Удельная теплоемкость массы. Вспоминаем физику – что такое теплоемкость воды

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Количество тепла, при получении которого температура тела повышается на один градус, называется теплоемкостью. Согласно этому определению.

Теплоемкость, отнесенная к единице массы, называется удельной теплоемкостью. Теплоемкость, отнесенная к одному молю, называется моляpной теплоемкостью.

Итак, теплоемкость опpеделяется чеpез понятие количества теплоты. Но последнее, как и pабота, зависит от пpоцесса. Значит и теплоемкость зависит от пpоцесса. Сообщать теплоту - нагpевать тело - можно пpи pазличных условиях. Однако пpи pазличных условиях на одно и то же увеличение темпеpатуpы тела потpебуется pазличное количество теплоты. Следовательно, тела можно хаpактеpизовать не одной теплоемкостью, а бесчисленным множеством (столько же, сколько можно пpидумать всевозможных пpоцессов, пpи котоpых пpоисходит теплопеpедача). Однако на пpактике обычно пользуются опpеделением двух теплоемкостей: теплоемкости пpи постоянном объеме и теплоемкости пpи постоянном давлении.

Теплоемкость различается в зависимости от того, при каких условиях происходит нагревание тела - при постоянном объеме или при постоянном давлении.

Если нагревание тела происходит при постоянном объеме, т. е. dV = 0, то работа равна нулю. В этом случае передаваемое телу тепло идет только на изменение его внутренней энергии, dQ = dE , и в этом случае теплоемкость равна изменению внутренней энергии при изменении температуры на 1 К, т. е.

.Поскольку для газа
, то
.Эта формула определяет теплоемкость 1 моля идеального газа, называемую молярной. При нагревании газа при постоянном давлении его объем меняется, сообщенное телу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы, т.е.dQ = dE + PdV . Теплоемкость при постоянном давлении
.

Для идеального газа PV = RT и поэтому PdV = RdT .

Учитывая это, найдем
.Отношение
представляет собой величину, характерную для каждого газа и определяемую числом степеней свободы молекул газа. Измерение теплоемкости тела есть, таким образом, способ непосредственного измерения микроскопических характеристик составляющих его молекул.

Ф
ормулы для теплоемкости идеального газа приблизительно верно описывают эксперимент, причем, в основном, для одноатомных газов. Согласно формулам, полученным выше, теплоемкость не должна зависеть от температуры. На самом деле наблюдается картина, изображенная на рис., полученная опытным путем для двухатомного газа водорода. На участке 1 газ ведет себя как система частиц, обладающих лишь поступательными степенями свободы, на участке 2 возбуждается движение, связанное с вращательными степенями свободы и, наконец, на участке 3 появляются две колебательные степени свободы. Ступеньки на кривой хорошо согласуются с формулой (2.35), однако между ними теплоемкость растет с температурой, что соответствует как бы нецелому переменному числу степеней свободы. Такое поведение теплоемкости указывает на недостаточность используемого нами представления об идеальном газе для описания реальных свойств вещества.

Связь молярной теплоёмкости с удельной теплоёмкостью С =M с, где с - удельная теплоёмкость , М - молярная масса .Формула Майера.

Для любого идеального газа справедливо соотношение Майера:

,где R - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:
05.04.2019, 01:42

Удельная теплоемкость

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать доль­ше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг·K)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг·K) , а удельная теплоемкость льда Дж/(кг·K) ; алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг·K) , а в жидком - Дж/(кг·K) .

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.


Удельная теплоемкость твердых веществ

В таблице приведены средние значения удельной теплоемкости веществ в интервале температур от 0 до 10°С(если не указана другая температура)

Вещество Удельная теплоемкость, кДж/(кг·K)
Азот твердый(при t=-250 °С) 0,46
Бетон (при t=20 °С) 0,88
Бумага (при t=20 °С) 1,50
Воздух твердый (при t=-193 °С) 2,0
Графит
0,75
Дерево дуб
2,40
Дерево сосна, ель
2,70
Каменная соль
0,92
Камень
0,84
Кирпич (при t=0 °С) 0,88


Удельная теплоемкость жидкостей

Вещество Температура,°C
Бензин (Б-70)
20
2,05
Вода
1-100
4,19
Глицерин
0-100
2,43
Керосин 0-100
2,09
Масло машинное
0-100
1,67
Масло подсолнечное
20
1,76
Мед
20
2,43
Молоко
20
3,94
Нефть 0-100
1,67-2,09
Ртуть
0-300
0,138
Спирт
20
2,47
Эфир
18
3,34

