Иммунная система человека: органы, функции и заболевания. Структура и функции иммунной системы Анатомическая структура иммунной системы

К иммунной системе относятся органы и ткани, обеспечивающие защиту организма от генетически чужеродных клеток и веществ, поступающих в организм извне или образующихся в самом организме

Строение иммунной системы изучает наука, которая называется иммуноморфологией. Хотя самые первые исследования были выполнены ещё до войны, данное название было введено в 1954 году профессором Рапопортотом.

Термин иммунный происходит от латинского слова immunis – что означает «свободный, избавленный от чего либо». Под иммунитетом понимается невосприимчивость организма ко всему генетически чужеродному. Если иммунная система определяет, что это не «своё», а «чужое», включаются механизмы, позволяющие организму избавиться от чужого.

Вещества, способные при поступлении в организм вызывать специфический иммунный ответ называются антигенами. Антигенами могут быть бактерии, вирусы, чужеродные клетки и ткани, мутационно изменившиеся собственные клетки тела (например, раковые), продукты жизнедеятельности чужеродных клеток – например белки, полисахариды .

Одним из главных проявлений иммунного ответа является образование антител.

Антитела – это сложные белки, находящиеся в иммуноглобулиновой фракции плазмы крови, синтезируются плазматическими клетками под воздействием антигенов и способны соединяться с соответствующими антигенами.

Защитные реакции организма осуществляют все органы, которые участвуют в образовании клеток крови лимфоидного ряда.

Органы иммунной системы делятся на центральные и периферические.

К центральным органам относится красный костный мозг и тимус. К периферическим же органам относятся селезенка, лимфатические узлы организма, миндалины глотки, одиночные и множественные лимфатические фолликулы желудочно-кишечного тракта, дыхательных, мочевых и половых путей .

Иммунная система функционирует в единстве с кровеносной и лимфатической системами.

Функции органов иммунной системы.

    Сохраняют постоянство внутренней среды организма в течение всей жизни индивидуума;

    Иммунные органы вырабатывают иммунокомпетентные клетки – лимфоциты и плазмоциты и включают их в иммунный процесс;

    Обеспечивают распознавание и уничтожение проникающих в организм или образующихся в нем клеток, несущих на себе признаки генетически чужеродной информации;

    Кроме распознавания чужеродного они обеспечивают выбор класса иммунного ответа на клеточном или гуморальном уровне и развертывают иммунный ответ.

Генетический контроль в организме осуществляет функционирование популяции Т- и В-лимфоцитов, которые при участии макрофагов создают иммунный ответ организма.

Т-лимфоциты или тимус зависимые лимфоциты, заселяют паракортиальную зону лимфатических узлов, периартериальные части лимфатических фолликулов селезёнки и обладают клеточным иммунитетом

В-лимфоциты являются предшественниками антителообразующих клеток – плазмоцитов и лимфоцитов с повышенной активностью. Они поступают в бурсазависимые зоны лимфатических узлов и выполняют функции гуморального иммунитета, в котором главная роль принадлежит крови, лимфе, секрету желез, содержащих антитела

Паренхима всех органов иммунной системы образована лимфоидной тканью, которая представляет собой комплекс лимфоцитов, плазмоцитов, макрофагов, базофилов, находящихся в петлях ретикулярной соединительной ткани. Нередко органы иммунной системы называют лимфоидными органами.

Органы иммунной системы локализованы в теле не беспорядочно, а в определенных местах.

Для центральных органов – это наиболее хорошо защищенные места. Периферические органы находятся на границе среды обитания, на участках возможного внедрения в организм чужеродных образований. В этих местах формируются пограничные зоны или сторожевые посты.

Общие закономерности строения и развития органов иммунной системы.

    Их ранняя закладка в эмбриогенезе. Тимус и костный мозг развиваются с 4-5 недели, селезенка и лимфатические узлы на 5-6 недели, несколько позже лимфоидное кольцо глотки.

    К моменту рождения органы иммунной системы сформированы. Красный костный мозг у новорожденных составляет 40 г или 1,4% массы тела. У взрослого человека он весит 1045 г 1,4% к массе тела.

    Максимального развития органы иммунной системы достигают у детей и подростков. Сразу же после рождения нарастает масса красного костного мозга и тимуса. Увеличивается количество лимфоидных узелков в миндалинах, увеличивается количество лимфатической ткани в селезенке. У детей 8-12 лет в небных миндалинах обнаруживается фолликулов в 50 раз больше, чем у новорожденных.

    Ранняя инволюция их лимфоидной паренхимы. В тимусе у 20-летних людей количество лимфоидной ткани составляет лишь 60% к строме, к 60-ти годам эта доля составляет 10-12%. В гребнях подвздошных костей содержание красного костного мозга с возрастом значительно снижается. К 50-ти годам ее в три раза меньше, чем у новорожденного. Уменьшается число и размеры лимфатических узлов и лимфоидных фолликул. В центральных органах иммунной системы на месте паренхимы появляется жировая ткань. Мелкие лимфатические узлы становятся непроходимыми для лимфы и выключаются из лимфатического русла. Средние и крупные лимфатические узлы срастаются .

Красный костный мозг является производным мезенхимы, то есть зародышевой соединительной ткани, развивается с 4-5 недели, располагается в ячейках между костными пластинами губчатых костей и эпифизах трубчатых костей. Наиболее богатыми красным костным мозгом костями являются тела позвонков, ребра, грудина, тазовая кость, плоские кости черепа.

В красном костном мозге имеется ретикулярная ткань, в петлях которой находятся диффузная рабочая паренхима, в которой образуются стволовые клетки крови эритроцитарного, лейкоцитарного и лимфоцитарного ряда.

Они в процессе дифференцировки дают начало эритроцитам, лейкоцитам, лимфоцитам. У плода и новорожденных красный костный мозг бывает и в каналах трубчатых костей, с возрастом он замещается желтым костным мозгом, который состоит из жировой ткани.

Тимус – располагается в грудной клетке, в переднем средостении. Спереди от тимуса расположена грудина и реберные хрящи, сзади находится перикард с сердцем и крупные кровеносные сосуды, по бокам – плевральные мешки. Тимус состоит из двух долей, соединенных друг с другом. Верхние полюса тимуса находятся на уровне яремной вырезки грудины, а иногда и выше, нижние полюса заходят на переднюю поверхность перикарда. Снаружи покрыта соединительной оболочкой, которая заходя, в паренхиму, делит ее на дольки. На разрезе различают корковое и мозговое вещество. В корковом веществе имеется лимфоидная ткань и тельца Гассаля – лимфоэпителиоидные образования, обладающие эндокринной функцией – выделяет тимозин.

