Очистка воды от белка ультрафильтрацией. Ультрафильтрация природных вод как метод получения питьевой воды. Состав установки ультрафильтрации

Способ, который набирает всё большую популярность в сфере борьбы с микроорганизмами. Эффективный и комплексный метод обеззараживания воды.

Ультрафильтрация для обеззараживания воды — это относительно новый способ, поскольку он известен уже давно. Просто другие способы — реагентное обеззараживание воды и некоторые физические методы обеззараживания воды являются более старыми. Но и менее совершенными — с некоторых точек зрения. Начнём с определения.

Ультрафильтрация — это способ очистки воды, одновременная безреагентная дезинфекция и осветление воды. При ультрафильтрации из воды удаляются нерастворимые примеси.

Принцип ультрафильтрации в общем

Принцип технологии ультрафильтрации состоит в том, что через полупроницаемый барьер под определённым давлением продавливается вода. Отверстия в барьере меньше по размерам, чем вирусы и прочие нерастворимые примеси. Соответственно, всё, что больше вирусов, отсеивается.

Кроме того, не следует забывать, что для обработки воды ультрафиолетовым излучением необходима специальная подготовка воды — которая может не проводиться при обеззараживании при помощи ультрафильтрации.

Степень фильтрации на установках ультрафильтрации бывает разной. Это диапазон от 0,01 микрона (десятитысячная миллиметра) до 0,001 микрона. Этот показатель необходимо выяснять при покупке. Так, если производитель говорит, что ультрафильтрация, которую он предлагает, удаляет все вирусы из воды, а размер пор составляет 0,01 микрон, то это неправда. Существуют вирусы и меньшего размера. Для полного удаления вирусов необходимы диаметры примерно 0,005 микрон.

То есть, ультрафильтрация — исключительно физический способ очистки воды, без постоянного применения химических реагентов.

Далее, если производитель говорит, что у него микрофильтрационная мембрана (например, трековая), и она удаляет вирусы и споры бактерий, то это неправда. Так как отверстия в микрофильтрационной мембране БОЛЬШЕ, чем споры бактерий и вирусы. Споры бактерий удаляются на ультрафильтрационной мембране. И полностью.

Таким образом, технология ультрафильтрации эффективнее обеззараживает воду, чем ультрафиолетовое излучение. Кроме того, для обработки воды с помощью ультрафильтрации нет необходимости серьёзно предподготавливать воду. Достаточно 30 микронного предварительного фильтра механической очистки воды.

Большой плюс технологии ультрафильтрации — это комплексная технология. И если химическое обеззараживание и ультрафиолет отвечают за обеззараживание и в какой-то мере слипание частиц, то технология ультрафильтрации кроме обеззараживания выполняет функцию осветления воды. То есть, до очистки вода была мутной и с бактериями, а после неё — прозрачная и продезинфецированная.

Существует две большие группы аппаратов ультрафильтрации.

Первая группа — питьевые системы , которые устанавливаются под кухонную мойку. Скорость очистки воды с помощью бытовой системы ультрафильтрации чаще всего составляет 2-3 литров в минуту, но бывает и больше. То есть, вода подготавливается в количестве, нужном для питья и приготовления пищи. Чаще всего питьевые системки на основе ультрафильтрции устроены по типу многоступенчатых систем обратного осмоса. Те же колбы, только вместо мембраны осмоса стоит мембрана ультрафильтрации. И нет накопительного бачка.

То есть, аппарат состоит не из голой ультрафильтрационной мембраны, а ещё и из нескольких ступеней предварительной очистки воды (чаще всего , ). То есть, бытовая система ультрафильтрации удаляет не только бактерии-вирусы, но и механические примеси, хлор, хлор-органические соединения.

Мембраны ультрафильтрации для питьевых систем могут быть керамическими и органическими. Чаще всего они организованы по типу полых волокон, внутри которых протекает грязная вода, а фильтрация проихсодит изнутри наружу. Керамические мембраны более долговечны. Однако, и у тех, и у других существует свой ресурс, после которого их нужно заменить. На показатель ресурса так же необходимо обращать внимание при выборе аппарата.

