Корреляционная функция стационарного процесса. Корреляционной функции случайного процесса

КОРРЕЛЯЦИОННАЯ ФУНКЦИЯ

действительного случайного процесса - аргументов t, . определяемая равенством

Для того чтобы К. ф. была определена, следует предположить, что процесс X(t).при всех имеет конечный второй Параметр tпробегает здесь некоторое подмножество Тдействительной прямой и обычно интерпретируется как "время", однако совершенно аналогично определяется К. ф. случайной функции, заданной на множестве произвольной природы, в частности К. ф. случайного поля, когда Т - подмножество конечномерного пространства. Если - многомерный (), то его К. ф. наз. матричнозначная функция

Взаимная корреляционная функция процессов X i (t), X j (t).

К. ф. является важной характеристикой случайного процесса. Если X(t) - гауссовский процесс, то его К. ф. В(t, s ).и значение (т. е. первые и вторые моменты) однозначно определяют конечномерные распределения, а значит и процесс в целом. В общем случае первых двух моментов заведомо недостаточно для полного описания случайного процесса. Напр., одинаковую К. ф. имеют гауссовский , траектории к-рого непрерывны, и так наз. телеграфный сигнал - точечный марковский стационарный процесс, принимающий два значения ±1. Однако К. ф. определяет важных свойств процесса - так наз. свойства второго порядка (т. е. выражающиеся в терминах вторых моментов). В силу этого, а также благодаря своей относительной простоте, корреляционные методы широко используются как в теории случайных процессов, так и в ее статистич. приложениях (см. Коррелограмма ).

Если R(t).дополнительно непрерывна при t= 0 (что соответствует среднеквадратичной непрерывности процесса X(t)), то

где - положительная конечная ; здесь l пробегает всю действительную прямую, если Т= (случай "непрерывного времени"), или если Т= {. . . , - 1, 0, 1, . . .} (случай "дискретного времени"). Мера наз. спектральной мерой случайного процесса. Таким образом, корреляционные и спектральные свойства стационарного случайного процесса оказываются тесно связанными; напр., скорость убывания корреляций при соответствует степени гладкости спектральной плотности и т. п.

В статистической механике К. ф. наз. также совместная r(x 1 , ..., х т ).нахождения тразличных частиц рассматриваемой системы в точках x 1 , ..., х т ;совокупность этих функций однозначно определяет соответствующее точечное .

Лит. : Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Л о э в М., Теория вероятностей, пер. с англ., М., 1962; Г и х м а н И. И., Скороход А. В., Введение в теорию случайных процессов, М., 1965. А. С. Холево.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "КОРРЕЛЯЦИОННАЯ ФУНКЦИЯ" в других словарях:

    корреляционная функция - Ндп. автокорреляционная функция Функция, равная среднему значению произведения переменной составляющей случайного сигнала и такой же переменной составляющей, но запаздывающей на заданное время. Примечание Корреляционная функция характеризует… … Справочник технического переводчика

    Корреляционная функция функция времени или пространственных координат, которая задает корреляцию в системах со случайными процессами. Зависящая от времени корреляция двух случайных функций X(t) и Y(t) определяется как: , где угловые скобки… … Википедия

    В статистической физике ф ция, определяющая вероятность относит. расположения комплекса из s любых молекул жидкости или газа; при s=2 К. ф. наз. парной или бинарной. Появление корреляций в расположении молекул среды связано с тем, что в ближайшем … Физическая энциклопедия

    Случайного процесса ф ция В (s, t) = М[ Х (s) MX (s)].*, s, [здесь MX (t) первый момент процесса, * означает комплексное сопряжение; предполагается, что. В случае векторного процесса К. ф. наз коррел … Физическая энциклопедия - 1. Функция, равная среднему значению произведения переменной составляющей случайного сигнала и такой же переменной составляющей, но запаздывающей на заданное время Употребляется в документе: ГОСТ 16465 70 Сигналы радиотехнические измерительные.… … Телекоммуникационный словарь

    См. Функция корреляционная случайного процесса. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    Корреляционная функция случайного процесса - 16. Корреляционная функция случайного процесса Функция двух переменных t и и, равная ковариационной функции центрированного случайного процесса Rξ (t, u) = M{[ξ(t) m1]×[ξ(u) m2]}, t,uЄT Источник … Словарь-справочник терминов нормативно-технической документации

    Нормированная корреляционная функция - 25. Нормированная корреляционная функция Ндп. Коэффициент корреляции Функция, равная отношению корреляционной функции случайного сигнала к его дисперсии

Математическое ожидание и дисперсия являются важными характеристиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хороню видно из рис. 9.3, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих

одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса называют неслучайную функцию двух аргументов которая для каждой пары произвольно выбранных значений аргументов (моментов времени) равна математическому ожиданию произведения двух случайных величин соответствующих сечений случайного процесса:

где - двумерная плотность вероятности; - центрированный случайный процесс; - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс если его n-мерные функции распределения и плотности вероятности при любом не зависят от сдвига всех точек

Вдоль оси времени на одинаковую величину т. е.

Это означает, что два процесса имеют одинаковые статистические свойства для любого т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс математическое ожидание которого постоянно:

а корреляционная функция зависит только от одной переменной - разности аргументов при этом корреляционную функцию обозначают

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле; однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью определяют его n-мерную плотность вероятности.

Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При выражение для корреляционной функции

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по мнооюеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализацчй случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

В общем случае среднее значение по множеству является функцией времени

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса на протяжении

достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле:

если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализаций множества, определяющих случайный процесс. Вообще говоря, для одного и того же случайного процесса среднее по множеству и среднее по времени значения различны. Однако существует класс стационарных случайных процессов, называемых эргодическими, для которых среднее по множеству равно среднему по времени, т. е.

Корреляционная функция эргодического стационарного случайного процесса неограниченно убывает по модулю при

Однако надо иметь в виду, что не всякий стационарный случайный процесс является эргодическим, например случайный процесс каждая реализация которого постоянна во времени (рис. 9.4), является стационарным, но не эргодическим. В этом случае средние значения, определенные по одной реализации и в результате обработки множества реализаций, не совпадают. Один и тот же случайный процесс в общем случае может быть эргодическим по отношению к одним статистическим характеристикам и неэргодическим по отношению к другим. В дальнейшем будем считать, что по отношению ко всем статистическим характеристикам условия эргодичности выполняются.

Свойство эргодичности имеет очень большое практическое значение. Для определения статистических свойств некоторых объектов, если трудно осуществить одновременное наблюдение за ними в произвольно выбранный момент времени (например, при наличии одного опытного образца), его можно заменить длительным наблюдением за одним объектом. Иными словами, отдельная реализация эргодического случайного

процесса на бесконечном промежутке времени полностью определяет весь случайный процесс с его бесконечными реализациями. Собственно говоря, этот факт лежит в основе описанного ниже метода экспериментального определения корреляционной функции стационарного случайного процесса по одной реализации.

Как видно из (9.25), корреляционная функция представляет собой среднее значение по множеству. Для эргодических случайных процессов корреляционную функцию можно определить как среднее по времени от произведения , т. е.

где - любая реализация случайного процесса; х - среднее значение по времени, определяемое по (9.28).

Если среднее значение случайного процесса равно нулю то

Основываясь на свойстве эргодичности, можно дисперсию [см. (9.19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

Сравнивая выражения (9.30) и (9.32) при можно установить очень важную связь между дисперсией и корреляционной функцией - дисперсия стационарного случайного процесса равна начальному значению корреляционной функции:

Из (9.33) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно, постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов можно характеризовать взаимной корреляционной функцией которая для каждой пары произвольно выбранных значений аргументов равна

Для эргодических случайных процессов вместо (9.35) можно записать

где - любые реализации стационарных случайных процессов соответственно.

Взаимная корреляционная функция характеризует взаимную статистическую связь двух случайных процессов в разные моменты времени, отстоящие друг от друга на промежуток времени . Значение характеризует эту связь в один и тот же момент времени.

Из (9.36) следует, что

Если случайные процессы статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Заметим, что корреляционные функции могут вычисляться и для неслучайных (регулярных) функций времени. Однако когда говорят о корреляционной функции регулярной функции то под этим понимают просто результат формального

применения к регулярной функции операции, выражаемой интегралом:

Приведем некоторые основные свойства корреляционных функций

1. Начальное значение корреляционной функции [см. (9.33)] равно дисперсии случайного процесса:

2. Значение корреляционной функции при любом не может превышать ее начального значения, т. е.

Чтобы доказать это, рассмотрим очевидное неравенство из которого следует

Находим средние значения по времени от обеих частей последнего неравенства:

Таким образом, получим неравенство

3. Корреляционная функция есть четная функция , т. е.

Это вытекает из самого определения корреляционной функции. Действительно,

поэтому на графике корреляционная функция всегда симметрична относительно оси ординат.

4. Корреляционная функция суммы случайных процессов определяется выражением

где - взаимные корреляционные функции

Действительно,

5. Корреляционная функция постоянной величины равна квадрату этой постоянной величины (рис. 9.5, а), что вытекает из самого определения корреляционной функции:

6. Корреляционная функция периодической функции, например представляет собой косинусоиду (рис. 9-5, 5), т. е.

имеющую ту же частоту что и и не зависящую от сдвига фазы

Чтобы доказать это, заметим, что при нахождении корреляционных функций периодических функций можно использовать следующее равенство:

где - период функции

Последнее равенство получается после замены интеграла с пределами от -Т до Т при Т со суммой отдельных интегралов с пределами от до , где и использования периодичности подынтегральных функций.

Тогда, учитывая сказанное выше, получим т.

7. Корреляционная функция временной функции, разлагаемой в ряд Фурье:

Рис. 9.5 (см. скан)

имеет на основании изложенного выше следующий вид:

8. Типичная корреляционная функция стационарного случайного процесса имеет вид, представленный на рис. 9.6. Ее можно аппроксимировать следующим аналитическим выражением:

С ростом связь между ослабевает и корреляционная функция становится меньше. На рис. 9.5, б, в приведены, например, две корреляционные функции и две соответствующие им реализации случайного процесса. Легко заметить, что корреляционная функция, соответствующая случайному процессу с более тонкой структурой, убывает быстрее Другими словами, чем более высокие частоты присутствуют в случайном процессе, тем быстрее убывает соответствующая ему корреляционная функция.