Мозговое вещество состоит из стромы, кровеносных сосудов и нервов. Наибольшего развития тимус достигает к моменту половой зрелости и весит около 20-23 г. Постепенно происходит инволюция тимуса, его паренхима замещается на жировую ткань.

Селезенка – относится к периферическим органам иммунной системы, она является главным источником АТ при внутривенном попадании в организм АГ. Древние ученые считали ее ошибкой природы и рассматривали как противовес печени. Существовало мнение, что с удалением селезенки, увеличиваются беговые качества скороходов.

Частичная или полная утрата функции селезенки, которая имеет место при удалении, приводит к значительным повреждениям иммунного процесса, поэтому представления о неважности селезенки не являются правильными. Не являясь жизненно важным органом, она занимает конкретное и присущее только ей место в неразрывной цепи иммунных реакций организма.

Селезенка состоит из стромы и паренхимы. Строма это соединительная ткань, является продолжением фиброзной оболочки органа. Паренхиму селезенки образует красная и белая пульпа. В белой пульпе располагаются лимфоидные узелки селезенки и лимфоидные муфты (периартериальные), а также предузелковые скопления лимфоидной ткани. Лимфоидные муфты - расположенные в периартериальной зоне лимфоидная ткань, имеются на всех сосудах селезенки, а лимфатические узелки располагаются вблизи мест деления артерий.

Максимального количества лимфоидная ткань селезенки достигает в раннем детском возрасте. В Iпериоде зрелого возраста центры размножения лимфатических фолликул уже отсутствуют. С возрастом белая пульпа уменьшается, а строма и красная пульпа увеличивается.

Красная пульпа представляет собой элементы крови в петлях ретикулярной ткани селезенки. Здесь происходит гибель эритроцитов.

Лимфатический узел . У человека их большое количество. Их количество достигает от 400 до 1000. Общий вес всех лимфатических узлов составляет 1 кг или 1% общего веса. Лимфатические узлы имеют различные диаметры от 0,5 до 10-15 мм.

Формы лимфатических узлов разные – округлые, овальные, звездчатые, пластинчатые. Цвет – серовато-розовый. Снаружи покрыта соединительной оболочкой, которая проникает в лимфатическую ткань и образует неполные перегородки – трабекулы. Между трабекулами располагается лимфатическая ткань. На одной стороне лимфоузла имеется вдавление – ворота, через которые входят артерия и нерв, выходит вена и выносящие лимфатические сосуды. Приносящие лимфатические сосуды входят в лимфоузел по выпуклой его стороне. Их количество в два раза больше, чем выносящих, что создает условия для задержки лимфы в узлах.

В лимфоидной ткани лимфоузлов различаются корковое и мозговое вещество.

Корковое вещество пронизано лимфатическими фолликулами, содержащими преимущественно В-лимфоциты. Ближе к воротам расположено мозговое вещество, которое формирует тяжи, названные мозговыми ходами. Между тяжами располагаются В-лимфоциты, макрофаги, плазматические клетки, сеть ретикулярных волокон. Между корковым и мозговым веществом находится слой лимфоидной ткани – околокорковый или паракортикальный слой. Это Т-зависимая зона лимфатического узла.

Между капсулой, трабекулами и лимфоидной тканью в лимфатическом узле расположены узкие щели, называемые синусами лимфатического узла. Синусы: краевой или подкапсулярный, трабекулярные синусы, воротный синус.

Классификация лимфоузлов .

Описано до 200 групп лимфатических узлов. В одной группе их может быть от 1 до 10. По месту расположения лимфатические узлы делятся на конечностях – на глубокие и поверхностные; в полостях тела – на париетальные и висцеральные.

В этих группах в свою очередь выделяют регионарные лимфатические узлы – первый (пограничный) узел, куда попадает лимфа с органа.

По консистенции лимфатические узлы делятся на:

    мозговые (мягкие) с преобладанием мозгового вещества;

    плотные – с преобладанием коркового вещества;

    смешенные.

Функции лимфоузлов .

    Вся ретикулярная ткань лимфатического узла принимает участие в развитии молодых лимфоцитов, они очищают протекающую лимфу от микробов, вирусов, токсинов и т.д.

    Лимфатические узлы бурно реагируют увеличением на воспалительный процесс, бактерии и злокачественные клетки, при этом ретикулярные клетки превращаются в плазматические, способные вырабатывать АТ. С возрастом происходит атрофия лимфатических узлов, на месте плазмы образуется соединительная ткань.

Лимфатическая система.

По современным представлениям лимфатическая система объединяет сосуды, по которым происходит отток тканевой жидкости от органов и частей тела в венозное русло. Она является частью сосудистой системы и дополняет венозную систему. Сюда относятся: лимфокапилляры, лимфатические сосуды интраорганные и экстраорганные, лимфатические стволы и протоки.

Лимфатические капилляры пронизывают почти все органы и ткани за исключением спинного и головного мозга, их оболочек, хрящей, плаценты, эпителиальных покровов кожи и слизистых оболочек. Лимфатические капилляры больше, чем кровеносные по размерам, поэтому могут всасывать молекулы больших размеров.

Стенка лимфатического капилляра построена из одного слоя эндотелиальных клеток, связанных тоненькими нитями с соединительнотканной стромой органа.

Лимфатические капилляры имеют неровные контуры за счет выпячиваний. Они начинаются слепо. В органах и тканях лимфатические капилляры образуют сети, которые в плоских органах расположены в одной плоскости, а в объемных – во многих плоскостях.

Лимфатические капилляры ориентируются вдоль структурных элементов или вдоль соединительнотканных прослоек. Сливаясь, они образуют внутриорганные лимфатические сосуды. В самых мелких из них стенка состоит из 1 слоя эндотелия. Они характеризуются наличием клапанов, за счет которых на наружной поверхности сосуда образуется перехват. Поэтому лимфатические сосуды имеют четкообразный вид. Все лимфатические сосуды протекают через лимфатические узлы. До попадания в кровь лимфа может пройти до 6-7 узлов.

Выносящие лимфатические сосуды формируют лимфатические стволы:

    2 поясничных ствола – правый и левый;

    2 бронхо-средостенных ствола;

    2 подключичных ствола

    2 яремных ствола

Иногда бывает непарный кишечный ствол. Стволы сливаясь, образуют два протока:

  1. правый лимфатический проток.

Лекция 8

АНАТОМИЯ ОРГАНОВ ЧУВСТВ (тезисы)

ПЛАН ЛЕКЦИИ.

      Определение органов чувств, общие принципы строения и классификация.

      Орган зрения:

А). Особенности строения глазного яблока.

Б). Вспомогательный аппарат органа зрения.

Основная функция иммунной системы - контроль за качественным постоянством генетически продетерминированного клеточного и гуморального состава организма.

