Что колеблется в поперечной механической волне. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных

Волновой процесс - процесс переноса энергии без переноса вещества.

Механическая волна - возмущение, распространяющееся в упругой среде.

Наличие упругой среды - необходимое условие распространения механических волн.

Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды.

Волны бывают продольные и поперечные.

Продольная механическая волна - волна, в которой движение частиц среды происходит в направлении распространения волны. Поперечная механическая волна - волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны.

Продольные волны могут распространяться в любой среде. Поперечные волны в газах и жидкостях не возникают, так как в них

отсутствуют фиксированные положения частиц.

Периодическое внешнее воздействие вызывает периодические волны.

Гармоническая волна - волна, порождаемая гармоническими колебаниями частиц среды.

Длина волны - расстояние, на которое распространяется волна за период колебаний ее источника:

Скорость механической волны - скорость распространения возмущения в среде. Поляризация - упорядоченность направлений колебаний частиц в среде.

Плоскость поляризации - плоскость, в которой колеблются частицы среды в волне. Линейно-поляризованная механическая волна - волна, частицы которой колеблются вдоль определенного направления (линии).

Поляризатор - устройство, выделяющее волну определенной поляризации.

Стоячая волна - волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию.

Пучности стоячей волны - положение точек, имеющих максимальную амплитуду колебаний.

Узлы стоячей волны - неперемещающиеся точки волны, амплитуда колебаний которых равна нулю.

На длине l струны, закрепленной на концах, укладывается целое число п полуволн поперечных стоячих волн:


Такие волны называются модами колебаний.

Мода колебаний для произвольного целого числа n > 1 называется n-й гармоникой или n-м обертоном. Мода колебаний для n = 1 называется первой гармоникой или основной модой колебаний. Звуковые волны - упругие волны в среде, вызывающие у человека слуховые ощущения.

Частота колебаний, соответствующих звуковых волнам, лежит в пределах от 16 Гц до 20 кГц.

Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами. Скорость звука в твердом теле v п, как правило, больше скорости звука в жидкости v ж, которая, в свою очередь, превышает скорость звука в газе v г.


Звуковые сигналы классифицируют по высоте, тембру и громкости. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота колебаний, тем выше звук; колебаниям малых частот соответствуют низкие звуки. Тембр звука определяется формой звуковых колебаний. Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертоном. Громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука - энергия звуковых волн, падающая на площадь 1 м 2 за 1 с.

Механическая волна в физике - это явление распространения возмущений, сопровождающееся передачей энергии колеблющегося тела от одной точки к другой без транспортировки вещества, в некоторой упругой среде.

Среда, в которой между молекулами существует упругое взаимодействие (жидкость, газ или твёрдое вещество) - обязательное условие для возникновения механических возмущений. Они возможны только тогда, когда молекулы вещества сталкиваются друг с другом, передавая энергию. Одним из примеров таких возмущений является звук (акустическая волна). Звук может распространяться в воздухе, в воде или в твёрдом теле, но не в вакууме.

Для создания механической волны необходима некоторая начальная энергия, которая выведет среду из положения равновесия. Эта энергия затем и будет передаваться волной. Например, камень, брошенный в небольшое количество воды, создаёт волну на поверхности. Громкий крик создаёт акустическую волну.

Основные виды механических волн:

  • Звуковые;
  • На поверхности воды;
  • Землетрясения;
  • Сейсмические волны.

Механические волны имеют пики и впадины как все колебательные движения. Их основными характеристиками служат:

  • Частота. Это количество колебаний, совершающихся за секунду. Единицы измерения в СИ: [ν] = [Гц] = [с -1 ].
  • Длина волны. Расстояние между соседними пиками или впадинами. [λ] = [м].
  • Амплитуда. Наибольшее отклонение точки среды от положения равновесия. [Х max ] = [м].
  • Скорость. Это расстояние, которое преодолевает волна за секунду. [V] = [м/с].