Иногда встречаются корреляционные функции, которые могут быть аппроксимированы аналитическим выражением

где - дисперсия; - параметр затухания; - резонансная частота.

Корреляционные функции подобного вида имеют, например, случайные процессы типа турбулентности атмосферы, фединга радиолокационного сигнала, углового мерцания цели и т. п. Выражения (9.45) и (9.46) часто используются для аппроксимации корреляционных функций, полученных в результате обработки экспериментальных данных.

9. Корреляционная функция Стационарного случайного процесса, на которой наложена периодическая составляющая с частотой также будет содержать периодическую составляющую той же частоты.

Это обстоятельство можно использовать как один из способов обнаружения «скрытой периодичности» в случайных процессах, которая может не обнаруживаться при первом взгляде на отдельные записи реализации случайного процесса.

Примерный вид корреляционной функции процесса содержащего в своем составе кроме случайной также и периодическую составляющую, показан на рис. 9.7, где обозначена корреляционная функция, соответствующая случайной составляющей. Чтобы выявить скрытую периодическую составляющую (такая задача возникает, например, при выделении малого полезного сигнала на фоне большой помехи), лучше всего определить корреляционную функцию для больших значений когда случайный сигнал уже сравнительно слабо коррелирован и случайная составляющая слабо сказывается на виде корреляционной функции.

06 Лекция.doc

Лекция 6. Корреляционные функции случайных процессов
План.

1.Понятие корреляционной функции случайного процесса.

2.Стационарность в узком и в широком смыслах..

3.Среднее значение по множеству.

4.Среднее значение по времени.

5.Эргодические случайные процессы.
Математическое ожидание и дисперсия являются важными характерис-тиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хорошо видно из рис. 6.1, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих одинаковые значения математического ожидания и дис-персии. Штриховыми линиями на рис. 6.1. показаны значения 3 x (t ) для случайных процессов.
Процесс, изображенный на рис. 6.1, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 6.1, б обла-дает сильной изменчивостью от сечения к сечению. Поэтому статисти-ческая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого уста-новить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случай-ного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случай-ного процесса.

^ Корреляционной функцией случайного процесса X (t ) называют не-случайную функцию двух аргументов R x (t 1 , t 2), которая для каждой пары произвольно выбранных значений аргументов (моментов времени) t 1 и t 2 равна математическому ожиданию произведения двух случайных величин X (t 1 ) и X (t 2 ) соответствующих сечений случайного процесса:

Где 2 (x 1 , t 1 ; x 2 , t 2) -двумерная плотность вероятности.

Часто пользуются иным выражением корреляционной функции, .записанной не для самого случайного процесса X (t ), а для центрированной случайной составляющей X (t ). Корреляционную функцию в этом случае называют центрированной и определяютиз соотношения

(6.2)

Различные случайные процессы в зависимости от того, как изме-няются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Различают стационарность в уз-ком смысле и стационарность в широком смысле.

^ Стационарным в узком смысле называют случайный процесс X (t ), если его n -мерные функции распределения и плотность вероятности при любом п не зависят от положения начала отсчета времени t , т. е.

Это означает, что два процесса, X (t ) и X (t +), имеют одинаковые статистические свойства для любого , т. е. статистические характерис-тики стационарного случайного процесса неизменны во времени. Стационарный случайный процесс - это своего рода аналог установивше-гося процесса в детерминированных системах.

^ Стационарным в широком смысле называют случайный процесс X (t ), математическое ожидание которого.постоянно:

А корреляционная функция зависит только от одной переменной - раз-ности аргументов =t 2 -t 1:

(6.5)

Понятие случайного процесса, стационарного в широком смысле,. вводится тогда, когда в качестве статистических характеристик слу-чайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, кото-рая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью опре-деляют его n -мерную плотность вероятности. Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смыс-ле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен, но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успе-вают сколь-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысл.

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее зна-чение по множеству (или математическое ожидание), которое опреде-ляется на основе наблюдения над множеством реализации случайного процесса в один и тот же момент времени. Среднее значение по множе-ству принято обозначать волнистой чертой над выражением, описываю-щим случайную функцию:

В общем случае среднее значение по множеству является функцией времени.

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса x { f ) на протяжении достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле

(6.7)

Если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализации множества, определяющих случайный процесс.

Вообще для одного и того же случайного процесса среднее по множеству и среднее по времени различны, однако для так называемых эргодических стационарных случайных процессов среднее значение по множеству совпадает со средним значением по времени:

(6.8)

Равенство (6.8) вытекает из эргодической теоремы, в которой для некоторых стационарных случайных процессов доказано, что любая статистическая харак-теристика, полученная усреднением по множеству, с вероятностью, сколь угодно близкой к единице, совпадает с характеристикой, усредненной по времени. Эргодическая теорема доказана не для всех стационарных процессов, поэтому в тех случаях, где она еще не доказана, говорят об эргодической гипотезе.

Следует заметить, что не всякий стационарный процесс является эргодическим.

На рис. 6.2. изображен, например, график стационарного неэргодического процесса, для которого равенство (6.8) не выполняется. Один и тот же случай-ный процесс в общем случае может быть эргодическим по отношению к одним ста-тистическим характеристикам и не эргодическим по отношению к другим. В дальнейшем будем считать, что условия эргодичности для математического ожидания и корреляционной функции выполняются.