Вторая группа — системы ультрафильтрации с большой производительностью — от 500 литров в час. Эти системы предназначены для очистки воды на целый , коттедж , квартиру, ресторан, производство. Промышленные ультрафильтрационные установки могут организовываться как по типу полых волокон, так и в виде спиральной навивки.

Ультрафильтрация для дома, квартиры может использоваться не только дом или квартиру. В чистой продезинфицированной воде необходима для многих отраслей — для производства, для медицинских учреждений, для бассейнов и так далее. В любом из этих случаев используются практически одинаковые мембранные модули.

Важно, что основной рабочий элемент ультрафильтрационного аппарата — мембрана ультрафильтрации — нуждается в периодическом обеззараживании. Если она не керамическая. Бактерии любят материал, из которого сделана мембрана, и начинают его есть. Ну, и сначала мембрана превращается в микрофильтрационную, а затем в обычный механический фильтр.

Чтобы этого не происходило, необходимо регулярное обеззараживание мембраны. Частоту обеззараживания мембраны расчитывают специалисты на основе бактериального анализа воды. Керамическая мембрана может служить практически вечно, так как её не могут повредить бактерии, и она легко может отмываться агрессивными моющими средствами. Так что, если есть возможность, лучше использовать керамические мембраны ультрафильтрации.

Если нет, то нужно сравнивать между собой доступные органические мембраны. И выбирать наиболее производительную и наиболее долговечную мембрану. Даже если она дороже, выгоднее приобретать ту, которая служит дольше. Так экономические расходы получаются намного меньше.

Итак, ультрафильтрация — это экономичный и надёжный способ обеззараживания воды.

По материалам Выбор фильтров для воды : http://voda.blox.ua/2008/06/Kak-vybrat-filtr-dlya-vody-20.html

Ультрафильтрация — процесс удаления взвешенных и коллоидных частиц в диапазоне размеров от 0,03 до 0,1 мкм на полимерных половолоконных мембранах низкого давления.

Назначение установки ультрафильтрации в составе системы очистки воды — по качественным показателям подготовить воду перед стадией обессоливания.

Природные воды представляют собой сложную многокомпонентную динамическую систему, в состав которой входят соли (преимущественно в виде ионов, молекул и комплексов), органические вещества (в молекулярных соединениях и в коллоидном состоянии), газы (в виде молекул и гидратированных соединений), диспергированные примеси, бактерии и вирусы. Таким образом, чрезвычайно сложный молекулярный состав поверхностных вод, а также сезонные изменения таких параметров как мутность, цветность и окисляемость не позволяют точно рассчитать работу ультрафильтрационной установки и предсказать режим её работы. Для определения эффективного режима работы ультрафильтрационной установки, правильного расчета схемы ультрафильтрации и проведения проектных работ необходимо проведение пилотных испытаний.

Для улучшения работы ультрафильтрационной установки (увеличение удельной производительности фильтрования), стоит предусмотреть предварительный нагрев исходной воды до 20-25 °С.

Состав установки ультрафильтрации

Установка ультрафильтрации состоит из следующих блоков:

  • предварительной очистки,
  • фильтрующих модулей,
  • системы дозирования коагулянта,
  • промывки установки.

Принципиальная схема установки ультрафильтрации

Блок предварительной очистки установки ультрафильтрации (ПУФ) состоит из насоса исходной воды, обычно Grundfos, и фильтра предварительной очистки с отсечкой 200 мкм для предотвращения загрязнения мембран грубой взвесью.

Блоки фильтрующих модулей предназначены для проведения процесса фильтрации.

Блок дозирования коагулянта предназначен для укрупнения примесей и облегчения их удаления. Блок дозирования коагулянта состоит из дозирующих насосов и емкости приготовления коагулянта. В качестве коагулянта при ультрафильтрации обычно применяется полиоксихлорид алюминия, например, «Аква-Аурат 18».

С целью хранения часового запаса исходной воды и обеспечения независимости работы установки очистки по гидравлическим параметрам, перед установкой очистки предусмотрен бак исходной воды.

Для обеспечения требуемых гидравлических параметров работы установки, в составе установки ультрафильтрации предусматривается насосная станция исходной воды.

Исходя из описанного предназначения элементов ниже приведён алгоритм работы установки ультрафильтрации.