Длина волны

Длиной волны называют расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Волны распространяются в пространстве. Направление их распространения называют лучом и обозначают линией, перпендикулярной волновой поверхности. А их скорость вычисляют по формуле:

Граница волновой поверхности, отделяющая часть среды, в которой уже происходят колебания, от части среды, в которой колебания ещё не начались, - волновой фронт .

Продольные и поперечные волны

Одним из способов классификации механического типа волн является определение направления движения отдельных частиц среды в волне по отношению к направлению её распространения.

В зависимости от направления движения частиц в волнах, выделяют:

  1. Поперечные волны. Частицы среды в таком типе волн колеблются под прямым углом к волновому лучу. Рябь на пруду или вибрирующие струны гитары помогут представить поперечные волны. Такой тип колебания не может распространяться в жидкости или газовой среде, потому что частицы этих сред движутся хаотично и невозможно организовать их движение перпендикулярно направлению распространения волны. Поперечный тип волн движется намного медленнее, чем продольный.
  2. Продольные волны. Частицы среды колеблются в том же направлении, в котором распространяется волна. Некоторые волны такого типа называют компрессионными или волнами сжатия. Продольные колебания пружины - периодичные сжатия и растяжения - представляют хорошую визуализацию таких волн. Продольные волны являются самыми быстрыми волнами механического типа. Звуковые волны в воздухе, цунами и ультразвук - продольные. К ним можно отнести и определённый тип сейсмических волн, распространяющихся под землёй и в воде.

Представить, что такое механические волны, можно, бросив в воду камень. Круги, возникающие на ней и являющиеся чередующимися впадинами и гребнями, - это пример механических волн. В чем их сущность? Механические волны - это процесс распространения колебаний в упругих средах.

Волны на поверхностях жидкостей

Такие механические волны существуют благодаря воздействию на частицы жидкости сил межмолекулярного взаимодействия и тяжести. Люди уже давно изучают это явление. Наиболее примечательными являются океанские и морские волны. По мере увеличения скорости ветра они изменяются, а их высота растет. Также усложняется и форма самих волн. В океане они могут достигать устрашающих масштабов. Одним из самых наглядных примеров силы являются цунами, сметающие все на своем пути.

Энергия морских и океанских волн

Достигая берега, морские волны при резком изменении глубины возрастают. Они иногда достигают высоты в несколько метров. В такие моменты колоссальной массы воды передается береговым препятствиям, которые под ее воздействием быстро разрушаются. Сила прибоя иногда достигает грандиозных значений.

Упругие волны

В механике изучают не только колебания на поверхности жидкости, но и так называемые упругие волны. Это возмущения, которые распространяются в разных средах под действием в них сил упругости. Такое возмущение представляет собой любое отклонение частичек данной среды от положения равновесия. Наглядным примером упругих волн является длинная веревка или резиновая трубка, прикрепленная одним из концов к чему-нибудь. Если ее туго натянуть, а затем боковым резким движением создать на втором (незакрепленном) ее конце возмущение, то можно увидеть, как оно по всей длине веревки «пробежит» до опоры и отразится назад.

Начальное возмущение приводит к возникновению в среде волны. Оно вызывается действием какого-то инородного тела, которое в физике называется источником волны. Им может быть рука человека, качнувшего веревку, или камешек, брошенный в воду. В том случае, когда действие источника имеет кратковременный характер, в среде часто возникает одиночная волна. Когда же «возмутитель» совершает длительные волны начинают возникать одна за другой.

Условия возникновения механических волн

Такого рода колебания образуются не всегда. Необходимым условием для их появления является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Со временем все частички среды вовлекаются в одно колебательное движение. Распространение таких колебаний и является волной.

Механические волны в упругой среде

В упругой волне существуют 2 вида движения одновременно: колебания частиц и распространение возмущения. Продольной называется механическая волна, частицы которой колеблются вдоль направления ее распространения. Поперечной называется волна, частицы среды которой колеблются поперек направления ее распространения.