Физический смысл эргодической теоремы (или гипотезы) глубок и имеет большое практическое значение. Для определения статистических свойств эргодических стационарных процессов, если трудно осуществить одновременное на-блюдение за множеством подобных систем в произвольно выбранный момент вре-мени, например при наличии одного опытного образца, его можно заменить дли-тельным наблюдением за одной системой. Собственно говоря, этот факт лежит в основе экспериментального определения корреляционной функции стационар-ного случайного процесса по одной реализации. Наоборот, при наличии большой партии изделий массовой продукции для аналогичных исследований можно про-вести одновременное наблюдение за всеми образцами партии или их достаточно представительной выборкой.

Как видно из (6.5), корреляционная функция представляет собой среднее по множеству. В соответствии с эргодической теоремой для стационарного случайного процесса корреляционную функцию можно определить как среднее по времени от произведения x (t ) и x (t +), т. е.

(6.9)

Где x (t )- любая реализация случайного процесса.

Центрированная корреляционная функция эргодического стацио-нарного случайного процесса

(6.10

Между корреляционными функциями R x () и R 0 x () существует следующая связь:

R x ()=R x 0 ()+(x -) 2 , (6.11)

Основываясь на свойстве эргодичности, можно дисперсию D x [см. (19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

(6.12)

Сравнивая выражения (6.10) и (6.11), можно заметить, что диспер-сия стационарного случайного процесса равна начальному значению центрированной корреляционной функции:

(6.13)

Учитывая (6.12), можно установить связь между дисперсией и кор-реляционной функцией R x (), т. е.

Из (6.14) и (6.15) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов X (t ) и G (t ) можно характеризовать взаимной корреляционной функцией R xg (t 1 , t 2), которая для каждой пары произвольно выбранных значений аргументов t 1 , t 2 равна

Согласно эргодической теореме, вместо (6.18) можно записать

(6.19)

Где x (t ) и g (t ) - любые реализации стационарных случайных процес-сов X (t ) и G (t ) соответственно.

Взаимная корреляционная функция R xg ( характеризует взаимную статистическую связь двух случайных процессов X (t ) и G (t ) в разные моменты времени, отстоящие друг от друга на промежуток времени т. Значение R xg (0) характеризует эту связь в один и тот же момент времени.

Из (6.19) следует,что

(6.20)

Если случайные процессы Х(t) и G (t ) статистическине связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех т равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Центрированная корреляционная функция R ° x ( для неслучайных функций времени тождественно равна нулю. Однако корреляционная функция R x ( может вычисляться и для неслучайных (регулярных) функций. Заметим, однако, что когда говорят о корреляционной функции регулярной функции x (t ), то под этим понимают просто результат формального применения к регулярной функции x (t ) опе-рации, выражаемой интегралом (6.13).

Корреляционная функция стационарного процесса

Корреляционная функция слу­чайного процесса определяется как математическое ожидание произведения двух центрированных сечений процесса, взятых в мо­менты t 1 и t 2 . При этом математическое ожидание вычисляется с использованием двумерной плотности вероятности . Для стационарного случайного процесса двумерная плотность вероятности и, соответственно, корреляционная функция зависят не от t 1 и t 2 в отдельности, а только от их разности = t 2 - t 1 . В соответствии с этим корреляционная функция стационар­ного процесса определяется выражением

(3.1)

где - математическое ожидание стационарного процесса; х 1 , х 2 - возможные значения случайного процесса соответственно, в моменты времени t 1 , t 2 ; = t 2 – t 1 - интервал времени между сечения­ми; - двумерная плотность вероятности стационарно­го процесса. Второе выражение для получено путём раскрытия квадратных скобок первого выражения и учета свойств математичес­кого ожидания.

В научно-технической литературе используется также такая характеристика случайного процесса, как ковариационная функция K (t ), под которой понимается математическое ожидание произведения двух значений процесса, взятых соответ­ственно в моменты t 1 и t 2:

(3.2)

так что справедливо соотношение

(3.3)

Если , то понятия и совпадают. Если же до­полнительно обладает эргодическим свойством, то корреляцион­ная функция может быть определена по одной длинной реализации:

(3.4)

где Т - интервал наблюдения единственной реализации x (t ) процесса ; - эта же реализация x (t ), задержанная на время .

Формула (3.4) может быть положена в основу построения Структурная схема уст­ройства, измеряющего корреляционную функцию, которое называется коррелометром . Для построения коррелометра требуются перемножитель, устройство задержки с переменным временем задержки и интегратор (рис. 3.1). Это устройство измеряет или в зависимости от того, равно нулю или нет.

Корреляционная функция стационарного случайного про­цесса, как и вообще корреляционная функция случайного процесса, является действительной функцией аргумента . При этом характеризует с двух сторон. Во-первых, определяет среднюю удельную мощность флюктуаций. А во-вторых, позволяет судить о степени линейной связи между двумя сечениями случайного процесса, отстоящими друг от друга на интервал времени . Размерность совпадает с размерностью квадрата случайного процесса. Рассмотрим свойства корреляционной функции.

1. Корреляционная функция при = 0 равна дисперсии процесса

(3.5)

Это свойство вытекает непосредственно из формулы (3.1), если в ней положить = 0.

