Что такое радиация? Ее воздействие на организм человека. Радиация - доступным языком

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

В современном мире случилось так, что нас окружает множество вредных и опасных вещей и явлений, большинство которых - дело рук самого человека. В данной статье мы поговорим о радиации, а именно: что такое радиация.

Понятие «радиация» происходит от латинского слова «radiatio» – лучеиспускание. Радиация – это ионизирующее излучение, распространяющееся в виде потока квантов или элементарных частиц.

Что делает радиация

Ионизирующим это излучение называют потому, что радиация, проникая сквозь любые ткани, ионизирует их частицы и молекулы, что приводит к образованию свободных радикалов, которые ведут к массовой гибели клеток ткани. Воздействие радиации на организм человека разрушительно и называется облучением.

В небольших дозах радиоактивное излучение не опасно, если не превышены опасные для здоровья дозы. При превышении норм облучения, следствием может стать развитие многих болезней (вплоть до рака). Последствия незначительных облучений сложно отследить, так как заболевания могут развиваться многие годы и даже десятилетия. Если же облучение было сильным, то это приводит к лучевой болезни, и к гибели человека, такие виды облучения возможны только при техногенных катастрофах.

Различают внутреннее и внешнее облучение. Внутреннее облучение может произойти при потреблении в пищу облученных продуктов, вдыхании радиоактивной пыли, или через кожу и слизистые оболочки.

Виды радиационных излучений

  • Альфа-излучение, это поток положительно заряженных частиц, образованных двумя протонами и нейтронами.
  • Бета-излучение, это излучение электронов (частиц с зарядом -) и позитронов (частиц с зарядом +).
  • Нейтронное излучение, это поток незаряженных частиц – нейтронов.
  • Излучение фотонов (гамма-излучение, рентгеновское излучение), это электромагнитное излучение, имеющее большую проникающую способность.

Источники радиации

  1. Природные: ядерные реакции, спонтанный радиоактивный распад радионуклидов, космические лучи и термоядерные реакции.
  2. Искусственные, то есть созданные человеком: ядерные реакторы, ускорители элементарных частиц, искусственные радионуклиды.

В чем измеряется радиация

Для обычного человека достаточно знать величину дозы и мощность дозы радиации.

Первый показатель характеризуется:

  • Экспозиционной дозой, она измеряется в Рентгенах (Р) и показывает силу ионизации.
  • Поглощенной дозой, которая измеряется в Греях (Гр) и показывает масштаб поражения организма.
  • Эквивалентной дозой (измеряется в Зивертах (Зв)), которая равна произведению поглощенной дозы и коэффициента качества, который зависит от вида радиационного излучения.
  • Каждый орган нашего организма имеет свой коэффициент радиационного риска, умножив его на эквивалентную дозу, мы получим эффективную дозу, которая показывает величину риска последствий облучения. Она измеряется в Зивертах.

Мощность дозы измеряется в Р/час, мЗв/с, то есть показывает силу потока радиации в течение определенного времени его воздействия.

Измерить уровень радиации можно с помощью специальных приборов – дозиметров.

Нормальным радиационным фоном считается 0,10-0,16 мкЗв в час. Безопасным считается уровень радиации до 30мкЗв/час. Если уровень радиации превышает данный порог, то время пребывания в зоне поражения сокращается пропорционально величине дозы (например, при 60 мкЗв/час, время облучения не больше получаса).

Чем выводят радиацию

В зависимости от источника внутреннего облучения можно использовать:

  • При выбросах радиоактивного йода – принимать до 0,25 мг иодида калия в день (взрослому человеку).
  • Для вывода из организма стронция и цезия используйте диету с высоким содержанием кальция (молоко) и калия.
  • Для выведения других радионуклидов можно использовать соки сильно окрашенных ягод (например, темный виноград).

Теперь Вы знаете, чем опасна радиация. Будьте внимательны к знакам, сигнализирующим о зонах заражения, и держитесь от этих зон подальше.

Радиация – это невидимое человеческому глазу излучение, которое тем не менее оказывает мощнейшее влияние на организм. К сожалению, последствия облучения для человека исключительно негативные.