Свойства механических волн

Возмущения в продольной волне представляют собой разрежения и сжатия, а в поперечной - сдвиги (смещения) одних слоев среды по отношению к другим. Деформация сжатия сопровождается появлением сил упругости. При этом связана с появлением сил упругости исключительно в твердых телах. В газообразных и жидких средах сдвиг слоев этих сред не сопровождается возникновением упомянутой силы. Благодаря своим свойствам продольные волны способны распространяться в любых средах, а поперечные - исключительно в твердых.

Особенности волн на поверхности жидкостей

Волны на поверхности жидкости не продольные и не поперечные. Они имеют более сложный, так называемый продольно-поперечный характер. В этом случае частицы жидкости двигаются по окружности или по вытянутым эллипсам. частичек на поверхности жидкости, и особенно при больших колебаниях, сопровождаются их медленным, но непрерывным перемещением по направлению распространения волны. Именно эти свойства механических волн в воде обуславливают появление на берегу различных даров моря.

Частота механических волн

Если в упругой среде (жидкой, твердой, газообразной) возбудить колебание ее частиц, то вследствие взаимодействия между ними оно будет распространяться со скоростью u. Так, если в газообразной или жидкой среде будет находиться колеблющееся тело, то его движение начнет передаваться всем прилегающим к нему частичкам. Они будут вовлекать в процесс следующие и так далее. При этом абсолютно все точки среды станут совершать колебания одинаковой частоты, равной частоте колеблющегося тела. Она и является частотой волны. Другими словами, эту величину можно охарактеризовать как точек в среде, где распространяется волна.

Сразу может быть непонятно, каким образом происходит этот процесс. С механическими волнами связывают перенос энергии колебательного движения от его источника к периферии среды. В ходе чего возникают так называемые периодические деформации, переносимые волной из одной точки в другую. При этом сами частички среды вместе с волной не перемещаются. Они колеблются рядом со своим положением равновесия. Именно поэтому распространение механической волны не сопровождается перенесением вещества из одного места в другое. У механических волн различная частота. Поэтому их поделили на диапазоны и создали специальную шкалу. Частота измеряется в герцах (Гц).

Основные формулы

Механические волны, формулы вычисления которых довольно просты, являются интересным объектом для изучения. Скорость волны (υ) - это скорость перемещения ее фронта (геометрическое место всех точек, к которым дошло колебание среды в данный момент):

где ρ - плотность среды, G - модуль упругости.

При расчете не стоит путать скорость механической волны в среде со скоростью движения частичек среды, которые вовлечены в Так, к примеру, звуковая волна в воздухе распространяется со средней скоростью колебания его молекул в 10 м/с, в то время как скорость звуковой волны в нормальных условиях составляет 330 м/с.

Волновой фронт бывает разных видов, простейшими из которых являются:

Сферический - вызывается колебаниями в газообразной или жидкой среде. Амплитуда волны при этом убывает при удалении от источника обратно пропорционально квадрату расстояния.

Плоский - представляет собой плоскость, которая перпендикулярна направлению распространения волны. Он возникает, например, в закрытом поршневом цилиндре, когда тот совершает колебательные движения. Плоская волна характеризуется практически неизменной амплитудой. Ее незначительное уменьшение при удалении от источника возмущения связано со степенью вязкости газообразной или жидкой среды.

Длина волны

Под понимают расстояние, на которое будет перемещен ее фронт за время, которое равняется периоду колебания частичек среды:

λ = υT = υ/v = 2πυ/ ω,

где Т - период колебания, υ - скорость волны, ω - циклическая частота, ν - частота колебания точек среды.

Поскольку скорость распространения механической волны находится в полной зависимости от свойств среды, то ее длина λ во время перехода из одной среды в иную изменяется. При этом частота колебания ν всегда остается прежней. Механические и схожи тем, что при их распространении осуществляется передача энергии, но не происходит перенос вещества.

Волна – процесс распространения колебаний в упругой среде.

Механическая волна – механические возмущения, распространяющиеся в пространстве и несущие энергию.