Иммунная система обеспечивает:

Защиту организма от внедрения чужеродных клеток и от возникших в организме модифицированных клеток (например, злокачественных);

Уничтожение старых, дефектных и поврежденных собственных клеток, а также клеточных элементов, не характерных для данной фазы развития организма;

Нейтрализацию с последующей элиминацией всех генетически чужеродных для данного организма высокомолекулярных веществ биологического происхождения (белков, полисахаридов, липополисахаридов и т.д.).

В иммунной системе выделяют центральные (тимус и костный мозг) и периферические (селезенка, лимфатические узлы, скопления лимфоидной ткани) органы, в которых осуществляется дифференцировка лимфоцитов в зрелые формы и происходит иммунный ответ.

Функционирующей основой иммунной системы является сложный комплекс иммунокомпетентных клеток (Т-, В-лимфоциты, макрофаги).

Т-лимфоциты происходят из полипотентных костномозговых клеток. Дифференциация стволовых клеток в Т-лимфоциты индуцируется в тимусе под влиянием тимозина, тимостимулина, тимопоэтинов и других гормонов, которые продуцируются звездчатыми эпителиальными клетками или тельцами Гассаля. По мере созревания у пре-Т-лимфоцитов (претимических лимфоцитов) происходит приобретение антигенных маркеров. Заканчивается дифференциация появлением у зрелых Т-лимфоцитов специфического рецепторного аппарата распознавания антигенов. Образовавшиеся Т-лимфоциты через лимфу и кровь колонизируют тимусзависимые паракортикальные зоны лимфатических узлов или соответствующие зоны лимфоидных фолликулов селезенки.

По функциональным свойствам популяция Т-лимфоцитов разнородна. В соответствии с международной классификацией основные антигенные маркеры лимфоцитов обозначены как кластеры дифференцировки или CD (от англ. cluster differentiation). Соответствующие наборы моноклональных антител позволяют выявлять лимфоциты, несущие конкретные антигены. Зрелые Т-лимфоциты обозначаются маркером CD3+, являющимся частью Т-клеточного рецепторного комплекса. По функциям среди Т-лимфоцитов различают супрессорные/цитотоксические клетки CD8+, Т-лимфоциты индукторы/хелперы CD4+, CD16+ - естественные киллеры.

Особенность Т-клеточного рецептора – способность распознавать чужеродный антиген только в комплексе с собственными клеточными антигенами на поверхности вспомогательных антиген-представляющих клеток (дендритных или макрофагов). В отличие от В-лимфоцитов, способных распознавать антигены в растворе и связывать белковые, полисахаридные и липопротеидные растворимые антигены, Т-лимфоциты способны распознать только короткие пептидные фрагменты белковых антигенов, представленные на мембране других клеток в комплексе с собственными антигенами главного комплекса гистосовместимости MHC (от английского Major Histocompatibility Complex).

CD4+ Т-лимфоциты способны распознавать антигенные детерминанты в комплексе с MHC молекулами II класса. Они выполняют посредническую сигнальную функцию, передавая информацию об антигенах иммунокомпетентным клеткам. В гуморальном иммунном ответе Т-хелперы реагируют с несущей частью тимусзависимого антигена, индуцируя превращение В-лимфоцитов в плазмоциты. В присутствии Т-хелперов синтез антител усиливается на один-два порядка. Т-хелперы индуцируют образование цитотоксических/супрессорных Т-лимфоцитов. Т-хелперы - долгоживущие лимфоциты, чувствительны к циклофосфамиду, содержат рецепторы к митогенам. После распознавания антигена CD4+ лимфоциты могут дифференцироваться в различных направлениях с формированием Т-хелперов 1-го, 2-го и 3-го типов.

CD8+ Т-лимфоциты являются регуляторами антителообразования и других иммунных процессов, участвуют в формировании иммунологической толерантности; их цитотоксическая функция состоит в способности разрушать инфицированные и злокачественно перерожденные клетки. Эти клетки способны распознавать широкий спектр антигенных детерминант, что можно объяснить низким порогом активации их рецепторного аппарата или наличием нескольких специфических рецепторов. Как и все другие субпопуляции тимоцитов, CD8+ содержат рецепторы к митогенам. Очень чувствительны к ионизирующей радиации и имеют короткий период жизни.

Естественные киллеры распознают антигенные детерминанты в комплексе с МНС молекулами II класса, являются долгоживущими клетками, устойчивы к циклофосфамиду, очень чувствительны к радиации, имеют рецепторы к Fc-фрагменту антител.

Клеточная стенка В-лимфоцитов в своем составе имеет рецепторы CD19, 20, 21, 22. В-клетки происходят от стволовых клеток. Созревают они поэтапно - первоначально в костном мозге, затем в селезенке. На самой ранней стадии созревания на цитоплазматической мембране В-клеток экспрессируются иммуноглобулины класса М, несколько позже - в комплексе с ними появляются иммуноглобулины G или А, а к моменту рождения, когда происходит полное созревание В-лимфоцитов - иммуноглобулины D. Возможно, у зрелых В-лимфоцитов на цитоплазматической мембране присутствуют сразу три иммуноглобулина - М, G, D или М, А, D. Эти рецепторные иммуноглобулины не секретируются, но могут слущиваться с мембраны.

Так как большинство антигенов тимусзависимые, то для трансформации незрелых В-лимфоцитов в антителопродуцирующие обычно недостаточно одного антигенного стимула. При попадании таких антигенов в организм В-лимфоциты дифференцируются в плазмоциты с помощью Т-хелперов при участии макрофагов и стромальных ретикулярных отростчатых клеток. При этом хелперы выделяют цитокины (ИЛ-2) - гуморальные эффекторы, которые и активируют пролиферацию В-лимфоцитов. Независимо от природы и силы антигена, который вызвал трансформацию В-лимфоцитов, образующиеся плазмоциты продуцируют антитела, специфичность которых аналогична рецепторным иммуноглобулинам. Таким образом, антигенный стимул надо рассматривать как пусковой сигнал для выработки генетически запрограммированного синтеза антител.

Макрофаги - основной тип клеток моноцитарной системы лимфоцитов. Они представляют собой гетерогенные по функциональной активности долгоживущие клетки с хорошо развитой цитоплазмой и лизосомальным аппаратом. На их поверхности имеются специфические рецепторы к В- и Т-лимфоцитам, Fc-фрагменту иммуноглобулина G, С3b-компоненту комплемента, цитокинам, гистамину. Различают подвижные и фиксированные макрофаги. Те и другие дифференцируются из стволовой кроветворной клетки через стадии монобласта, промоноцита, превращаясь в подвижные моноциты крови и фиксированные (альвеолярные макрофаги дыхательных путей, купферовские клетки печени, париетальные макрофаги брюшины, макрофаги селезенки, лимфатических узлов).