Вода из баков исходной воды насосами забирается для очистки. Перед насосами исходной воды в очищаемую воду насосом-дозатором подаётся коагулянт с расходом, пропорциональным расходу исходной воды. Расход коагулянта определяется в процессе пилотных испытаний установки ультрафильтрации.

Дозирование коагулянта способствует эффективному снижению органических и железосодержащих соединений, позволяет укрупнить содержащиеся частицы коллоидных веществ, тем самым повысить эффективность процесса очистки воды.

Исходная вода после обработки коагулянтом подаётся на фильтр предварительной очистки, а затем на фильтрующие модули ультрафильтрации.

Вода после ультрафильтрационных модулей направляется в бак осветлённой воды.

Обратная и химически усиленная промывка фильтрующих модулей проводится с помощью блока промывки установки ультрафильтрации, состоящего из насосов промывки, фильтров грубой очистки с отсечкой 200 мкм для предотвращения попадания крупных включений из емкости, дозирующих насосов серной кислоты, дозирующих насосов и емкости дозирования биоцида. Обратная промывка проводится 3-5 раз в час для удаления взвешенных веществ, накопленных за время фильтрации, обратным током осветлённой воды. Химически усиленная промывка проводится 1-3 раза в день и позволяет провести очистку ультрафильтрационных мембран от органических (щелочная промывка) и неорганических (кислотная промывка) загрязнений.

Все переключения потоков в установке производятся автоматически системой автоматизированного управления технологическими процессами (АСУ ТП). Параметры процесса осветления (давление, расход, рН) контролируются по показаниям установленных приборов.

Основные параметры использования ультрафильтрационных установок

Качество очищаемой воды: Взвешенные вещества в исходной воде до 1 000 мг/л

Снижение по основным показателям в % от исходных:

  • Взвешенные вещества: до 100 %
  • Окисляемость: до 70 %
  • Железо: до 97 %
  • Цветность: до 96 %
  • ОМЧ: до 99,9%

Сравнение ультрафильтрации и традиционной очистки

Под традиционной очисткой будем понимать осветлители и механические фильтры.

Ультрафильтрация:

  • возможность получить воду питьевого качества
  • компактность
  • полная автоматизация и автономность работы
  • в большинстве случаев не требуется первичное хлорирование
  • низкие эксплуатационные затраты

Традиционная очистка:

  • качество воды не всегда удовлетворяет питьевым нормам
  • громоздкость
  • сложность автоматизации (осветлители)
  • требуется первичное хлорирование
  • высокие эксплуатационные затраты

Краткое описание блоков ультрафильтрационной установки

а) Блок коагуляции предназначен для укрупнения примесей и лучшего их удаления на установки ультрафильтрации. Блок коагуляции комплектуется баками дозирования коагулянта, насосами-дозаторами (срезервированием), КИП, трубопроводами и необходимой арматурой. Предполагается использовать жидкий коагулянт — полиоксихлорид алюминия (тип и доза реагента уточняется на пилотных испытаниях).

По желанию заказчика можно использовать существующий на производстве коагулянт и систему приготовления рабочего раствора реагента. Ориентировочный годовой расход 100 % коагулянта может составить около 135 тн.


б) Блок насосов исходной воды предназначен для подачи воды на мембранные блоки установки. Комплектуется насосами «Sulzer» с частотным приводом, КИП, трубопроводами и необходимой арматурой. Каждый мембранный блок укомплектовывается своим насосом исходной воды.

в) Блок фильтров грубой очистки для защиты ультрафильтрационных мембран от грубодисперсных взвесей предусматривается защитный барьерный самопромывной фильтр с тонкостью фильтрования 200 мкм. Промывка фильтров осуществляется автоматически по времени или по перепаду давления. Блок промывки укомплектован насосами исходной воды, подающими воду на мембраны. Все насосы оснащены частотными приводами.


г) Блок фильтрующих модулей. Установка ультрафильтрации укомплектовывается блоками мембранных элементов, в том числе 1 резервный блок на каждые 10 рабочих (примерная производительность одного блока, в зависимости от задачи — 50-150 м 3 /ч).

Во время нормальной эксплуатации установки работают все блоки. Удельный поток фильтрования на воде поверхностного водоисточника составляет обычно 50-70 л/м 2 ×ч и уточняется во время пилотных испытаний и ПНР.