Виды волн :

    продольные – частицы среды совершают колебания по направлению распространения волны – во всех упругих средах;

x

направление колебаний

точек среды

    поперечные – частицы среды совершают колебания перпендикулярно направлению распространения волны – на поверхности жидкости.

X

Виды механических волн:

    упругие волны – распространение упругих деформаций;

    волны на поверхности жидкости.

Характеристики волн:

Пусть А колеблется по закону:
.

Тогда В колеблется с запаздыванием на угол
, где
, т.е.

    Энергия волны.

- полная энергия одной частицы. Если частицN, то, где- эпсилон,V– объём.

Эпсилон – энергия в единице объёма волны – объёмная плотность энергии.

Поток энергии волн равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течение которого этот перенос осуществлён:
, ватт; 1 ватт = 1Дж/с.

    Плотность потока энергии – интенсивность волны – поток энергии через единицу площади - величина, равная средней энергии, переносимой волной в единицу времени за единицу площади поперечного сечения.

[Вт/м 2 ]

.

Вектор Умова – векторI, показывающий направление распространения волн и равный потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению:

.

Физические характеристики волны :

    Колебательные:

    1. амплитуда

    Волновые:

    1. длина волны

      скорость волны

      интенсивность

Сложные колебания (релаксационные) – отличающиеся от синусоидальных.

Преобразование Фурье – любую сложную периодическую функцию можно представить суммой нескольких простых (гармонических) функций, периоды которых кратны периоду сложной функции – это гармонический анализ. Происходит в анализаторах. Итог – гармонический спектр сложного колебания:

А

0

Звук – колебания и волны, которые действуют на ухо человека и вызывают слуховое ощущение.

Звуковые колебания и волны – частный случай механических колебаний и волн. Виды звуков :

    Тоны – звук, являющийся периодическим процессом:

    1. простой – гармонический - камертон

      сложный – ангармонический – речь, музыка

Сложный тон может быть разложен на простые. Наименьшая частота такого разложения – основной тон, остальные гармоники (обертоны) – имеют частоты, равные 2и другие. Набор частот с указанием их относительной интенсивности – акустический спектр.

        Шум – звук со сложной неповторяющейся временной зависимостью (шорох, скрип, аплодисменты). Спектр – сплошной.

Физические характеристики звука :


Характеристики слухового ощущения :

    Высота – определяется частотой звуковой волны. Чем больше частота, тем выше тон. Звук большей интенсивности – более низкий.

    Тембр – определяется акустическим спектром. Чем больше тонов, тем богаче спектр.

    Громкость – характеризует уровень слухового ощущения. Зависит от интенсивности звука и частоты. Психофизическийзакон Вебера-Фехнера : если увеличивать раздражение в геометрической прогрессии (в одинаковое число раз), то ощущение этого раздражения возрастёт в арифметической прогрессии (на одинаковую величину).

, где Е – громкость (измеряется в фонах);
- уровень интенсивности (измеряется в белах). 1 бел – изменение уровня интенсивности, которое соответствует изменению интенсивности звука в 10 раз.K– коэффициент пропорциональности, зависит от частоты и интенсивности.

Зависимость между громкостью и интенсивностью звука – кривые равной громкости , построенные на экспериментальных данных (создают звук частотой 1 кГц, меняют интенсивность, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука). Зная интенсивность и частоту можно найти фон.

Аудиометрия – метод измерения остроты слуха. Прибор – аудиометр. Полученная кривая – аудиограмма. Определяется и сравнивается порог слухового ощущения на разных частотах.

Шумометр – измерение уровня шума.

В клинике : аускультация – стетоскоп/фонендоскоп. Фонендоскоп – полая капсула с мембраной и резиновыми трубками.

Фонокардиография – графическая регистрация фонов и шумов сердца.

Перкуссия.

Ультразвук – механические колебания и волны с частотой выше 20кГц до 20 МГц. УЗ-излучатели – электромеханические излучатели, основанные на пьезоэлектрическом эффекте (переменный ток к электродам, между которыми - кварц).