Значение макрофагов как антигенпрезентирующих клеток состоит в том, что они накапливают и подвергают переработке проникающие в организм тимусзависимые антигены и презентируют (представляют) их в трансформированном виде для распознавания тимоцитами, вслед за чем стимулируется пролиферация и дифференциация В-лимфоцитов в антителопродуцирующие плазмоциты. При определенных условиях макрофаги проявляют цитотоксическое действие на опухолевые клетки. Они также секретируют интерферон, ИЛ-1, ФНО-альфа, лизоцим, различные компоненты комплемента, факторы, дифференцирующие стволовые клетки в гранулоциты, стимулирующие размножение и созревание Т-лимфоцитов.

Антитела - это особый вид белков, называемых иммуноглобулинами (Ig), которые вырабатываются под влиянием антигенов и обладают способностью специфически связываться с ними. При этом антитела могут нейтрализовать токсины бактерий и вирусы (антитоксины и вируснейтрализующие антитела), осаждать растворимые антигены (преципитины), склеивать корпускулярные антигены (агглютинины), повышать фагоцитарную активность лейкоцитов (опсонины), связывать антигены, не вызывая каких-либо видимых реакций (блокирующие антитела), совместно с комплементом лизировать бактерии и другие клетки, например, эритроциты (лизины).

На основании различий в молекулярной массе, химических свойствах и биологической функции выделяют пять основных классов иммуноглобулинов: IgG, IgM, IgA, IgE и IgD.

Цельная молекула иммуноглобулина (или его мономера у IgA и IgM) состоит из трех фрагментов: двух Fab-фрагментов, каждый из которых включает вариабельный участок тяжелой цепи и связанную с ним легкую цепь (на концах Fab-фрагментов находятся гипервариабельные участки, формирующие активные центры связывания антигенов), и одного Fc-фрагмента, состоящего из двух константных участков тяжелых цепей.

Иммуноглобулины класса G составляют около 75% всех иммуноглобулинов сыворотки крови человека. Молекулярная масса IgG минимальна - 150 000 Да, что обеспечивает ему возможность проникновения через плаценту от матери к плоду, с чем и связано развитие трансплацентарного иммунитета, защищающего организм ребенка от многих инфекций в первые 6 месяцев жизни. Молекулы IgG - наиболее долгоживущие из всех (период полураспада в организме составляет 23 дня). Антитела этого класса особенно активны против грамотрицательных бактерий, токсинов и вирусов.

IgM - эволюционно самый старый класс иммуноглобулинов. Содержание его в сыворотке крови составляет 5-10% от общего количества иммуноглобулинов. IgM синтезируется при первичном иммунном ответе: в начале ответа появляются антитела класса М, и лишь через 5 сут начинается синтез антител класса IgG. Молекулярная масса сывороточного IgM 900 000 Да.

IgA, составляющий 10-15% от всех иммуноглобулинов сыворотки крови, является обычно преобладающим иммуноглобулином секретов (слизистых выделений дыхательных путей, желудочно-кишечного тракта, слюны, слез, молозива и молока). Секреторный компонент IgA образуется в эпителиальных клетках и выходит на их поверхность, где присутствует в качестве рецептора. IgA, выходя из кровотока через капиллярные петли и проникая через эпителиальный слой, соединяется с секреторным компонентом. Образовавшийся секреторный IgA остается на поверхности эпителиальной клетки или сползает в слой слизи над эпителием. Здесь он осуществляет свою основную эффекторную функцию, состоящую в агрегации микробов и сорбции этих агрегатов на поверхности эпителиальных клеток с одновременным угнетением размножения микробов, чему способствует лизоцим и, в меньшей степени, комплемент. Молекулярная масса IgA около 400 000 Да.

IgE является минорным классом иммуноглобулинов: его содержание составляет всего около 0,2% от всех сывороточных иммуноглобулинов. Молекулярная масса IgE около 200 000 Да. IgE накапливается преимущественно в тканях слизистых и кожных оболочек, где сорбируется за счет Fc-рецепторов на поверхности тучных клеток, базофилов и эозинофилов. В результате присоединения специфического антигена происходит дегрануляция этих клеток и выброс биологически активных веществ.

IgD также представляет минорный класс иммуноглобулинов. Его молекулярная масса 180 000 Да. Отличается он от IgG только в тонких деталях структуры молекулы.

Ведущую роль в регуляции антигенпредставления, активности иммуноцитов и воспаления играют цитокины – универсальные медиаторы межклеточного взаимодействия. Они могут непосредственно вырабатываться в ЦНС и имеют рецепторы на клетках нервной системы.

Цитокины делятся на две большие группы – провоспалительные и противовоспалительные. К провоспалительным относятся ИЛ-1, ИЛ-6, ИЛ-8, ИЛ-12, ФНО-альфа, к противовоспалительным – ИЛ-4, ИЛ-10, ИЛ-13 и ТРФ-бета.

Основные эффекты цитокинов и их продуценты.

(И.С.Фрейндлин, 1998, с изменениями)

К цитокинам относятся и интерфероны, обладающие множеством биологических активностей, проявляющихся в противовирусном, противоопухолевом и иммуностимулирующем действии. Они блокируют внутриклеточную репликацию вируса, подавляют клеточное деление, стимулируют активность естественных киллеров, повышают фагоцитарную активность макрофагов, активность поверхностных антигенов гистосовместимости и в то же время тормозят созревание моноцитов в макрофаги.

Интерферон-альфа (ИФН-альфа) продуцируется макрофагами и лейкоцитами в ответ на вирусы, клетки, инфицированные вирусом, злокачественные клетки и митогены.

Интерферон-бета (ИФН-бета) синтезируется фибробластами и эпителиальными клетками под действием вирусных антигенов и самого вируса.

Интерферон-гамма (ИФН-гамма) продуцируется активированными Т-лимфоцитами в результате действия индукторов (Т-клеточные митогены, антигены). Для продукции ИФН-гамма требуются акцессорные клетки – макрофаги, моноциты, дендритные клетки.

Основные эффекты интерферонов.

Каждый тип клеток характеризуется наличием на их мембране основных форм адгезивных молекул. Так, иммунные клетки идентифицируются по их рецепторам (например, CD4, CD8 и т.д.). Под воздействием различных стимулов (цитокиновая стимуляция, токсины, гипоксия, термические и механические воздействия и т.п.) клетки способны увеличивать плотность некоторых рецепторов (например, ICAM-1, VFC-1, CD44), а также экспрессировать новые типы рецепторов. В зависимости от функциональной активности клетки периодически изменяют вид и плотность поверхностных молекул. Эти феномены наиболее выражены у иммунокомпетентных клеток.