2. Корреляционная функция стационарного процесса является чётной функцией аргумента :

(3.6)

Это свойство непосредственно вытекает из определения стационарно­го процесса, для которого важны не сами значения моментов и t 2 , а расстояние во времени одного сечения от другого |t 2 -t 1 |.

3. Корреляционная функция при любом t не может превзойти своего значения при = 0:

(3.7)

Это свойство физически означает, что наибольшая степень линейной связи обеспечивается между одним и тем же сечением, то есть при =0. Правда, если является периодическим процессом, то может найтись еще какое-либо , соизмеримое с периодом процесса, для которого выполняется жесткая функциональная связь между и . Поэтому в формуле (3.7) в общем случае может выполняться не только неравенство, но и равенство.

4. Корреляционная функция может быть представлена в виде

(3.8)

где r (t ) нормированная корреляционная функция, имеющая смысл коэффициента корреляции, зависящего от и заключенная в пределах

. (3.9)

Она характеризует только степень линейной связи между сечениями слу­чайного процесса, взятыми через интервал . В свою очередь, дисперсия процесса характеризует только среднюю удельную мощность флюктуаций случайного процесса.

Предметом корреляционного анализа является изучение вероятностных зависимостей между случайными величинами.

Величины являются независимы­ми если закон распределения каждой из них не зависит от значе­ния, которое приняла другая. Такими величинами можно считать, например, предел выносливости материала детали и теоретический коэффициент концентрации напряжений в опасном сечении детали.

Величины являются связанными вероятностными или стохастическими зависимостями, если известному значению одной ве­личины соответствует не конкретное значение, а закон распределе­ния другой. Вероятностные зависимости имеют место, когда вели­чины зависят не только от общих для них, но и от разных случайных факторов.

Полная информация о вероятностной связи двух случайных величин представляется совместной плотностью распределения f(x,у) или условными плотностями распределения f(x/y), f(y/x), т. е. плотностями распределения случайных величин X и Y при задании конкретных значений у и х соответственно.

Совместная плотность и условные плотности распределения связаны следующими соотношениями:

Основными характеристиками вероятностных зависимостей яв­ляются корреляционный момент и коэффициент корреляции.

Корреляционный момент двух случайных величин X и У – это математическое ожидание произ­ведения центрированных случайных величин:

для дискретных

для непрерывных

где m x и m y – математические ожидания величин X и Y; р ij – ве­роятность отдельных значений x i и у i .

Корреляционный момент одновременно характеризует связь между случайными величинами и их рассеяние. По своей размер­ности он соответствует дисперсии для независимой случайной величины. Для выделения характеристики связи между случайными величинами переходят к коэффициенту корреляции характеризует степень тесноты зависимости и может изменяться в пределах -1 ≤ ρ ≤ 1.

;

где S x и S y – средние квадратические отклонения случайных величин.

Значения ρ = 1 и ρ = –1 свидетельствуют о функциональной зависи­мости, значение ρ = 0 свидетельствует о некоррелированности слу­чайных величин

Рассматривают корреляцию как между величинами, так и между событиями, а также множественную корреляцию, характеризую­щую связь между многими величинами и событиями.

При более анализе вероятностной связи определяют условные математические ожидания случайных величин m y / x и m х/у, т. е. математические ожидания случайных величин У и X при заданных конкретных значениях х и у соответственно.

Зависимость условного математического ожидания т у/х от х называют регрессией У по X. Зависимость т х/у от у соответствует регрессии X по Y.

Для нормально распределенных величин Y и X уравнение регрессии имеет вид:

для регрессии У по Х

для регрессии X по У

Важнейшей областью применения корреляционного анализа к задачам надежности является обработка и обобщение результатов эксплуатационных наблюдений. Результаты наблюдения случайных величин У и X представляют парными значениями у i , x i i -го наблюдения, где i=1, 2 . . . п; п – число наблюдений.

Оценку r коэффициента корреляции ρ определяют по формуле

где , – оценки математических ожиданий т х и т у соответствен­но, т. е. средние из п наблюдений значений

s x , s y - оценки средних квадратических отклонений S x и S y соот­ветственно:


Обозначив оценку условных математических ожиданий т y / x , т х / у соответственно через и , уравнения эмпирической регрес­сии У по X и X по Y записывают в следующем виде:

Как правило, практическую ценность имеет лишь одна из ре­грессий.

При коэффициенте корреляции r=1 уравнения регрессий тождественны.

Вопрос №63 Оценка статистических параметров с помощью доверительных интервалов

Если значение испытываемого параметра оценивается одним числом, то оно называется точечным. Но в большинстве задач нужно найти не только наиболее достоверное численное значение, но и оценить степень достоверности.

Нужно знать: какую ошибку вызывает замена истинного параметра а его точечной оценкой ; с какой степенью уверенности можно ожидать, что эти ошибки не превысят известные заранее установленные пределы.

Для этой цели в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Если для параметра а получена из опыта несмещенная оценка , и поставлена задача оценить возможную при этом ошибку, то необходимо назначить некоторую достаточно большую вероятность β (например β = 0,9; 0,95; 0,99 и т.д.), такую, что событие с вероятностью β можно было бы считать практически достоверным.