Длина волны УЗ меньше длины волны звука: 1,4 м – звук в воде (1 кГц), 1,4 мм – ультразвук в воде (1 МГц). УЗ хорошо отражается на границе кость-надкостница – мышца. УЗ в тело человека не проникнет, если не смазать маслом (воздушный слой). Скорость распространения УЗ зависит от среды. Физические процессы: микровибрации, разрушение биомакромолекул, перестройка и повреждение биологических мембран, тепловое действие, разрушение клеток и микроорганизмов, кавитация. В клинике: диагностика (энцефалограф, кардиограф, УЗИ), физиотерапия (800 кГц), ультразвуковой скальпель, фармацевтическая промышленность, остеосинтез, стерилизация.

Инфразвук – волны с частотой меньше 20 Гц. Неблагоприятное действие – резонанс в организме.

Вибрации . Полезное и вредное действие. Массаж. Вибрационная болезнь.

Эффект Доплера – изменение частоты волн, воспринимаемых наблюдателем (приёмником волн), вследствие относительного движения источника волн и наблюдателя.

1 случай: Н приближается к И.

2 случай: И приближается к Н.

3 случай: приближение и отдаление И и Н друг от друга:

Система: генератор УЗ – приёмник – неподвижна относительно среды. Движется объект. Он принимает УЗ с частотой
, отражает её, посылая на приёмник, который получает УЗ волну с частотой
. Разница частот –доплеровский сдвиг частоты :
. Используется для определения скорости кровотока, скорости движения клапанов.

В курсе физики 7 класса вы изучали механические колебания. Часто бывает так, что, возникнув в одном месте, колебания распространяются в соседние области пространства. Вспомните, например, распространение колебаний от брошенного в воду камешка или колебания земной коры, распространяющиеся от эпицентра землетрясения. В таких случаях говорят о волновом движении — волнах (рис. 17.1). Из этого параграфа вы узнаете об особенностях волнового движения.

Создаем механические волны

Возьмем довольно длинную веревку, один конец которой прикрепим к вертикальной поверхности, а второй будем двигать вниз-вверх (колебать). Колебания от руки распространятся по веревке, постепенно вовлекая в колебательное движение все более удаленные точки, — по веревке побежит механическая волна (рис. 17.2).

Механической волной называют распространение колебаний в упругой среде*.

Теперь закрепим горизонтально длинную мягкую пружину и нанесем по ее свободному концу серию последовательных ударов — в пружине побежит волна, состоящая из сгущений и разрежений витков пружины (рис. 17.3).

Описанные выше волны можно увидеть, однако большинство механических волн невидимы, например звуковые волны (рис. 17.4).

На первый взгляд, все механические волны абсолютно разные, но причины их возникновения и распространения одинаковы.

Выясняем, как и почему в среде распространяется механическая волна

Любая механическая волна создается колеблющимся телом — источником волны. Осуществляя колебательное движение, источник волны деформирует ближайшие к нему слои среды (сжимает и растягивает их либо смещает). В результате возникают силы упругости, которые действуют на соседние слои среды и заставляют их осуществлять вынужденные колебания. Эти слои, в свою очередь, деформируют следующие слои и заставляют их колебаться. Постепенно, один за другим, все слои среды вовлекаются в колебательное движение — в среде распространяется механическая волна.

Рис. 17.6. В продольной волне слои среды колеблются вдоль направления распространения волны

Различаем поперечные и продольные механические волны

Сравним распространение волны вдоль веревки (см. рис. 17.2) и в пружине (см. рис. 17.3).

Отдельные части веревки движутся (колеблются) перпендикулярно направлению распространения волны (на рис. 17.2 волна распространяется справа налево, а части веревки движутся вниз-вверх). Такие волны называют поперечными (рис. 17.5). При распространении поперечных волн происходит смещение одних слоев среды относительно других. Деформация смещения сопровождается возникновением сил упругости только в твердых телах, поэтому поперечные волны не могут распространяться в жидкостях и газах. Итак, поперечные волны распространяются только в твердых телах.

