для здоровья зависит от способа воздействия, дозы и продолжительности влияния хлора.

Задумываясь о том, чем опасен хлор в воде и не стоит ли отказаться от его применения из-за очевидной опасности этого вещества, необходимо учитывать, что вода, не прошедшая необходимую дезинфекцию, способна вызвать множество заболеваний. В связи с этим применение хлора для очистки воды представляется меньшим из двух зол.

Чем опасен хлор в воде: четыре степени отравления

При легкой степени отравления хлором могут наблюдаться следующие признаки:

    Раздражение слизистых оболочек рта и дыхательных путей;

    Навязчивый запах хлора при вдыхании чистого воздуха;

  • Слезотечение.

Если наблюдаются такие признаки, значит, нет необходимости в лечении, поскольку они исчезают по истечении нескольких часов.

При средней степени отравления хлором наблюдаются следующие симптомы:

    Затрудненное дыхание, иногда приводящее к удушью;

    Слезотечение;

    Боли в груди.

При такой степени отравления хлором необходимо начать своевременное амбулаторное лечение. В противном случае бездействие может привести к отеку легких через 2–5 часов.

При тяжелой степени отравления хлором могут наблюдаться следующие симптомы:

    Внезапная задержка или остановка дыхания;

    Потеря сознания;

    Судорожные сокращения мышц.

Для нейтрализации тяжелой степени отравления хлором необходимо срочно начать реанимационные действия, включающие искусственную вентиляцию легких. Последствия такого воздействия хлора могут привести к поражениям систем организма и даже смерти в течение получаса.

Молниеносное течение отравления хлором развивается стремительно. Симптомы проявляются в виде судорог, вздутых вен на шее, потере сознания и прекращении дыхания, которые приводят к смерти. Излечение при такой степени отправления хлором практически невозможно.

Может ли хлор в воде вызвать раковые заболевания

Хлор в воде опасен своей повышенной активностью, благодаря которой он легко вступает в реакцию со всеми органическими и неорганическими веществами. Нередко поступающая в городской водопровод вода даже после очистных сооружений содержит растворенные химические отходы промышленности. Если такие вещества вступают в реакцию с хлором, добавленным для обеззараживания в воду, в результате образуются хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды. Среди них наибольшую опасность представляют:

    Хлороформ, обладающий канцерогенной активностью;

    Дихлорбромметан, хлоридбромметан, трибромметан – оказывают мутагенное воздействие на организм человека;

    2-, 4-, 6-трихлорфенол, 2-хлорфенол, дихлорацетонитрил, хлоргиередин, полихлорированные бифенилы – являются иммунотоксичными и канцерогенными веществами;

    Тригалогенметаны – канцерогенные соединения хлора.

Современная наука изучает последствия накопления в теле человека хлора, растворенного в воде. Согласно проведенным опытам, хлор и его соединения могут спровоцировать такие опасные заболевания, как рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки, а также болезни органов пищеварения. Кроме того, хлор и его соединения, попавшие в организм человека с водой, могут вызвать болезни сердца, атеросклероз, анемию, повышение артериального давления.

Научные исследования хлора как возможной причины онкологических заболеваний начались еще в 1947 году. Однако лишь в 1974 году были получены первые подтверждающие результаты. Благодаря новым технологиям анализа удалось установить, что в водопроводной воде после обработки хлором появляется небольшое количество хлороформа. Опыты на животных подтвердили, что хлороформ способен спровоцировать развитие онкологических заболеваний. Такие результаты были получены и в результате статистического анализа, показавшего, что в тех регионах США, жители которых пьют хлорированную воду, показатель заболеваемости раком мочевого пузыря и кишечника выше, чем в других областях.

Последующие исследования показали, что этот результат не может считаться стопроцентно достоверным, поскольку предыдущие опыты не учитывали прочие факторы, влияющие на жизнь населения этих регионов. Кроме того, во время практического лабораторного анализа подопытным животным вводилось такое количество хлороформа, которое в разы превышает показатели этого вещества в обычной водопроводной воде.

Чем опасен хлор в воде для детей

Многие болезни у детей раннего возраста могут быть вызваны употреблением воды, содержащей растворенный в ней хлор. К таким заболеваниям относятся ОРВИ, бронхит, пневмония, фенит, болезни желудочно-кишечного тракта, аллергические проявления, а также некоторые инфекции типа кори, ветряной оспы, краснухи и т. д.

Хлор также применяется для дезинфекции воды в общественных бассейнах. Если концентрация этого вещества в воде опасно превышена, результатом такой халатности могут стать массовые отравления детей. Такие случаи, к сожалению, нередки. Кроме того, вдыхание воздуха рядом с бассейном, для дезинфекции воды в котором используется хлор, может быть опасно для легких человека. Этот факт был подтвержден результатами исследования, в ходе которого 200 школьников в возрасте от 8 до 10 лет ежедневно находились в этой среде более 15 минут. В результате выяснилось, что у большинства испытуемых было отмечено ухудшение состояния тканей легких.

Чем опасен хлор в воде при беременности

Исследования британских ученых из Бирмингема подтвердили, что употребление беременными женщинами водопроводной воды, содержащей хлор, может спровоцировать у плода развитие опасных врожденных дефектов, например, пороков сердца или мозга.