В этом случае можно найти такое значение ε, для которого P (| - a | < ε) = β.

Рис. 3.1.1 Схема доверительного интервала.

В этом случае диапазон практически возможных ошибок, возникающих при замене а на не будет превышать ± ε. Большие по абсолютной величине ошибки будут появляться только с малой вероятностью α = 1 – β. Событие противоположное и неизвестное с вероятностью β будет попадать в интервал I β = ( - ε; + ε). Вероятность β можно толковать, как вероятность того, что случайный интервал I β накроет точку а (рис. 3.1.1).

Вероятность β принято называть доверительной вероятностью, а интервал I β принято называть доверительным интервалом. На рис. 3.1.1 рассматривается симметричный доверительный интервал. В общем случае это требование не является обязательным.

Доверительный интервал значений параметра a можно рассматривать как интервал значений a , совместных с опытными данными и не противоречащих им.

Выбирая доверительную вероятность β, близкую к единице, мы хотим иметь уверенность в том, что событие с такой вероятностью произойдет при осуществлении определенного комплекса условий.

Это равносильно тому, что противоположное событие не произойдет, что мы пренебрегаем вероятностью события, равною α = 1 – β. Укажем, что назначение границы а пренебрежимо малых вероятностей не являются математической задачей. Назначение такой границы находится вне теории вероятностей и определяется в каждой области степенью ответственности и характером решаемых задач.

Но установление слишком большого запаса прочности приводит к неоправданному и большому удорожанию стоимости строительства.


65 Вопрос №65 Стационарный случайный процесс.

Стационарная случайная функция – случайная функция, все вероятностные характеристики которой не зависят от аргумента. Стационарные случайные функции описывают стационарные процессы работы машин, нестационарные функции – нестационарные процессы, частности переходные: пуск, останов, изменение режима. Аргументом является время.

Условия стационарности случайных функций:

1. постоянство математического ожидания;

2. постоянство дисперсии;

3. корреляционная функция должна зависеть только от разности аргументов, но не от их значений.

В качестве примеров стационарных случайных процессов можно привести: колебания самолета на установившемся режиме горизонтального полета; случайные шумы в радиоприемнике и др.

Каждый стационарный процесс можно рассматривать как продолжающийся во времени неопределенно долго, при исследовании в качестве начала отсчета можно выбрать любой момент времени. При исследовании стационарного случайного процесса на любом участке времени должны получаться одни и те же характеристики.

Корреляционная функция стационарных случайных процессов есть четная функция.

Для стационарных случайных процессов эффективен спектральный анализ, т.е. рассмотрение в виде спектров гармоник или рядов Фурье. Дополнительно вводят функцию спектральной плотности случайной функции, характеризующую распределение дисперсий по частотам спектра.

Дисперсия:

Корреляционная функция:

K x (τ) =

Спектральная плотность:

S x () =

Стационарные процессы могут быть эргодическими и неэргодическими. Эргодические – если среднее значение стационарной случайной функции на достаточно длительном участке приближенно равно среднему значению для отдельных реализаций. Для них характеристики определяют как среднее по времени.

Вопрос №66 Показатели надежности технических объектов: единичный, комплексный, расчетный, экспериментальный, эксплуатационный, экстраполированный.

Показатель надежности – количественная характеристика одного или нескольких свойств, составляющих надежность объекта.

Единичный показатель надежности – показатель надежности, характеризующий одно из свойств, составляющих надежность объекта.

Комплексный показатель надежности – показатель надежности, характеризующий несколько свойств, составляющих надежность объекта.

Расчетный показатель надежности – показатель надежности, значения которого определяются расчетным методом.

Экспериментальный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется по данным испытаний.

Эксплуатационный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется по данным эксплуатации.

Экстраполированный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется на основании результатов расчетов, испытаний и (или) эксплуатационных данных путем экстраполирования на другую продолжительность эксплуатации и другие условия эксплуатации.



Вопрос №68 Показатели долговечности технических объектов и автомобилей.

Гамма-процентный ресурс – суммарная наработка, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах.

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный срок службы – календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах

Средний срок службы – математическое ожидание срока службы.

Примечание. При использовании показателей долговечности следует указывать начало отсчета и вид действий после наступления предельного состояния (например гамма-процентный ресурс от второго капитального ремонта до списания). Показатели долговечности, отсчитываемые от ввода объекта в эксплуатацию до окончательного снятия с эксплуатации, называются гамма-процентный полный ресурс (срок службы), средний полный ресурс (срок службы)


71 71 Задачи и методы прогнозирования надёжности автомобилей

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные задачи прогнозирования надежности автомобилей могут быть сформулированы следующим образом:

а) Предсказание закономерности изменения надежности автомобилей в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

б) Оценка надежности проектируемой автомобилей до того, как они будут изготовлены. Эта задача возникает на стадии проектирования.

в) Прогнозирование надежности конкретного автомобиля (либо его узла, агрегата) на основании результатов изменения его параметров.

г) Прогнозирование надежности некоторой совокупности автомобилей по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства.

д) Прогнозирование надежности автомобилей в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой, сложных дорожных условиях и так далее).