д) Блок промывки мембран функционирует в двух режимах:

  • обратная промывка;
  • химически усиленная промывка.

Во время химически усиленной промывки в обратный ток фильтрата на мембранный блок подаются растворы гидроксида натрия и окислителя (гипохлорит натрия), серной кислоты.

Химически усиленная щелочная промывка производится 30 % NaOH, и 14 % NaOCl в пропорции 3:1. Химически усиленная кислотная промывка производится концентрированной серной кислотой. Все переключения потоков производятся автоматически.

Примерная периодичность обратной промывки — раз в 20-60 минут (длительность 1 минута); химической промывки — раз в сутки. Гидравлические режимы работы установки уточняются при проведении пилотных испытаний.

Блок промывки комплектуется сетчатыми фильтрами и насосами промывки (рабочим и резервным) с частотными приводами.

Презентация в формате PDF

Для предоставления технико-коммерческого предложения необходимо заполнить форму заказа.

А. П. Андрианов, инж. (МГСУ); А. Г. Первов, д-р техн. наук (ГНЦ РФ НИИ ВОДГЕО)

Все больше внимания в настоящее время уделяется поиску новых перспективных методов очистки воды, более компактных, дешевых, простых в эксплуатации по сравнению с традиционными. К их числу относятся мембранные методы: ультрафильтрация и нанофильтрация.

Оба процесса имеют сходное аппаратурное оформление, но в технологическом плане имеются принципиальные различия. Если при эксплуатации нанофильтрационных установок накопившиеся в процессе работы на поверхности мембран осадки (задержанные из воды загрязнения) удаляются с помощью химических промывок (т. е. с применением реагентов), то при эксплуатации ультрафильтрационных мембран удаление загрязнений с поверхности мембран производится обратным током, как у фильтров с зернистой загрузкой. Поэтому безреагентная ультрафильтрация считается за рубежом технологией будущего .

Ультрафильтрация – это мембранный процесс, занимающий промежуточное положение между нанофильтрацией и микрофильтрацией. Ультрафильтрационные мембраны имеют размер пор от 20 до 1000 Å (или 0,002–0,1 мкм) и позволяют задерживать тонкодисперсные и коллоидные примеси, макромолекулы (нижний предел молекулярной массы составляет несколько тысяч), водоросли, одноклеточные микроорганизмы, цисты, бактерии и вирусы. Таким образом, использование мембранной ультрафильтрации для очистки воды позволяет сохранить ее солевой состав и осуществить осветление и обеззараживание воды без применения химических веществ, что делает эту технологию перспективной с экологической и экономической точек зрения.

Технология обработки воды с помощью ультрафильтрационных мембран заключается в «тупиковой» фильтрации воды через мембрану без сброса концентрата. Такой режим работы позволяет сократить расход воды на собственные нужды станции очистки и уменьшить ее общее энергопотребление. Процесс фильтрования длится 20-60 мин, после чего следует обратная промывка мембраны. Для этого часть очищенной воды под давлением подается в фильтратный тракт в течение 20-60 с. В процессе обратной промывки вода уносит с поверхности мембран слой накопившихся загрязнений. На рис. 1 показаны устройство и схема работы ультрафильтрационных рулонных элементов.

Рис. 1. Ультрафильтрационный модуль

а - рабочий режим; б - режим промывки; 1 - исходная вода; 2 - фильтрат; 3 - рулонный элемент; 4 - сброс концентрата; 5 - обратная промывка фильтратом

В процессе длительной работы производительность мембранных аппаратов постепенно уменьшается, так как на турбулизаторной сетке, на поверхности и на стенках пор мембран сорбируются различные вещества и отлагаются частички загрязнений, увеличивающие общее гидравлическое сопротивление мембранных аппаратов. Для восстановления первоначальной производительности несколько раз в год проводится химическая промывка мембранных аппаратов специальными кислотными и щелочными реагентами для удаления накопленных загрязнений.

При конструировании систем очистки воды на основе метода ультрафильтрации основной задачей, встающей перед проектировщиком, является правильное определение продолжительности прямого фильтрования, а также частоты и интенсивности обратных промывок. Эти параметры зависят от качества исходной воды и определяются исходя из оптимальных соотношений производительности ультрафильтрационной установки и ее общего водопотребления . Правильный выбор режима промывки обеспечивает эффективную работу установки, заключающуюся в длительном сохранении производительности и качества фильтрата. Авторами на примере обезжелезивания подземной воды была разработана методика поиска оптимальных параметров работы ультрафильтрационной установки.