Этот вывод был сделан на основе анализа данных о 400 000 младенцах. Задачей исследования было выявить зависимость между 11 наиболее распространенными врожденными пороками развития плода и содержанием хлора в питьевой воде. Оказалось, что хлор и хлорсодержащие вещества, растворенные в воде, в полтора и даже в два раза увеличивают риск развития трех опасных врожденных дефектов плода:

    Порок межжелудочковой перегородки сердца (отверстие в перегородке между желудочками сердца, которое приводит к смешиванию артериальной и венозной крови и хронической нехватке кислорода).

    «Волчья пасть».

    Анэнцефалия (полное или частичное отсутствие костей свода черепа и мозга).

Чем опасен хлор в воде, когда вы принимаете душ

Многие из вас могут сейчас возразить, что если не употреблять водопроводную воду для питья, то можно избежать риска попадания хлора в организм. Однако это не так. Хлорированная вода во время гигиенических процедур также может принести вред. Из-за воздействия хлора, содержащегося в воде, кожа человека лишается естественной жировой оболочки. Это приводит к сухости и преждевременному старению эпидермиса, а также может спровоцировать зуд или аллергические реакции. Подвергшиеся воздействия растворенного в воде хлора волосы становятся сухими и ломкими. Медицинские исследования показали, что часовая ванна с водой, содержащей избыточное количество хлора, соответствует 10 литрам выпитой хлорированной воды.

Как уберечься от воздействия хлора в воде

Поскольку хлорирование водопроводной воды в России осуществляется повсеместно, решение проблем, возникающих в результате такого обеззараживания, должно осуществляться на государственном уровне. Сегодня радикальный отказ от технологии добавления хлора в питьевую воду невозможен, поскольку для его осуществления понадобится заменить всю трубопроводную систему городов и установить дорогостоящие очистные сооружения. Реализация такого проекта потребует больших финансовых и временных затрат. Тем не менее, первые шаги к общегосударственному отказу от добавления хлора в питьевую воду уже сделаны. Ну а вы уже сегодня можете принять меры, которые помогут обезопасить вас и вашу семью от вредного воздействия хлора.

    Используйте специальную фильтрующую насадку для душа. Она позволит существенно снизить содержание хлора в попадающей на вашу кожу воде.

    После посещения общественных бассейнов необходимо в обязательном порядке принимать душ, а во время плавания пользоваться защитными очками.

    Смягчающие средства помогут восстановить мягкость кожи после душа или бассейна, снижая риск возникновения зуда и раздражения.

    Не используйте воду, содержащую хлор, для купания маленьких детей.

Для нейтрализации хлора в воде применяются следующие препараты:

    Известковое молоко, для изготовления которого одну весовую часть гашеной извести заливают тремя частями воды, тщательно перемешивают, затем сверху сливают известковый раствор (например, 10 кг гашеной извести + 30 литров воды);

    5 %-ный водный раствор кальцинированной соды, для изготовления которого две весовых части кальцинированной соды растворяют при перемешивании с 18 частями воды (например, 5 кг кальцинированной соды + 95 литров воды);

    5 %-ный водный раствор едкого натра, для которого две весовых части едкого натра растворяют при перемешивании с 18 частями воды (например, 5 кг едкого натра + 95 литров воды).

Опасен ли хлор в воде после отстаивания и кипячения

Из этой статьи вы подробно узнали, чем опасен хлор в воде. И, конечно, многие задаются вопросом о том, как ликвидировать или хотя бы минимизировать последствия добавления хлора в питьевую воду. Народные советы предлагают два наиболее простых способа – отстаивание и кипячение.

Отстаивание водопроводной воды является одним из наиболее распространенных методов очищения воды. Действительно, хлор и его опасные соединения непостоянны, а потому легко распадаются и улетучиваются при контакте с воздухом. Для упрощения этого процесса воду необходимо налить в стеклянную или эмалированную емкость с большой поверхностью контакта с воздухом. По истечении 10 часов хлор практически полностью исчезнет, а вода будет пригодна для питья.

Однако такой способ очищения воды не избавляет ее от органических веществ, которые могут в ней содержаться после прохождения по городской водопроводной системе. Находясь в открытой емкости при комнатной температуре, эти микроорганизмы начинают активно размножаться, и уже через сутки вода может приобрести характерный затхлый запах. Пить такую воду крайне опасно, поскольку в ней могут находиться возбудители кишечных заболеваний.

Метод кипячения удаляет из воды не только хлор и его соединения, но и убивает микроорганизмы, которые не являются устойчивыми к высоким температурам. Однако после остывания кипяченая вода снова становится идеальным местом для размножения опасных микроорганизмов, которые попадают в нее из атмосферного воздуха. Поэтому хранить кипяченую воду нельзя. Кроме того, постоянное употребление такой воды может привести к развитию опасной мочекаменной болезни.

Самый надежный способ очистки воды от хлора

Уберечься от опасного влияния хлора возможно. Прежде всего, для этого необходимо установить систему водоочистки. Современный рынок предлагает множество систем для очистки воды от хлора и других вредных веществ. Не тратьте свое драгоценное время на поиски подходящего именно вам варианта, лучше доверьтесь профессионалам.

Компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

    Подключить систему фильтрации самостоятельно;

    Разобраться с процессом выбора фильтров для воды;

    Подобрать сменные материалы;

    Устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

    Найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!