Методы прогнозирования надежности автомобилей выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:а) методы экспертных оценок;б) методы моделирования, включающие физические, физико- математические и информационные модели;в) статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б того же автомобиля либо его узла, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполяции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены закономерности изменения параметров надежности автомобилей во времени

Вопрос №74 Математические методы прогнозирования. Построение математических моделей надежности.

При прогнозировании надежности трансмиссии возможно использование следующих моделей: 1) «слабейшего» звена; 2) зависимых ресурсов элементов деталей; 3) независимых ресурсов элементов деталей. Ресурс i-го элемента определяется из соотношения:

x i = R i /r i ,

где R i – количественное значение критерия i-го элемента, при котором происходит его отказ;

r i – средняя величина приращения количественной оценки критерия i-го элемента за единицу ресурса.

Величины R i и r i могут быть случайными с определенными законами распределения или постоянными.

Для варианта, когда R i постоянны, а r i переменны и имеют функциональную связь с одной и той же случайной величиной, рассмотрим ситуацию, когда между величинами r i соблюдается линейная функциональная связь, что приводит к модели «слабейшего» звена. В этом случае надежность системы соответствует надежности «слабейшего» звена.

Модель зависимых ресурсов реализуется при нагружении по схеме, когда имеется наличие разброса условий эксплуатации для массовых машин или неопределенности условий эксплуатации уникальных машин. Модель независимых ресурсов имеет место при нагружении по схеме с конкретными условиями эксплуатации.

Выражение для расчета надежности системы с независимыми ресурсами элементами.

Вопрос №79 Схематизация нагружения системы, деталей и элементов (на примере трансмиссии).

Под трансмиссией будем подразумевать привод машины в целом или отдельную, достаточно сложную его часть, которую по тем или иным причинам необходимо выделить. Нагруженность трансмиссии определяется силовой и скоростной составляющими. Силовую составляющую характеризует крутящий момент, а скоростную – угловая скорость вращения, которая определяет количество циклов нагружения деталей трансмиссии или скорость скольжения контактных поверхностей.

В зависимости от типа детали схематизация крутящего момента с целью получения нагруженности детали может быть различной. Например, нагруженность зубчатых колес и подшипников определяется текущим значением моментов, а валов на кручение – величиной его амплитуды.

Исходя из условий эксплуатации, нагруженность трансмиссии может быт представлена в виде следующих схем.

1. Каждому режиму соответствует одномерная кривая распределения.

2. Для каждого режима имеем n одномерных кривых распределения (n - количество условий эксплуатации машины). Вероятность эксплуатации в каждом из условий конкретна.

3. Для каждого режима имеем одно двухмерное распределение текущего и среднего значений крутящего момента.

Схема 1 может быть использована для машин массового производства при совершенно одинаковых условиях эксплуатации или для уникальной машины при конкретных условиях ее эксплуатации.

Схема 2 качественно не отличается от схемы 1, однако в ряде случаев для расчета целесообразно, чтобы каждому условию эксплуатации соответствовала нагрузочная кривая.

Схема 3 может характеризовать нагруженность трансмиссии уникальной машины, конкретные условия эксплуатации которой неизвестны, но известен диапазон условий.

82 Вопрос №82 Системный подход к прогнозированию ресурса деталей

Автомобиль должен рассматриваться как сложная система, образующаяся с точки зрения надежности последовательно соединяющихся его агрегатов, деталей, элементов.

Ресурс элемента:

T i = R i /r i ,

где R i - количественное значение критерия предельного состояния i-го элемента, при котором происходит его отказ;

г i - средняя величина приращения количественной оценки критерия

предельного состояния i -го элемента за единицу ресурса.

R i и r­ i могут быть случайными или постоянными и возможны

следующие варианты:

1. R i - случайные, r­ i - случайные;

2. R i - случайные, r­ i - постоянные;

3. R i - постоянные, r­ i - случайные;

4. R i - постоянные, r­ i - постоянные.

Для первых трех вариантов, считаем R i независимыми между собой случайными величинами.

1.а) r­ i - независимые

Надежность системы считается перемножением ВБР

б) r­ i - случайные и связаны вероятностью

f (r i / r j) = f (r i , r j)/ f (r j);

f (r j / r i) = f (r i , r j)/ f (r i).

Если r i и r j зависят друг от друга, то и ресурсы также будут зависеть друг от

друга и для расчета применяется модель зависимости ресурсов элементов. Т.к. связь вероятностная, то применяется метод условных функций.

в) r i - случайные и связаны функционально.

В данном случае свободные величины зависят друг от друга, также зависят между собой и ресурсы. Только в силу функциональной зависимости связь будет сильнее, чем в других случаях.

2. модель независимых ресурсов элементов.

ВБР системы равна сумме ВБР всех элементов.

3. возможны такие же случаи как в 1, только в случаях б) и в) будет усиление зависимых ресурсов из-за постоянства R i . В случае в) r i - функциональная связь,

возможна ситуация, когда применяется модель "слабейшего" звена.

R 1 ,R 2 –постоянные;

r 1 ,r 2 – случайные;

r 1 = 1,5 ∙ r 2 ;

R 1 = T ∙ r 1 ;

R 2 = T ∙ r 2 ;

Если при других двух конкретных значениях r 1 , r 2 будет соблюдено

такое же соотношение по ресурсу Т 1 >Т 2 , то элемент 2 будет "слабейшим"

звеном, т.е. он определяет надежность этой системы.