Изначально излучение влияет на организм извне. Оно исходит от естественных радиоактивных элементов, которые находятся в земле, а также попадает на планету из космоса. Также внешнее облучение исходит в микродозах от стройматериалов, медицинских рентгеновских аппаратов. Большие дозы облучения можно обнаружить на ядерных электростанциях, специальных физических лабораториях и урановых рудниках. Также крайне опасны полигоны испытания ядерного оружия и места захоронения радиационных отходов.

В определенной степени наша кожа, одежда и даже дома защищают от вышеперечисленных источников излучения. Но главная опасность радиации заключается в том, что облучение может быть не только внешним, но и внутренним.

Радиоактивные элементы могут проникать с воздухом и водой, через порезы в коже и даже сквозь ткани организма. В этом случае источник облучения действует намного дольше – пока он не будет выведен из тела человека. От него не защититься свинцовой плитой и невозможно уехать подальше, что делает ситуацию еще опаснее.

Дозировка облучения

Для того чтобы определить мощность облучения и степень воздействия радиации на живые организмы было придумано несколько шкал измерения. В первую очередь измеряется мощность источника излучения в Греях и Радах. Здесь все достаточно просто. 1 Гр=100Р. Именно так определяется уровень облучения с помощью счетчика Гейгера. Также используется шкала Рентген.

Но не стоит считать, что данные показания достоверно указывают на степень опасности для здоровья. Недостаточно знать мощность излучения. Влияние радиации на организм человека меняется также в зависимости от типа излучения. Всего их 3:

  1. Альфа. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи. Но при наличии ран или взвеси частиц в воздухе,
  2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.
  3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

Радиационное воздействие происходит на молекулярном уровне. Облучение приводит к образованию в клетках тела свободных радикалов, которые начинают разрушать окружающие вещества. Но, учитывая уникальность каждого организма и неравномерную чувствительность органов к действию радиации на человека, ученым пришлось ввести понятие эквивалентной дозы.

Для определения, чем опасна радиация в той или иной дозе, мощность излучения в Радах, Рентгенах и Греях умножается на коэффициент качества.

Для Альфа-излучения он равен 20, а для Бета и Гамма – 1. Рентгеновские лучи также имеют коэффициент 1. Полученный результат измеряется в Бэрах и Зивертах. При коэффициенте равном единице, 1 Бэр равен одному Раду или Рентгену, а 1 Зиверт равен одному Грею или 100 Бэрам.

Чтобы определить степень воздействия эквивалентной дозы на организм человека пришлось ввести еще один коэффициент риска. Для каждого органа он отличается, в зависимости от того как влияет радиация на отдельные ткани тела. Для организма в целом он равен единице. Благодаря этому получилось составить шкалу опасности радиации и ее влияния на человека при однократном воздействии:

  • 100 Зиверт. Это быстрая смерть. Через несколько часов, а в лучшем случае дней нервная система организма прекращает свою деятельность.
  • 10-50 – это смертельная доза, в результате которой человек умрет от многочисленных внутренних кровоизлияний спустя несколько недель мучений.
  • 4-5 Зиверт – -смертность составляет около 50%. Из-за поражения костного мозга и нарушения процесса кроветворения организм погибает спустя пару месяцев или меньше.
  • 1 Зиверт. Именно с этой дозы начинается лучевая болезнь.
  • 0,75 Зиверта. Кратковременные изменения в составе крови.
  • 0,5 – эта доза считается достаточной, чтобы стать причиной развития онкозаболеваний. Но других симптомов обычно не бывает.
  • 0,3 Зиверта. Это мощность аппарата при получении рентгеновского снимка желудка.
  • 0,2 Зиверта. Это безопасный уровень излучения, допустимого при работе с радиоактивными материалами.
  • 0,1 – при данном радиационном фоне добывается уран.
  • 0,05 Зиверта. Норма фонового облучения медицинской аппаратурой.
  • 0,005 Зиверта. Допустимый уровень радиации возле АЭС. Также это годовая норма облучения для гражданского населения.