Наиболее активно изучена роль межклеточной молекулы адгезии-1 (ICAM-1), которая экспрессируется на эндотелии сосудов мозга. Эта молекула играет основную роль в адгезии активированных лимфоцитов крови к эндотелию и в их последующем проникновении в ткань мозга. Воспалительные цитокины способны стимулировать экспрессию гена ICAM-1 и синтез этой молекулы в астроцитах.

Выделяют две основные формы специфического иммунного ответа – клеточный и гуморальный.

Клеточный иммунный ответ подразумевает накопление в организме клона Т-лимфоцитов, несущих специфические для данного антигена антиген-распознающие рецепторы и ответственных за клеточные реакции иммунного воспаления – гиперчувствительности замедленного типа, в которых кроме Т-лимфоцитов участвуют макрофаги.

Гуморальный иммунный ответ подразумевает продукцию специфических антител в ответ на воздействие чужеродного антигена. Основную роль в реализации гуморального ответа играют В-лимфоциты, дифференцирующиеся под влиянием антигенного стимула в антителопродуценты. Как правило, В-лимфоциты нуждаются в помощи Т-хелперов и антиген-презентирующих клеток.

Особой формой специфического иммунного ответа на контакт иммунной системы с чужеродным антигеном является формирование иммунологической памяти, которая проявляется в способности организма отвечать на повторную встречу с тем же антигеном так называемым вторичным иммунным ответом – более быстрым и сильным. Эта форма иммунного ответа связана с накоплением клона долгоживущих клеток памяти, способных распознать антиген и ответить ускоренно и усиленно на повторный контакт с ним.

Альтернативной формой специфического иммунного ответа является формирование иммунологической толерантности – неотвечаемости на собственные антигены организма (аутоантигены). Она приобретается в период внутриутробного развития, когда функционально незрелые лимфоциты, потенциально способные разпознать собственные антигены, в тимусе вступают в контакт с этими антигенами, что приводит к их гибели или инактивации. Поэтому на более поздних стадиях развития иммунный ответ на антигены собственного организма отсутствует.

Взаимодействие нервной и иммунной систем.

Для двух основных регулирующих систем организма характерно наличие общих черт организации. Нервная система обеспечивает поступление и переработку сенсорных сигналов, иммунная - генетически чужеродной информации. В этой ситуации иммунный антигенный гомеостаз является компонентом в системе поддержания гомеостаза целостного организма. Поддержание гомеостаза нервной и иммунной системами осуществляется сопоставимым количеством клеточных элементов (1012 - 1013), а интеграция регулирующих систем в нервной системе осуществляется наличием отростков нейронов, развитого рецепторного аппарата, с помощью нейромедиаторов, в иммунной - наличием высокомобильных клеточных элементов и системы иммуноцитокинов. Подобная организация нервной и иммунной систем позволяет им получать, перерабатывать и сохранять полученную информацию (Петров Р.В., 1987; Адо А.Д. и др., 1993; Корнева Е.А. и др., 1993; Абрамов В.В., 1995). Поиск возможностей воздействия на течение иммунологических процессов через центральные регулирующие структуры нервной системы основывается на фундаментальных законах физиологии и достижениях иммунологии. Обе системы - нервная и иммунная - играют важную роль в поддержании гомеостаза. Последнее двадцатилетие отмечено обнаружением тонких молекулярных механизмов функционирования нервной и иммунной систем. Иерархическая организация регулирующих систем, наличие гуморальных механизмов взаимодействия клеточных популяций, точками приложения которых являются все ткани и органы, предполагают возможность обнаружения аналогий в функционировании нервной и иммунной систем (Ашмарин И.П., 1980; Лозовой В.П., Шергин С.М., 1981.; Абрамов В.В., 1995-1996; Jerne N.K., 1966; Cunningham A.J., 1981; Golub E.S., 1982; Aarli J.A., 1983; Jankovic B.D. et al., 1986, 1991; Fabry Z. et al., 1994).

В нервной системе полученная информация закодирована в последовательности электрических импульсов и архитектонике взаимодействия нейронов, в иммунной - в стереохимической конфигурации молекул и рецепторов, в сетевых динамических взаимодействиях лимфоцитов (Лозовой В.П., Шергин С.Н., 1981).

В последние годы получены данные о наличие общего рецепторного аппарата в иммунной системе к нейромедиаторам и в нервной системе к эндогенным иммуномодуляторам. Нейроны и иммуноциты снабжены одинаковыми рецепторными аппаратами, т.е. эти клетки реагируют на сходные лиганды.

Особое внимание исследователей привлекает участие медиаторов иммунитета в нейроиммунном взаимодействии. Считается, что помимо выполнения своих специфических функций внутри иммунной системы, медиаторы иммунитета могут осуществлять и межсистемные связи. Об этом говорит наличие рецепторов к иммуноцитокинам в нервной системе. Наибольшее количество исследований посвящено участию ИЛ-1, который не только является ключевым элементом иммунорегуляции на уровне иммунокомпетентных клеток, но и играет существенную роль в регуляции функции ЦНС.

Цитокин ИЛ-2 также оказывает множество различных эффектов на иммунную и нервную систему, опосредуемых путем аффинного связывания с соответствующими рецепторами клеточной поверхности. Тропность множества клеток к ИЛ-2 обеспечивают ему центральное место в формировании как клеточного, так и гуморального иммунного ответа. Активирующее влияние ИЛ-2 на лимфоциты и макрофаги проявляется в усилении антителозависимой цитотоксичности этих клеток с параллельной стимуляцией секреции ФНО-альфа. ИЛ-2 индуцирует пролиферацию и дифференцировку олигодендроцитов, влияет на реактивность нейронов гипоталамуса, повышает уровень АКТГ и кортизола в крови. Клетками-мишенями для действия ИЛ-2 служат Т-лимфоциты, В-лимфоциты, NК-клетки и макрофаги. Помимо стимуляции пролиферации, ИЛ-2 вызывает функциональную активацию этих клеточных типов и секрецию ими других цитокинов. Изучение влияния ИЛ-2 на NК-клетки показало, что он способен стимулировать их пролиферацию с сохранением функциональной активности, увеличивать продукцию NК-клетками ИНФ-гамма и дозозависимо усиливать NK-опосредованный цитолизис.

Существуют данные о продукции клетками центральной нервной системы (микроглией и астроцитами) таких цитокинов, как ИЛ-1, ИЛ-6 и ФНО-альфа. Продукция ФНО-альфа непосредственно в ткани мозга специфична для типичного нейроиммунологического заболевания - рассеянного склероза (РС). Повышение продукции ФНО-альфа в культуре изолированных ЛПС-стимулированных моноцитов/макрофагов наиболее отчетливо выявляется у больных с активным течением заболевания.

Установлена возможность участия в продукции интерферонов клеток мозга, в частности нейроглии или эпендимы, а также лимфоидных элементов сосудистых сплетений.