Применение модели "слабейшего" звена:

Если в системе есть элемент, у которого критерий R значительно меньше, чем этот критерий у всех других элементов, а нагружены все элементы примерно одинаково;

Если критерий R у всех элементов примерно одинаков, а нагруженность одного элемента значительно выше, чем всех других элементов.

Вопрос №83Определение ресурса деталей (валов, или зубчатых колес, или подшипников опор агрегатов трансмиссии) по экспериментальным нагрузочным режимам.

Определение ресурса подшипников качения.

Для определения долговечности подшипников качения агрегатов трансмиссии и ходовой части необходимо выполнить несколько видов расчета: на статическую прочность, на контактную усталость, на износ.

Модель отказа:

где f(R) – плотность распределения ресурса;

, – плотность и функция распределения ресурса для i-го вида разрушительного процесса;

n – число видов расчета.

Наибольшее распространение получил расчет подшипников качения на контактную усталость:

R = а р С д mρ No 50 [β -1 ,

где С д – динамическая грузоподъемность;

No 50 – число циклов кривой усталости, соответствующее 50% вероятности неразрушения подшипника при нагрузке С д;

m ρ – показатель степени (шариковые = 3, роликовые = 3,33);

Частота нагружения подшипника при движении на k-ой передаче;

Плостность распределения приведенной нагрузки при движении на k-ой передаче в i-ых условиях эксплуатации.

Основные особенности расчета.

1. Так как для кривой усталости подшипников вместо предела выносливости вводится С д (соответствует вероятности неразрушения 90% при 10 6 циклов), то необходимо перейти к кривой усталости, соответствующей 50% неразрушения. Учитывая, что плотность распределения при нагрузке на подшипник С д подчиняется закону Вейбулла, то No 50 = 4,7 ∙ 10 6 циклов.

2. Интегрирование в формуле производится от нуля, а параметры кривой усталости - m ρ , No 50 и С д – не корректируются. Поэтому, при условии = const, перестановка операций суммирования и интегрирования не влияет на величину R. Следовательно, расчеты по обобщенному нагрузочному режиму и по отдельным нагрузочным режимам тождественны. Если величины существенно отличаются, то расчет среднего ресурса R ik производится раздельно для каждой передачи:

R ik = а р С д mρ No [β -1 ,

формула может быть записана:

R = [ -1 ,

Р = (K Fr ∙ K v ∙ F r + K Fa ∙ F a) ∙ K б ∙ K T ∙ K м;

где F r , F a – радиальная и осевая нагрузки;

K v – коэффициент вращения;

K б – коэффициент вращения;

K Т – температурный коэффициен;

K м – коэффициент материала;

K Fr , K Fa – коэффициент радиальной и осевой нагрузок.

4. Зависимость между крутящим моментом на валу М и приведенной нагрузкой на подшипник:

Р = K P M = (K Fr ∙ K v ∙ K R + K Fa ∙ K A) ∙ K б ∙ K T ∙ K м ∙ M;

где К Р – коэффициент преобразования;

K R , K A – коэффициенты преобразования момента в суммарную радиальную и осевую нагрузки на подшипник.

Частота нагружения подшипника соответствует частоте его вращения.

1000 U Σα (2πr ω)

где U Σα – общее передаточное число трансмиссии от вала до ведущих колес автомобиля при включенной k-ой передаче.

5. Расчет плотности распределения ресурса подшипника и его параметров производится методом статического моделирования.

Вопрос №12 Удельная материалоемкость автомобилей.

При определении материалоемкости автомобиля используется масса снаря­женного шасси. Целесообразность ис­пользования при оценке материалоем­кости автомобиля массы шасси объяс­няется широким развитием производ­ства специализированных автомобилей с кузовами различных типов или дру­гих надстроек разной массы, устанав­ливаемых на шасси одного и того же базового автомобиля. Именно поэтому в фирменных проспектах и каталогах для зарубежных грузовых автомоби­лей, как правило, приводятся значения массы снаряженного шасси, а не ав­томобиля. При этом в массу снаряжен­ного шасси многие зарубежные фирмы не включают массу снаряжения и до­полнительного оборудования, а степень заправки топливом в различных стан­дартах указывается разная.

Для объективной оценки материало­емкости автомобилей различных моде­лей они обязательно должны быть приведены к единой комплектации. При этом грузоподъемность шасси определяется как разность между по­лной конструктивной массой автомоби­ля и массой снаряженного шасси.

Основным показателем материало­емкости автомобиля является удельная масса шасси:

m уд = (m сн.шас – m з.сн)/[(m к.а – m сн.шас)Р];

где m сн.шас – масса снаряженного шасси,

m з.сн – масса заправки и снаряжения,

m к.а – полная конструктивная масса автомобиля,

Р – установленный ресурс до капитального ремонта.

Для автомобиля-тягача учитывается полная масса автопоезда:

m уд = (m сн.шас – m з.сн)/[(m к.а – m сн.шас)КР];

где К – коэффициент коррекции показателей для автомобилей-тягачей, предназначенных для работы в составе автопоезда

К = m a /m к.а;

где m a – полная масса автопоезда.


Похожая информация.