При распространении волны в пружине витки пружины движутся (колеблются) вдоль направления распространения волны. Такие волны называют продольными (рис. 17.6). Когда распространяется продольная волна, в среде происходят деформации сжатия и растяжения (вдоль направления распространения волны плотность среды то увеличивается, то уменьшается). Такие деформации в любой среде сопровождаются возникновением сил упругости. Поэтому продольные волны распространяются и в твердых телах, и в жидкостях, и в газах.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Они имеют сложный продольно-поперечный характер, при этом частицы жидкости движутся по эллипсам. В этом легко убедиться, если бросить в море легкую щепку и понаблюдать за ее движением на поверхности воды.

Выясняем основные свойства волн

1. Колебательное движение от одной точки среды к другой передается не мгновенно, а с некоторым опозданием, поэтому волны распространяются в среде с конечной скоростью.

2. Источник механических волн — колеблющееся тело. При распространении волны колебания частей среды — вынужденные, поэтому частота колебаний каждой части среды равна частоте колебаний источника волны.

3. Механические волны не могут распространяться в вакууме.

4. Волновое движение не сопровождается переносом вещества — части среды всего лишь колеблются относительно положений равновесия.

5. С приходом волны части среды приходят в движение (приобретают кинетическую энергию). Это означает, что при распространении волны происходит перенос энергии.


Перенос энергии без переноса вещества — важнейшее свойство любой волны.

Вспомните распространение волн по поверхности воды (рис. 17.7). Какие наблюдения подтверждают основные свойства волнового движения?

Вспоминаем физические величины, характеризующие колебания

Волна — это распространение колебаний, поэтому физические величины, характеризующие колебания (частота, период, амплитуда), также характеризуют и волну. Итак, вспомним материал 7 класса:

Физические величины, характеризующие колебания

Частота колебаний ν

Период колебаний T

Амплитуда колебаний A

Определе

количество колебаний за единицу времени

время одного колебания

максимальное расстояние, на которое отклоняется точка от положения равновесия

Формула для определения

N — количество колебаний за интервал времени t

Единица в СИ

секунда (с)

Обратите внимание! При распространении механической волны все части среды, в которой распространяется волна, колеблются с одинаковой частотой (ν), которая равна частоте колебаний источника волны, поэтому период

колебаний (T) для всех точек среды тоже одинаков, ведь

А вот амплитуда колебаний постепенно уменьшается с отдалением от источника волны.

Выясняем длину и скорость распространения волны

Вспомните распространение волны вдоль веревки. Пусть конец веревки осуществил одно полное колебание, то есть время распространения волны равно одному периоду (t = T). За это время волна распространилась на некоторое расстояние λ (рис. 17.8, а). Это расстояние называют длиной волны.

Длина волны λ — расстояние, на которое распространяется волна за время, равное периоду T:

где v — скорость распространения волны. Единица длины волны в СИ — метр:

Нетрудно заметить, что точки веревки, расположенные друг от друга на расстоянии одной длины волны, колеблются синхронно — имеют одинаковую фазу колебаний (рис. 17.8, б, в). Например, точки A и B веревки одновременно движутся вверх, одновременно достигают гребня волны, затем одновременно начинают двигаться вниз и т. д.

Рис. 17.8. Длина волны равна расстоянию, на которое распространяется волна за время одного колебания (это также расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами)

Воспользовавшись формулой λ = vT, можно определить скорость распространения

получим формулу взаимосвязи длины, частоты и скорости распространения волны — формулу волны:

Если волна переходит из одной среды в другую, скорость ее распространения изменяется, а частота остается неизменной, поскольку частота определяется источником волны. Таким образом, согласно формуле v = λν при переходе волны из одной среды в другую длина волны изменяется.