В процессе формирования иммунного ответа включаются нервные окончания в соответствующих лимфоидных органах. Инициирующие сигналы могут передаваться от иммунной системы в нервную гуморальным путем, в том числе, когда продуцируемые иммунокомпетентными клетками цитокины непосредственно проникают в нервную ткань и изменяют функциональное состояние определенных структур и описано проникновение через неповрежденный ГЭБ самих иммунокомпетентных клеток с последующей модуляцией функционального состояния нервных структур.

Содержание

На здоровье человека влияют различные факторы, но одной из главных является иммунная система. Она состоит из множества органов, выполняющих функции защиты всех остальных составляющих от внешних, внутренних неблагоприятных факторов, противостоит болезням. Важно поддерживать иммунитет в порядке, чтобы ослабить вредные воздействия извне.

Что такое иммунная система

В медицинских словарях и учебниках говорится, что иммунная система – это совокупность составляющих ее органов, тканей, клеток. Все вместе они образуют комплексную защиту организма от заболеваний, а также истребляют уже попавшие в тело чужеродные элементы. Свойства ее заключаются в препятствии проникновения инфекций в виде бактерий, вирусов, грибков.

Центральные и периферические органы иммунной системы

Появившись как помощник в борьбе за выживание у многоклеточных организмов, иммунная система человека и ее органы стали важной составляющей всего тела. Они соединяют органы, ткани, защищают организм от чужеродных на генном уровне клеток, веществ, поступающих извне. По своим параметрам функционирования иммунная система аналогична нервной. Сходством является и устройство – система иммунитета включает в себя центральные, периферические составляющие, реагирующие на разные сигналы, включающие большое количество рецепторов, обладающих специфической памятью.

Центральные органы иммунной системы

  1. Красный костный мозг является центральным органом, поддерживающим иммунитет. Он представляет собой мягкую губчатую ткань, расположен внутри костей трубчатого, плоского типа. Его главной задачей считается производство лейкоцитов, эритроцитов, тромбоцитов, образующих кровь. Примечательно, что у детей этого вещества больше – все кости содержат красный мозг, а у взрослых – только кости черепа, грудины, ребра, малый таз.
  2. Вилочковая железа или тимус расположена за грудиной. Она вырабатывает гормоны, повышающие количество Т-рецепторов, экспрессию В-лимфоцитов. От возраста зависит размер, активность железы – у взрослых она меньше по размеру и значению.
  3. Селезенка – третий орган, внешне напоминает большой лимфатический узел. Помимо хранения крови, ее фильтрации, сохранения клеток, считается вместилищем лимфоцитов. Здесь разрушаются старые неполноценные кровяные клетки, образуются антитела, иммуноглобулины, происходит активация макрофагов, поддерживается гуморальный иммунитет.

Периферические органы иммунной системы человека

Лимфатические узлы, миндалины, аппендикс относятся к периферическим органам иммунной системы здорового человека:

  • Лимфоузлом называется овальное образование, состоящее из мягких тканей, размер которого не превышает сантиметра. В нем содержится большое количество лимфоцитов. Если лимфоузлы прощупываются, видны невооруженным глазом, это свидетельствует о воспалительном процессе.
  • Миндалины тоже представляют собой небольшие скопления лимфоидной ткани в форме овала, найти их можно в глотке полости рта. Их функция – защита верхних дыхательных путей, снабжение организма нужными клетками, формирование микрофлоры во рту, на небе. Разновидностью лимфоидной ткани являются Пейеровы бляшки, расположенные в кишечнике. В них созревают лимфоциты, формируется ответ иммунитета.
  • Аппендикс долгое время считался рудиментарным врожденным отростком, не нужным для человека, но это оказалось не так. Это важная иммунологическая составляющая, включающая в себя большое количество лимфоидной ткани. Орган участвует в производстве лимфоцитов, хранении полезной микрофлоры.
  • Еще одной составляющей периферического типа считается лимфа или лимфатическая жидкость без цвета, содержащая множество белых кровяных телец.

Клетки иммунной системы

Важными составляющими по обеспечению иммунитета являются лейкоциты, лимфоциты:

Как работают органы иммунитета

Сложно устроенная иммунная система человека и ее органы работают на генном уровне. Каждая клетка обладает своим генетическим статусом, который органы анализируют при проникновении в организм. В случае несовпадения статуса включается защитный механизм выработки антигенов, которые являются специфическими антителами для каждого вида проникновения. Антитела связываются с патологией, ликвидируя ее, клетки устремляются к продукту, уничтожают его, при этом можно видеть воспаление участка, затем образуется гной из погибших клеток, который выходит с кровотоком.

Аллергия является одной из реакций врожденного иммунитета, при которой здоровый организм уничтожает аллергены. Внешними аллергенами считаются пищевые, химические, медицинские средства. Внутренние – собственные ткани с измененными свойствами. Это могут быть мертвые ткани, ткани с воздействиями пчел, пыльцы. Аллергическая реакция развивается последовательно – при первом воздействии аллергена на организм антитела накапливаются без потери, а при последующих – реагируют симптомами высыпания, опухоли.

Как повысить иммунитет человека

Для стимулирования работы иммунной системы человека и ее органов нужно правильно питаться, вести здоровый образ жизни с физическими нагрузками. Нужно включить в рацион овощи, фрукты, чаи, проводить закаливание, регулярно гулять на свежем воздухе. Дополнительно улучшить работу гуморального иммунитета помогут неспецифические иммуномодуляторы – лекарственные препараты, которые можно приобрести по рецепту врача в период эпидемий.

Видео: иммунная система организма человека

Внимание! Информация, представленная в статье, носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению, исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Центральными органами иммун­ной системы являются костный мозг и тимус.

Костный мозг – орган кро­ветворения и центральный орган иммунной системы. Выделяют крас­ный костный мозг, который у взросло­го человека располагается в ячейках губчатого вещества плоских и ко­ротких костей, а также в эпифизах трубчатых костей, и желтый костный мозг, заполняющий полости в диафизах трубчатых костей. В детском возрасте все костномозговые полости заполнены красным костным мозгом. Общая масса костного мозга состав­ляет 2,5 – 3 кг (от 4 до 5% массы тела). Красный костный мозг состоит из миелоидной (кровеобразующей) и лимфоидной ткани. В красном костном мозге находятся также ство­ловые клетки – родоначальники всех видов клеток крови и иммунной системы, обладающие способностью к многократному (до 100 раз) деле­нию.