Последствия радиационного облучения

Опасное влияние радиации на организм человека обуславливается воздействием свободных радикалов. Они образуются на химическом уровне из-за воздействия облучения и поражают в первую очередь быстро делящиеся клетки. Соответственно в большей мере от радиации страдают органы кроветворения и половая система.

Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.

Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.

Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.

Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.

Мутации

Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.

Из-за нарушений в цепочке молекулы ДНК, вызванных свободными радикалами, у плода могут развиваться различные отклонения, связанные с проблемами внутренних органов, внешними уродствами или нарушениями психики. При этом данное нарушение может распространяться и на будущие поколения.

Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.

Лейкоз и другие виды рака

Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:

  1. Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
  2. Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
  3. Воспаляются лимфатические узлы.
  4. Увеличиваются печень и селезенка.
  5. Затрудняется дыхание.
  6. На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
  7. Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.

До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.

Затем радиационные эффекты облучения людей чаще всего приводят к:

  1. Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
  2. Рак щитовидной железы. Им также страдает 1% облученных.
  3. Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.

К счастью, современная медицина вполне может справиться с онкологическими заболеваниями на ранних стадиях, если влияние радиации на здоровье человека было кратковременным и достаточно слабым.

Что влияет на последствия облучения

Влияние радиации на живые организмы сильно различается от мощности и типа излучения: альфа, бета или Гамма. В зависимости от этого одна и та же доза радиации может оказаться практически безопасной или привести к скоропостижной смерти.

Также важно понимать, что воздействие радиации на организм человека редко бывает одновременным. Получить дозу в 0.5 Зиверта за один раз – это опасно, а 5-6 – смертельно. Но сделав несколько рентгеновских снимков по 0,3 Зиверта в течение определенного времени, человек дает возможность организму очиститься. Поэтому негативные последствия радиационного облучения просто не проявляются, так как при суммарной дозе в несколько Зиверт, единовременно на тело будет действовать лишь малая часть облучения.

Кроме того, различные последствия действия радиации на человека сильно зависят от индивидуальных особенностей организма. Здоровое тело дольше сопротивляется разрушительному действию облучения. Но лучше всего для обеспечения безопасности радиации для человека, как можно меньше контактировать с излучением для минимизации ущерба.

Коварство многих болезней, вызываемых радиацией, состоит в длительном скрытом периоде. Лучевое поражение может развиться через несколько минут или спустя десятилетия. Иногда последствия облучения организма затрагивают его наследственный аппарат. В этом случае страдают уже последующие поколения.

Генетические последствия радиационного облучения

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

  • до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.
  • до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Неопухолевые последствия воздействия на организм радиации

Отсроченный эффект того, что радиация делает с человеком, часто выражается в функциональных и органических изменениях. К ним относятся:

  • Нарушения микроциркуляции из-за повреждения мелких сосудов, вследствие чего развивается тканевая гипоксия, страдают печень, почки, селезенка.
  • Патологические изменения, созданные дефицитом клеток в органах с низкой скоростью разрастания тканей (половые железы, соединительная ткань).
  • Расстройство регулирующих систем: ЦНС, эндокринной, сердечнососудистой.
  • Избыточное новообразование тканей эндокринных органов в результате снижения их функций, вызванного радиацией.

Канцерогенные последствия радиоактивного облучения

Раньше других проявляют себя такие болезни, вызываемые радиацией, как лейкозы. Они становятся виновниками летальных исходов уже через 10 лет после обучения. Среди людей, подвергшихся действию проникающей радиации после бомбардировок Хиросимы и Нагасаки, смертность от лейкозов пошла на убыль только после 1970 года. Согласно данным НКДАР ООН (Научного комитета по действию атомной радиации), вероятность заболевания лейкозом составляет 1 шанс из 500 при получении дозы облучения 1 Гр.

Еще чаще развивается рак щитовидной железы - по информации того же НКДАР он поражает 10 человек из каждой тысячи облученных (в расчете на индивидуальную поглощенную дозу 1 Гр). С такой же частотой развивается и рак груди у женщин. Правда, оба этих заболевания, несмотря на злокачественность, приводят к смерти далеко не всегда: выжить удается 9 из 10 человек, перенесших рак щитовидной железы, и каждой второй заболевшей раком молочной железы женщине.