Формула волны

Учимся решать задачи

Задача. Поперечная волна распространяется вдоль шнура со скоростью 3 м/с. На рис. 1 показано положение шнура в некоторый момент времени и направление распространения волны. Считая, что сторона клетки равна 15 см, определите:

1) амплитуду, период, частоту и длину волны;


Анализ физической проблемы, решение

Волна поперечная, поэтому точки шнура колеблются перпендикулярно направлению распространения волны (смещаются вниз-вверх относительно некоторых положений равновесия).

1) Из рис. 1 видим, что максимальное отклонение от положения равновесия (амплитуда A волны) равно 2 клеткам. Значит, A = 2 15 см = 30см.

Расстояние между гребнем и впадиной — 60 см (4 клетки), соответственно расстояние между двумя ближайшими гребнями (длина волны) вдвое больше. Значит, λ = 2 · 60 см = 120 см = 1,2м.

Частоту ν и период T волны найдем, воспользовавшись формулой волны:

2) Чтобы выяснить направление движения точек шнура, выполним дополнительное построение. Пусть за небольшой интервал времени Δt волна сместилась на некоторое небольшое расстояние. Поскольку волна смещается вправо, а ее форма со временем не изменяется, точки шнура займут положение, показанное на рис. 2 пунктиром.

Волна поперечная, то есть точки шнура движутся перпендикулярно направлению распространения волны. Из рис. 2 видим, что точка K через интервал времени Δt окажется ниже своего начального положения, следовательно, скорость ее движения направлена вниз; точка В переместится выше, следовательно, скорость ее движения направлена вверх; точка С переместится ниже, следовательно, скорость ее движения направлена вниз.

Ответ: A = 30 см; T = 0,4 с; ν = 2,5 Гц; λ = 1,2 м; K и С — вниз, В — вверх.

Подводим итоги

Распространение колебаний в упругой среде называют механической волной. Механическую волну, в которой части среды колеблются перпендикулярно направлению распространения волны, называют поперечной; волну, в которой части среды колеблются вдоль направления распространения волны, называют продольной.

Волна распространяется в пространстве не мгновенно, а с некоторой скоростью. При распространении волны происходит перенос энергии без переноса вещества. Расстояние, на которое распространяется волна за время, равное периоду, называют длиной волны — это расстояние между двумя ближайшими точками, которые колеблются синхронно (имеют одинаковую фазу колебаний). Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν.

Контрольные вопросы

1. Дайте определение механической волны. 2. Опишите механизм образования и распространения механической волны. 3. Назовите основные свойства волнового движения. 4. Какие волны называют продольными? поперечными? В каких средах они распространяются? 5. Что такое длина волны? Как ее определяют? 6. Как связаны длина, частота и скорость распространения волны?

Упражнение № 17

1. Определите длину каждой волны на рис. 1.

2. В океане длина волны достигает 270 м, а ее период равен 13,5 с. Определите скорость распространения такой волны.

3. Совпадают ли скорость распространения волны и скорость движения точек среды, в которой распространяется волна?

4. Почему механическая волна не распространяется в вакууме?

5. В результате взрыва, произведенного геологами, в земной коре распространилась волна со скоростью 4,5 км/с. Отраженная от глубоких слоев Земли, волна была зафиксирована на поверхности Земли через 20 с после взрыва. На какой глубине залегает порода, плотность которой резко отличается от плотности земной коры?

6. На рис. 2 изображены две веревки, вдоль которых распространяется поперечная волна. На каждой веревке показано направление колебаний одной из ее точек. Определите направления распространения волн.

7. На рис. 3 изображено положение двух шнуров, вдоль которых распространяется волна, показано направление распространения каждой волны. Для каждого случая а и б определите: 1) амплитуду, период, длину волны; 2) направление, в котором в данный момент времени движутся точки А, В и С шнура; 3) количество колебаний, которые совершает любая точка шнура за 30 с. Считайте, что сторона клетки равна 20 см.

8. Человек, стоящий на берегу моря, определил, что расстояние между соседними гребнями волн равно 15 м. Кроме того, он подсчитал, что за 75 с до берега доходит 16 волновых гребней. Определите скорость распространения волн.

Это материал учебника