Тимус располагается позади тела грудины. Он состоит из двух удлиненных асимметричных по вели­чине правой и левой долей. Каждая доля разделена на многочисленные дольки размером от 1 до 10 мм. Пери­ферию долек образует более темное корковое вещество, а центральную часть – более светлое мозговое ве­щество. Строма тимуса образована многоотросчатыми эпителиоретикулоцитами, формирующими сеть, в петлях которой располагаются Т-лимфоциты и их предшественники. Эпителиоретикулоциты вырабатыва­ют биологически активные вещества (тимозин, тимопоэтин), которые ока­зывают влияние на дифференцировку Т-лимфоцитов. В мозговом веществе Эпителиоретикулоциты образуют сло­истые структуры – химические тель­ца (тельца Гассаля). Образование Т-лимфоцитов происходит преимуще­ственно в корковом веществе, откуда они перемещаются в мозговое веще­ство и мигрируют в кровеносное русло.

К периферическим орга­нам иммунной системы отно­сят нёбные, трубные, глоточную и язычную миндалины, которые обра­зуют глоточное лимфоидное кольцо Пирогова - Вальдейера. Миндалины представляют собой скопление лимфоидной ткани, в которой располага­ются небольших размеров структуры (0,2 – 1 мм) с плотно расположенны­ми в них лимфоцитами – лимфоидные узелки.

Нёбная миндалина (парная) – самая крупная. Она расположена с обеих сторон зева. На свободной поверхности миндалин, обращенной в сторону зева и покрытой многослой­ным плоским эпителием, видны мел­кие, точечной величины миндалиновые отверстия миндалиновых крипт. Стенки многочисленных миндалиновых крипт существенно увеличивают площадь поверхности миндалин, со­прикасающейся с проходящей в глот­ку пищей и вдыхаемым воздухом.

Трубная миндалина (парная) представляет собой скопление лимфоидной ткани в слизистой оболочке вокруг глоточного отверстия слухо­вой трубы. Глоточная миндалина (непарная) располагается в слизи­стой оболочке верхней стенки глотки против хоан, сообщающих полость носа с носоглоткой. Язычная минда­лина (непарная) находится в слизи­стой оболочке корня языка.

Вес шесть миндалин окружают вход в глотку из полости рта и из носовой полости. Именно здесь, на поверхности миндалин, происходит первая встреча лимфоцитов с чуже­родными веществами и микроорга­низмами, оказавшимися в проглаты­ваемой пище или во вдыхаемом воздухе.

Одиночные лимфоидные узелки, располагающиеся в слизистой обо­лочке органов пищеварительной, ды­хательной систем и мочевыводящих путей, представляют собой плотные скопления лимфоцитов, образующие структуры шаровидной или яйце­видной формы. Залегая под эпители­ем слизистой оболочки на близком расстоянии друг от друга, лимфо­идные узелки, как сторожевые посты, защищают слизистую оболочку и ор­ганизм в целом от проникновения в нее генетически чужеродных частиц и микроорганизмов. Внутри многих лимфоидных узелков образуются собственные центры размножения. В случае антигенной опасности начи­нается быстрое размножение лимфо­цитов в лимфоидных узелках.

В слизистой оболочке тонкой кишки расположены лимфоидные бляшки, представляющие собой скоп­ления лимфоидных узелков. Лимфо­идные бляшки, как правило, имеют овальную форму и чуть-чуть выступа­ют в просвет кишки. На месте лимфоидных бляшек ворсинки слизи­стой оболочки отсутствуют. Лимфо­идные бляшки в тонкой кишке, где происходит основное всасывание про­дуктов переваривания пищи, препят­ствуют проникновению в кровеносное и лимфатическое русло чужеродных веществ.

Рис. 92. Строение лимфатического узла:

1 – капсула, 2 – капсулярная трабекула, 3 – приносящий лимфатический сосуд, 4 – подкапсулярный (краевой) синус, 5 – корковое вещество, 6 – паракортикальная (тимусзависимая) зона (околокорковое вещество), 7 – лимфоидный узелок, 8 – центр размножения, 9 – вокругузелковый корковый синус, 10 – мозговое вещество (мякотные тяжи), 11 – мозговые синусы, 12 – воротный синус, 13 – выносящий лимфатический сосуд, 14 – ворота, 15 – кровеносные сосуды

Червеобразный отросток – ап­пендикс также является органом иммунной системы. В его стенках имеется огромное количество лимфо­идных узелков (до 550), плотно прилежащих друг к другу. Аппендикс расположен на границе между тон­кой и толстой кишкой, является важным органом в функциях иммун­ной защиты организма.

Лимфатические узлы расположе­ны на путях тока лимфы от органов и тканей к лимфатическим стволам и протокам. В лимфатических узлах задерживаются и уничтожаются чу­жеродные частицы, микробные тела, собственные погибшие клетки, попав­шие в просвет лимфатических сосу­дов в момент всасывания в них тканевой жидкости. Лимфатические узлы располагаются группами, состо­ящими из двух и более узлов.

Каждый лимфатический узел име­ет соединительнотканную капсулу, от которой внутрь узла отходят пучки соединительной ткани – трабекулы (рис. 92).

В паренхиме лимфатиче­ского узла выделяют корковое и моз­говое вещество. Корковое вещество занимает периферические отделы уз­ла. В корковом веществе расположе­ны лимфоидные узелки.

В центральных отделах лимфати­ческого узла находится мозговое вещество. Паренхима мозгового ве­щества представлена тяжами лимфоидной ткани – мякотными тяжами, которые простираются от внутренних отделов коркового вещества до ворот лимфатического узла. Пограничная с мозговым веществом часть корково­го вещества получила название паракортикальной или тимусзависимой зоны.

Под капсулой лимфатического узла, а также вдоль соединительнотканных трабекул и мякотных тяжей лежат узкие щели – лимфати­ческие синусы, внутри которых нахо­дятся мелкоячеистые сети, образо­ванные ретикулярными волокнами. По этим синусам течет лимфа от приносящих сосудов к выносящим лимфатическим сосудам. Во время тока лимфы по синусам сквозь сети из ретикулярных волокон задержива­ются погибшие клетки, микробные тела и другие чужеродные вещества, присутствующие в лимфе. Все эти чужеродные вещества распознаются и уничтожаются лимфоцитами, про­никающими внутрь синусов из лимфоидной паренхимы.

Таким образом, лимфатические узлы задерживают любые чужерод­ные частицы, которые попали в орга­низм, и препятствуют их проникнове­нию из органов и тканей в ток крови.

Селезенка располагается в брюш­ной полости в левом подреберье. Это единственный орган, контролирую­щий состав крови. Масса селезенки составляет 150 – 200 г. Снаружи она имеет соединительнотканную капсу­лу, от которой внутрь органа отходят трабекулы. Между трабекулами на­ходится мякоть селезенки, ее пульпа. Выделяют белую и красную пульпы, в которых разветвляются артериаль­ные сосуды – пульпарные артерии. Белая пульпа представлена типичной лимфоидной тканью, включает распо­ложенные вокруг пульпарных арте­рий периартериальные лимфоидные муфты, лимфоидные узелки и эллип­соиды, окружающие кровеносные ка­пилляры. Красная пульпа, занимаю­щая до 78% всего объема селезенки, состоит из ретикулярной стромы, в петлях которой находятся лимфо­циты, лейкоциты, макрофаги, погиб­шие эритроциты и другие клетки.