Эффективность обратной промывки зависит от ее интенсивности (при неизменном давлении промывки можно оперировать длительностью обратной промывки) τ и интервала между промывками (продолжительность фильтроцикла) t. При заданном времени τ эффективность работы установки зависит от продолжительности t: чем меньше t, тем эффективнее проходит отмывка мембраны от загрязнений, но тем больше образуется промывной воды. Исследования по оптимизации процесса обратной промывки ставят целью определить такие значения τ и t для различного состава обрабатываемой воды, которые соответствуют наибольшему количеству очищенной воды, полученной в течение времени Т. Исследования проводились на модельных растворах хлорида железа (III) на ультрафильтрационных мембранах марки УАМ-150. На рис. 2 показано снижение производительности мембранного аппарата с течением времени для разных концентраций железа в исходной воде.

Для определения оптимальных величин продолжительности фильтроцикла и промывки проводилось несколько серий экспериментов с различной продолжительностью обратной промывки. В каждой серии при фиксированной длительности обратной промывки менялась продолжительность фильтроцикла. Зависимости объема фильтрата и промывной воды от времени работы установки для одной серии экспериментов приведены на рис. 3 (продолжительность обратной промывки 30 с).

Поиск оптимальных соотношений длительности фильтроцикла и промывки производится по максимальной полезной производительности мембранного аппарата, которую можно определить как Vполезн = Vф - Vпр.. Сначала оптимальные точки находились отдельно для каждой продолжительности промывки. На рис. 4 показано определение оптимальной продолжительности фильтроцикла при длительности промывки 30 с. Затем полученные кривые зависимости полезного объема чистой воды от продолжительности фильтроцикла сводятся в один график (рис. 5), и по точкам максимумов этих кривых строится результирующая кривая, которая позволяет определить максимальное количество очищенной воды в зависимости от t и τ и соответственно найти оптимальную длительность обратной промывки. Эксперименты по приведенному алгоритму определения точки оптимума повторяются для различных концентраций железа в исходной воде.

Таким образом, полученные в результате проведенных экспериментов данные могут использоваться в качестве рекомендаций при разработке систем обезжелезивания на основе мембранной ультрафильтрации.

Рис. 3. Зависимость объема фильтрата (сплошная линия) и промывной воды (пунктирная линия) от времени работы установки при длительности промывки 30 с

продолжительность фильтроцикла, мин: 1, 1¢ - 15; 2, 2¢ - 30; 3, 3¢ - 60

Рис. 4. Определение оптимальной продолжительности фильтроцикла при длительности обратной промывки 30 с

1 - Vф; 2 - Vполезн; 3 - Vпр

Помимо указанных выше параметров на эффективность работы мембранных аппаратов влияет величина давления: рабочего и обратной промывки. При определении точки оптимума необходимо учитывать не только полезную производительность, но и объемы исходной и сбрасываемой в канализацию воды, при этом вычисление оптимальных соотношений длительности промывки и фильтроцикла производится на основе экономических расчетов.

Рис. 5. Определение оптимальной продолжительности промывки для разной продолжительности фильтроцикла продолжительность обратной промывки, с: 1 - 15; 2 - 30; 3 - 45; 4 - 60; пунктир - оптимум

В результате исследований разработаны технологические схемы и конструкции установок, предназначенных для обработки подземных вод с повышенным содержанием железа. В зависимости от состава исходной воды производится выбор той или иной модификации установок, отличающихся устройством аэрации и маркой используемых мембран. Вместе с удалением железа на установках обеззараживают воду без использования реагентов, удаляют сероводород и осветляют воду в случае выноса из скважины глинистых частиц.

Метод обезжелезивания воды с помощью ультрафильтрации рекомендуется применять при следующих показателях качества исходной воды: железо общее – не более 40 мг/л; щелочность – не более (1+Fe2+/28) мг-экв/л; рН – не менее 6 (водородный показатель воды после аэрации должен быть не менее 6,7-7); содержание Н2S – не более 5 мг/л; перманганатная окисляемость – не более 6-10 мг/л.