Одно из самых грозных отдаленных последствий, которое проникающая радиация может вызвать у людей, - это рак легких. Согласно исследованиям, наиболее высока вероятность заболеть им у шахтеров урановых родников - в 4-7 раз выше, чем у тех, кто пережил атомную бомбардировку. По мнению специалистов НКДАР, одна из причин этого - возраст шахтеров, которые в подавляющем большинстве старше облученного населения японских городов.

В других тканях организма, подвергшегося радиоактивной атаке, опухоли развиваются гораздо реже. Рак желудка или печени встречается не чаще 1 случая на 1000 при получении индивидуальной дозы в 1 Гр, рак иных органов фиксируется с частотностью 0,2-0,5 случая на 1000.

Снижение продолжительности жизни

Единого мнения о безусловном влиянии радиации на среднюю продолжительность жизни человека (СПЖ) у современных ученых нет. Но опыты на грызунах показали, что связь между облучением и более ранней смертностью есть. После получения дозы 1 Гр продолжительность жизни грызунов сокращалась на 1-5 %. Длительное воздействие гамма-излучения приводило к сокращению СПЖ при накоплении суммарной дозы 2 Гр. Причем смерть в каждом случае наступала от разных болезней, вызываемых радиацией: склеротических изменений, злокачественных новообразований, лейкозов и других патологий.

НКДАР ООН также рассматривал вопрос уменьшения продолжительности жизни как отдаленного последствия облучения. В результате специалисты пришли к выводу: при низких и умеренных дозах такая связь сомнительна, но интенсивное облучение проникающей радиацией действительно может вызывать у людей заболевания, сокращающие жизнь.

По оценкам разных ученых сокращение СПЖ человека составляет.

«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».

Настоящий материал - обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
- в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Однако, в природе существует явление, на которое человек из-за отсутствия необходимых органов чувств не может мгновенно реагировать - это радиоактивность. Радиоактивность - не новое явление; радиоактивность и сопутствующие ей излучения (т.н. ионизирующие) существовали во Вселенной всегда. Радиоактивные материалы входят в состав Земли и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества.

Самое неприятное свойство радиоактивного (ионизирующего) излучения - его воздействие на ткани живого организма, поэтому необходимы соответствующие измерительные приборы, которые предоставляли бы оперативную информацию для принятия полезных решений до того, когда пройдет продолжительное время и проявятся нежелательные или даже губительные последствия.что его воздействие человек начнет ощущать не сразу, а лишь по прошествии некоторого времени. Поэтому информацию о наличии излучения и его мощности необходимо получить как можно раньше.
Однако, хватит загадок. Поговорим о том, что же такое радиация и ионизирующее (т. е. радиоактивное) излучение.

Ионизирующее излучение

Любая среда состоит из мельчайших нейтральных частиц-атомов , которые состоят из положительно заряженных ядер и окружающих их отрицательно заряженных электронов. Каждый атом похож на солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам «планеты» - электроны .
Ядро атома состоит из нескольких элементарных частиц-протонов и нейтронов, удерживаемых ядерными силами.