Образованные этими клетками тяжи располагаются между селе­зеночными венозными синусами. Протекающая по пульпарным арте­риям кровь контролируется лимфоидными клетками периартериальных лимфоидных муфт, эллипсоидов и лимфоидных узелков. Распознанные чужеродные элементы в синусах селезенки захватываются макрофа­гами, которые переносят их в крас­ную пульпу. Здесь они уничтожа­ются. Продукты уничтожения чуже­родных веществ поступают по во­ротной вене с кровью в печень, где они утилизируются.


Похожая информация.


Иммунная система , состоящая из специальных белков, тканей и органов, ежедневно защищает человека от патогенных микроорганизмов , а также предупреждает влияние некоторых особых факторов (к примеру, аллергенов).

В большинстве случаев она выполняет огромный объем работы, направленный на сохранение здоровья и предотвращение развития инфекции.

Фото 1. Иммунная система - это ловушка для вредоносных микробов. Источник: Flickr (Heather Butler).

Что такое иммунная система

Иммунная система - это особая, защитная система организма, препятствующая воздействию чужеродных агентов (антигенов). Через серию шагов, называемую иммунным ответом, она “атакует” все микроорганизмы и вещества, которые вторгаются в системы органов и тканей, и способны вызывать заболевания.

Органы иммунной системы

Иммунная система удивительно сложна. Она способна распознать и запомнить миллионы различных антигенов, своевременно продуцируя необходимые компоненты для уничтожения “врага”.

Она включает в себя центральные и периферические органы, а также специальные клетки , которые в них вырабатываются и принимают непосредственное участие в защите человека.

Центральные органы

Центральные органы иммунной системы отвечают за созревание, рост и развитие иммунокомпетентных клеток - лимфопоэз.

Центральные органы включают:

  • Костный мозг - губчатая ткань преимущественно желтоватого оттенка, расположенная внутри полости кости. Костный мозг содержит незрелые, или стволовые клетки, которые способны превращаться в любую, в том числе иммунокомпетентную, клетку организма.
  • Вилочковая железа (тимус). Представляет собой маленький орган, расположенный в верхней части грудной клетки позади грудины. По форме этот орган несколько напоминает чабрец, или тимьян, латинское название которого и дало название органу. В основном, в тимусе созревают T-клеток иммунной системы, но также вилочковая железа способна провоцировать или поддерживать продукцию антител против антигенов.
  • Во внутриутробный период развития к центральным органам иммунной системы относится также печень .

Это интересно! Наибольший размер вилочковой железы наблюдается у новорожденных детей; с возрастом орган уменьшается и замещается жировой тканью.

Периферические органы

Периферические органы отличаются тем, что содержат уже зрелые клетки иммунной системы, взаимодействующие между собой и другими клетками и веществами.

Периферические органы представлены:

  • Селезенка . Самый большой лимфатический орган в организме, расположенный под ребрами в левой части живота, над желудком. Селезенка содержит преимущественно лейкоциты, а также помогает избавиться от старых и поврежденных клеток крови.
  • Лимфатические узлы (ЛУ) представлены небольшими, бобовидными структурами, которые хранят клетки иммунной системы. В ЛУ также производится лимфа - специальная прозрачная жидкость, при помощи которой клетки иммунитета доставляются в различные части тела. Когда организм борется с инфекцией, ЛУ могут увеличиваться в размере и становиться болезненными.
  • Скопления лимфоидной ткани , содержащие иммунные клетки и расположенные под слизистыми оболочками пищеварительного и мочеполового тракта, а также в респираторной системе.

Клетки иммунной системы

Основными клетками иммунной системы считаются лейкоциты, которые циркулируют в организме по лимфатическим и кровеносным сосудам.

Основными типами лейкоцитов, способными к иммунному ответу, являются следующие клетки:

  • Лимфоциты , которые позволяют распознавать, запоминать и уничтожать все антигены, внедряющиеся в организм.
  • Фагоциты , поглощающие чужеродные частицы.

Фагоцитами могут быть различные клетки; наиболее распространенным типом являются нейтрофилы, борющиеся в основном с бактериальной инфекцией.

Лимфоциты располагаются в костном мозге и представлены B-клетками; в случае нахождения лимфоцитов в тимусе, они созревают в T-лимфоциты. B и T-клетки имеют отличные друг от друга функции:

  • B-лимфоциты стараются обнаружить чужеродные частицы и посылают сигнал другим клеткам при обнаружении инфекции.
  • T-лимфоциты уничтожают патогенные компоненты, идентифицированные B-клетками.

Как работает иммунная система

При обнаружении антигенов (то есть посторонних частиц, которые вторгаются в организм) индуцируются B-лимфоциты , продуцирующие антитела (АТ) - специализированные белки, блокирующие специфические антигены.

Антитела способны распознать антиген, однако самостоятельно уничтожить его не могут - эта функция принадлежит T-клеткам, осуществляющим несколько функций. T-клетки могут не только уничтожать чужеродные частицы (для этого существуют специальные T-киллеры, или “убийцы”), но и участвовать в передаче иммунного сигнала другим клеткам (например, фагоцитам).

Антитела, помимо идентификации антигенов, нейтрализуют токсины, вырабатываемые патогенными организмами; также активируют комплемент - часть иммунной системы, которая помогает уничтожать бактерии, вирусы и другие и чужеродные вещества.

Процесс распознавания

После образования антител, они остаются в организме человека. Если иммунная система в будущем встретит такой же антиген, инфекция может не развиваться : например, после перенесенной ветряной оспы человек ею больше не заболевает.

Такой процесс распознавания чужеродного вещества называется презентацией антигена. Образования антител при повторном инфицировании уже не требуется: уничтожение антигена иммунной системой осуществляется практически мгновенно.

Аллергические реакции

Аллергия протекает по похожему механизму; упрощенная схема развития состояния следующая:

  1. Первичное попадание аллергена в организм; клинически никак не выражается.
  2. Образование антител и их фиксация на тучных клетках.
  3. Сенсибилизация - повышение чувствительности к аллергену.
  4. Повторное попадание аллергена в организм.
  5. Высвобождение специальных веществ (медиаторов) из тучных клеток с развитием цепной реакции. Последующие вырабатываемые вещества воздействуют на органы и ткани, что определяется появлением симптомов аллергического процесса.

Фото 2. Аллергия появляется, когда организм иммунная система принимает какое-либо вещество за вредоносное.