При содержании железа до 5 мг/л и сероводорода до 2 мг/л применяется схема с упрощенной аэрацией и фильтрованием на мембранах типа УАМ-500 и УАМ-1000. При содержании железа до 20-40 мг/л и сероводорода выше 2 мг/л используется аэрация эжектированием или барботированием и дополнительная упрощенная аэрация. При содержании в исходной воде трудноокисляемого железа, низких значениях рН и отсутствии растворенной углекислоты степень аэрации увеличивается. В зависимости от продолжительности процесса окисления двухвалентного железа и расчетной производительности установки обезжелезивания назначается объем аэрационных сооружений.

При наличии в исходной воде грубодисперсных примесей и песка в начале технологического тракта предусматривается сетчатый самопромывающийся фильтр с размером ячеек 100- 200 мкм. Внешний вид и принципиальная технологическая схема установки приведены на рис. 6 и 7. В зависимости от содержания железа и мутности исходной воды потребление воды на собственные нужды станции составляет не более 3-5 %, удельная потребляемая мощность 1,5-2 кВт∙ч/м3.


Рис. 7. Технологическая схема обезжелезивания подземных вод с использованием ультрафильтрации (при содержании железа в исходной воде не более 5 мг/л)

Советы пчеловоду: поилки.

Всему живому на Земле нужна вода. Нужна она в избытки и пчёлам, для отменного обмена веществ, для регулирования температуры тела и так далее. Жалко, что пчеловоды об этом просто забывают: новички - из-за незнания; кто-то просто ленится; а кто-то просто полагает, что пчёлы, если надо, воду сами отыщут. Хорошо, если поблизости вода действительно имеется, к примеру, река. Но, если вода далеко, то о ней пчеловод должен позаботиться.

Пчёлы, когда ищут воду, ориентируются на температуру, а не на её вкус. Хотя и вкус воды, так же для них немаловажен. Они предпочитают пополнять запасы воды там, где она теплее, к примеру, это может быть бассейн или колодец, поилки домашних животных. А вот воду из-под крана они не любят, и понятно почему, ведь она и для человека пользу не приносит. Да и холодная она для пчёл, а если они пьют воду холодную, то температура их тела снижается, а вода составляет половину массы тела. Если пчёлы привыкли летать за водой на какое-то определённое место, то отучить их будет крайне сложно, в особенности, если они летают туда не один месяц и тем более, не один год.

И всё же, с чего начать пчеловоду, решившему отманить пчёл от их привычного места водопоя? Надо уже ранней весной соорудить для пчёл поилку, эта поилка должна быть всегда наполнена свежей водой. Тогда пчёлы будут беречь и силы, и энергию, которые ранее были затрачены на поиск воды. Требования к поилке просты:

Лёгкость в дезинфекции;

Быстрота в сборке и разборке,

Удобства для пчёл и пчеловода,

Лёгкость в заполнении водой,

А ещё она должна легко и быстро приводиться в действие.

Санитарные требования:

Поилка должна стоять в сухом месте,

Солнечное место;

Ветреное место;

И там где не главное направление полёта пчёл.

Виды поилок.

Как правило, пчеловоды пользуются двумя типами поилок:

Индивидуальные.

Общие.

А ещё используются, в качестве поилок, различные сосуды и посуда стеклянная, деревянная, металлическая или из пластика. Используется специально выпущенная промышленностью посуда, специально изготовленная пчеловодами посуда, или просто, посуда, приспособленная в виде поилки.

И нет ничего плохого в том, что пчеловод не купил для пчёл поилку, а придумал её сам. Главное, что бы посудина отвечала всем функциональным и санитарным требованиям. Вода в ней должна быть:

Свежей.

Чистой.

Тёплой.

Чаще всего на пасеке можно заметить именно поилки общего типа. Это ёмкость с маленьким краником. Под краном расположена доска под наклоном. На доске есть желобки и разнообразные камешки для красоты. Пчеловоды такие поилки ещё и ракушками дополняют, чтобы пчёл привлечь.

Не стоит приводить примеры самодельных поилок, дополнять примеры чертежами - это ни к чему. Любой желающий сможет быстро сконструировать поилку. Да и в магазине они продаются «по карману».