Удельная теплоемкость металлов и сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Алюминий
0-200
0,92
Вольфрам
0-1600
0,15
Железо
0-100
0,46
Железо
0-500
0,54
Золото
0-500
0,13
Иридий
0-1000
0,15
Магний
0-500
1,10
Медь
0-500
0,40
Никель
0-300
0,50
Олово
0-200
0,23
Платина
0-500
0,14
Свинец
0-300
0,14
Серебро
0-500
0,25
Сталь
50-300
0,50
Цинк
0-300
0,40
Чугун
0-200
0,54

Удельная теплоемкость расплавленных металлов и сжиженных сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
-200,4
2,01
Алюминий
660-1000
1,09
Водород
-257,4
7,41
Воздух
-193,0
1,97
Гелий
-269,0
4,19
Золото
1065-1300
0,14
Кислород
-200,3
1,63
Натрий
100
1,34
Олово
250
0,25
Свинец
327
0,16
Серебро
960-1300
0,29

Удельная теплоемкость газов и паров

при нормальном атмосферном давлении

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
0-200
1,0
Водород
0-200
14,2
Водяной пар
100-500
2,0
Воздух
0-400
1,0
Гелий
0-600
5,2
Кислород
20-440
0,92
Оксид углерода(II)
26-200
1,0
Оксид углерода(IV) 0-600
1,0
Пары спирта
40-100
1,2
Хлор
13-200
0,50

Приборы и принадлежности, используемые в работе:

2. Разновесы.

3. Термометр.

4. Калориметр.

6. Калориметрическое тело.

7. Плитка бытовая.

Цель работы:

Научиться опытным путем определять удельную теплоемкость вещества.

I. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ.

Теплопроводность - передача теплоты от более нагретых частей тела к менее нагретым в следствии столкновений быстрых молекул с медленными, в результате этого быстрые молекулы передают часть своей энергии медленным.

Изменение внутренней энергии какого- либо тела прямо пропорционально его массе и изменению температуры тела.

DU = cmDT (1)
Q = cmDT (2)

Величина с, характеризующая зависимость изменения внутренней энергии тела при нагревании или охлаждении от рода вещества и внешних условий называется удельной теплоемкостью тела.

(4)

Величина C, характеризующая зависимость тела поглощать теплоту при нагревании и равная отношению количества теплоты сообщенной телу, к приращению его температуры, называется теплоемкостью тела .

C = c × m. (5)
(6)
Q = CDT (7)

Молярной теплоемкостью C m , называют количество теплоты, которое необходимо для нагревания одного моля вещества на 1 Кельвин

C m = сM. (8)
C m = (9)

Удельная теплоемкость зависит от характера процесса, при котором происходит его нагревание.

Уравнение теплового баланса.

При теплообмене суммы количеств теплоты, отданных всеми телами, у которых внутренняя энергия уменьшается, равна сумме количеств теплоты, полученных всеми телами, у которых внутренняя энергия увеличивается.

SQ отд = SQ получ (10)

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных и отданных количеств теплоты равна 0.

SQ отд + SQ получ = 0.

Пример:

В теплообмене участвуют тело, калориметр, жидкость. Тело отдает теплоту, калориметр и жидкость принимают.

Q т = Q к + Q ж

Q т = c т m т (T 2 – Q)

Q к = c к m к (Q – T 1)

Q ж = c ж m ж (Q – T 1)

Где Q(тау) – общая конечная температура.

с т m т (T 2 -Q) = с к m к (Q- T 1) + с ж m ж (Q- T 1)

с т = ((Q - Т 1)*(с к m к + с ж m ж)) / m т (Т 2 - Q)

Т = 273 0 + t 0 С

2. ХОД РАБОТЫ.

ВСЕ ВЗВЕШИВАНИЯ ПРОВОДИТЬ С ТОЧНОСТЬЮ ДО 0,1 г.

1. Определите взвешиванием массу внутреннего сосуда, калори­метра m 1 .

2. Налейте во внутренний сосуд калориметра воды, взвесьте внутренний стакан вместе с налитой жидкостью m к.

3. Определите массу налитой воды m = m к - m 1

4. Поместите внутренний сосуд калориметра во внешний и измерь­те начальную температуру воды Т 1 .

5. Выньте из кипящей воды испытуемое тело, быстро перенесите его в калориметр, определив Т 2 -начальную температуру тела, она равна температуре кипящей воды.


6. Перемешивая жидкость в калориметре, выждите, когда перестанет повышаться температура: измерьте окончательную (установившуюся) температуру Q.

7. Выньте из калориметра испытуемое тело, высушите его фильтро­вальной бумагой и взвешиванием на весах определите его массу m 3 .

8. Результаты всех измерений и вычислений занесите в таблицу. Вычисления производить до второго знака после запятой.

9. Составьте уравнение теплового баланса и найдите из него удельную теплоемкость вещества с .

10. По полученным результатам в приложении определить вещество.

11. Вычислите абсолютную и относительную погрешность полученного результата относительно табличного результата по формулам:

;

12. Вывод о проделанной работе.

ТАБЛИЦА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