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

Число присутствующих в ядре нейтральных частиц (нейтронов) может быть разным при одинаковом числе протонов. Такие атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разновидностям одного и того же химического элемента, называемым «изотопами» данного элемента. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так уран-238 содержит 92 протона и 146 нейтронов; в уране 235 тоже 92 протона, но 143 нейтрона. Все изотопы химического элемента образуют группу «нуклидов». Некоторые нуклиды стабильны, т.е. не претерпевают никаких превращений, другие же, испускающие частицы нестабильны и превращаются в другие нуклиды. В качестве примера возьмем атом урана - 238. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов -«альфа-частица (альфа)». Уран-238 превращается, таким образом, в элемент, в ядре которого содержится 90 протонов и 144 нейтрона - торий-234. Но торий-234 тоже нестабилен: один из его нейтронов превращается в протон, и торий-234 превращается в элемент, в ядре которого содержится 91 протон и 143 нейтрона. Это превращение сказывается и на движущихся по своим орбитам электронах (бета): один из них становится как бы лишним, не имеющим пары (протона), поэтому он покидает атом. Цепочка многочисленных превращений, сопровождающаяся альфа- или бета- излучениями, завершается стабильным нуклидом свинца. Разумеется, существует много подобных цепочек самопроизвольных превращений (распадов) разных нуклидов. Период полураспада, есть отрезок времени, за который исходное число радиоактивных ядер в среднем уменьшается в два раза.
При каждом акте распада высвобождается энергия, которая и передается в виде излучения. Часто нестабильный нуклид оказывается в возбужденном состоянии и при этом испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию энергии в виде гамма-излучения (гамма-кванта). Как и в случае рентгеновских лучей (отличающихся от гамма-излучения только частотой) при этом не происходит испускания каких-либо частиц. Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам нуклид радионуклидом.

Различные виды излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью; поэтому они оказывают неодинаковое воздействие на ткани живого организма. Альфа-излучение, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа - частицы, не попадут внутрь организма через открытую рану, с пищей, водой или с вдыхаемым воздухом или паром, например, в бане; тогда они становятся чрезвычайно опасными. Бета - частица обладает большей проникающей способностью: она проходит в ткани организма на глубину один-два сантиметра и более, в зависимости от величины энергии. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита. Ионизирующее излучение характеризуется рядом измеряемых физических величин. К ним следует отнести энергетические величины. На первый взгляд может показаться, что их бывает достаточно для регистрации и оценки воздействия ионизирующего излучения на живые организмы и человека. Однако, эти энергетические величины не отражают физиологического воздействия ионизирующего излучения на человеческий организм и другие живые ткани, субъективны, и для разных людей различны. Поэтому используются усредненные величины.

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон -тяжелый газ без вкуса, запаха и при этом невидимый; со своими дочерними продуктами.

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для различных точек земного шара. Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения. Проблема радона особенно важна для малоэтажных домов с тщательной герметизацией помещений (с целью сохранения тепла) и использованием глинозема в качестве добавки к строительным материалам (т.н. «шведская проблема»). Самые распространенные стройматериалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья, фосфогипса.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

В природный газ радон проникает под землей. В результате предварительной переработки и в процессе хранения газа перед поступлением его к потребителю большая часть радона улетучивается, но концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же приточно - вытяжной вентиляции, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит. Это относится и к дому в целом -ориентируясь на показания детекторов радона можно установить режим вентиляции помещений, полностью исключающий угрозу здоровью. Однако, учитывая, что выделение радона из грунта имеет сезонный характер, нужно контролировать эффективность вентиляции три-четыре раза в год, не допуская превышения норм концентрации радона.

Другие источники радиации, к сожалению обладающие потенциальной опасностью, созданы самим человеком. Источники искусственной радиации - это созданные с помощью ядерных реакторов и ускорителей искусственные радионуклиды, пучки нейтронов и заряженных частиц. Они получили название техногенных источников ионизирующего излучения. Оказалось, что наряду с опасным для человека характером, радиацию можно поставить на службу человеку. Вот далеко не полный перечень областей применения радиации: медицина, промышленность, сельское хозяйство, химия, наука и т.д. Успокаивающим фактором является контролируемый характер всех мероприятий, связанных с получением и применением искусственной радиации.

Особняком по своему воздействию на человека стоят испытания ядерного оружия в атмосфере, аварии на АЭС и ядерных реакторах и результаты их работы, проявляющиеся в радиоактивных осадках и радиоактивных отходах. Однако только чрезвычайные ситуации, типа Чернобыльской аварии, могут оказать неконтролируемое воздействие на человека.
Остальные работы легко контролируются на профессиональном уровне.

При выпадении радиоактивных осадков в некоторых местностях Земли радиация может попадать внутрь организма человека непосредственно через с/х продукцию и питание. Обезопасить себя и своих близких от этой опасности очень просто. При покупке молока, овощей, фруктов, зелени, да и любых других продуктов совсем не лишним будет включить дозиметр и поднести его к покупаемой продукции. Радиации не видно - но прибор мгновенно определит наличие радиоактивного загрязнения. Такова наша жизнь в третьем тысячелетии - дозиметр становится атрибутом повседневной жизни, как носовой платок, зубная щетка, мыло.

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как "свободные радикалы".

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Беккерель (Бк, Вq);
Кюри (Ки, Си)

1 Бк = 1 распад в сек.
1 Ки = 3,7 х 10 10 Бк

Единицы активности радионуклида.
Представляют собой число распадов в единицу времени.

Грей (Гр, Gу);
Рад (рад, rad)

1 Гр = 1 Дж/кг
1 рад = 0.01 Гр

Единицы поглощённой дозы.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.

Зиверт (Зв, Sv)
Бэр (бер, rem) - "биологический эквивалент рентгена"

1 Зв = 1 Гр = 1 Дж/кг (для бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.

Грей в час (Гр/ч);

Зиверт в час (Зв/ч);

Рентген в час (Р/ч)

1 Гр/ч = 1 Зв/ч = 100 Р/ч (для бета и гамма)

1 мк Зв/ч = 1 мкГр/ч = 100 мкР/ч

1 мкР/ч = 1/1000000 Р/ч

Единицы мощности дозы.
Представляют собой дозу полученную организмом за единицу времени.

Для информации, а не для запугивания, особенно людей, решивших посвятить себя работе с ионизирующим излучением, следует знать предельно допустимые дозы. Единицы измерения радиоактивности приведены в таблице 1. По заключению Международной комиссии по радиационной защите на 1990 г. вредные эффекты могут наступать при эквивалентных дозах не менее 1,5 Зв (150 бэр) полученных в течение года, а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. Различают хроническую и острую (при однократном массивном воздействии) формы этой болезни. Острую лучевую болезнь по тяжести подразделяют на четыре степени, начиная от дозы 1-2 Зв (100-200 бэр, 1-я степень) до дозы более 6 Зв (600 бэр, 4-я степень). Четвертая степень может закончиться летальным исходом.

Дозы, получаемые в обычных условиях, ничтожны по сравнению с указанными. Мощность эквивалентной дозы, создаваемой естественным излучением, колеблется от 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв/год (44-175 мбэр/год).
При медицинских диагностических процедурах - рентгеновских снимках и т.п. - человек получает еще примерно 1,4 мЗв/год.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

Согласно гигиеническим нормативам НРБ-96 (1996 г.) допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников для помещения постоянного пребывания лиц из персонала - 10 мкГр/ч, для жилых помещений и территории, где постоянно находятся лица из населения - 0,1 мкГр/ч (0,1 мкЗв/ч, 10 мкР/ч).

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Несколько слов о регистрации и дозиметрии ионизирующего излучения. Существуют различные методы регистрации и дозиметрии: ионизационный (связанный с прохождением ионизирующего излучения в газах), полупроводниковый (в котором газ заменен твердым телом), сцинтиляционный, люминесцентный, фотографический. Эти методы положены в основу работы дозиметров радиации. Среди газонаполненных датчиков ионизирующего излучения можно отметить ионизационные камеры, камеры деления, пропорциональные счетчики и счетчики Гейгера-Мюллера . Последние относительно просты, наиболее дешевы, не критичны к условиям работы, что и обусловило их широкое применение в профессиональной дозиметрической аппаратуре, предназначенной для обнаружения и оценки бета- и гамма-излучения. Когда датчиком служит счетчик Гейгера-Мюллера, любая вызывающая ионизацию частица, попадающая в чувствительный объем счетчика, становится причиной самостоятельного разряда. Именно попадающая в чувствительный объем! Поэтому не регистрируются альфа -частицы, т.к. они туда не могут проникнуть. Даже при регистрации бета - частиц необходимо приблизить детектор к объекту, чтобы убедиться в отсутствии излучения, т.к. в воздухе энергия этих частиц может быть ослаблена, они могут не преодолеть корпус прибора, не попадут в чувствительный элемент и не будут обнаружены.

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании "Кварта-Рад"