Безразмерная материальная точка и разные системы отсчета. Материальная точка Что можно считать за материальную точку

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Материальная точка" в других словарях:

    Точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    Понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    Современная энциклопедия

    В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    Понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

ВОПРОСЫ

1. Обладает ли материальная точка массой? Имеет ли она размеры?

Под материальной точкой в физике понимается тело, размерами которого в условиях данной задачи можно пренебречь. Материальная точка обладает определенной массой, но имеет нулевые (очень малые) размеры.

2. Материальная точка- это реальный объект или абстрактное понятие?

Материальная точка - абстрактное понятие, т.к. в природе все тела обладают определёнными размерами.

3. С какой целью используется понятие "материальная точка" ?

Понятие материальной точки используется для упрощения условий и решений задач. Если пренебречь размерами реального тела, то нет необходимости рассматривать движение тела при его движении вокруг своей оси (мяч в полёте) или движение каких- то частей тела (колеса автомобиля), если нас интересует с какой скоростью движется тело.

4. В каких случаях движущееся тело обычно рассматривают как материальную точку?

В данном случае движущееся тело можно рассматривать как материальную точку, если его размеры намного меньше расстояния на которое оно перемещается.

5. Приведите пример, показывающий, что одно и то же тело в одной ситуации можно считать материальной точкой, а в другой- нет.

Если рассматривать, например, движение автомобиля, при его перемещении из города А в город Б, то в данном случае, при определении средней скорости движения автомобиля его можно рассматривать как материальную точку, однако если нас интересует движение автомобиля более подробно, то окажется, что при движении автомобиля, например передние и задние колёса из-за неровностей дороги двигаются по разному (не синхронно).

6. При каком движении тела его можно рассматривать как материальную точку даже в том случае, если проходимые им расстояния сравнимы с его размерами?

Если тело движется поступательно.

7. Что называется материальной точкой?

Материальная точка - это абстрактное понятие обозначающее тело, размеры которого не играют роли в условиях рассматриваемой задачи.

8. В каком случае положение движущегося тела можно задать с помощью одной координатной оси?

Если тело движется прямолинейно.

9. Что такое система отсчёта?

Система отсчёта- это тело отсчёта, связанная с ним система координат и прибор для измерения времени, по отношению к которым рассматривается движение материальных точек или тел.


УПРАЖНЕНИЯ

2. Самолёт совершает перелёт из Москвы во Владивосток. Может ли рассматривать самолёт как материальную точку диспетчер, наблюдающий за его движением? пассажир этого самолёта?

С точки зрения диспетчера, если рассматривать только маршрут самолёта, то можно, но если в воздухе находятся другие самолёты или он заходит на посадку - нет. С точки зрения пассажира, при полёте по маршруту- да, но при перемещении пассажира внутри самолёта - нет.

3. Когда говорят о скорости машины, поезда и других транспортных средств, тело отсчёта обычно не указывают. Что подразумевают в этом случае под телом отсчёта?

Под телом отсчёта, в данном случае, обычно подразумевают поверхность Земли.

4. Мальчик стоял на земле и наблюдал, как его младшая сестра каталась на карусели. После катания девочка сказала брату, что и он сам, и дома, и деревья быстро проносились мимо неё. Мальчик же стал утверждать, что он вместе с домами и деревьями, был неподвижен, а двигалась сестра. Относительно каких тел отсчёта рассматривали движение девочка и мальчик? Объясните кто прав в споре.

Оба правы. Мальчик выбрал систему отсчёта относительно себя (он был неподвижен), а девочка относительно себя (она была на качелях).

5. Относительно какого тела отсчёта рассматривают движение, когда говорят:
а) скорость ветра равна 5 м/с?
б) бревно плывет по течению реки, поэтому его скорость равна нулю;
в) скорость плывущего по реке дерева равна скорости течения воды в реке;
г) любая точка колеса движущегося велосипеда описывает окружность;
д) Солнце утром восходит на востоке, в течение дня движется по небу, а вечером заходит на западе?

а) относительно поверхности Земли; б) относительно текущей воды; в) относительно поверхности Земли; г) относительно центра (оси) колеса; д) относительно поверхности Земли.

ВВЕДЕНИЕ

Дидактический материал предназначен студентам всех специальностей заочного факультета ГУЦМиЗ, изучающих курс механики по программе для инженерно-технических специальностей.

Дидактический материал содержит краткое изложение теории по изучаемой теме, адаптированной к уровню обученности студентов-заочников, примеры решения типовых задач, вопросы и задания, аналогичные предлагаемым студентам на экзаменах, справочный материал.

Цель такого материала – помочь студенту-заочнику самостоятельно в сжатые сроки усвоить кинематическое описание поступательного и вращательного движений, используя метод аналогии; научиться решать численные и качественные задачи, разбираться в вопросах, связанных с размерностью физических величин.

Особое внимание уделяется решению качественных задач, как одному из приемов более глубокого и сознательного усвоения основ физики, необходимых при изучении специальных дисциплин. Они помогают понять смысл происходящих явлений природы, уяснить сущность физических законов и уточнить область их применения.

Дидактический материал может быть полезен студентам дневной формы обучения.

КИНЕМАТИКА

Часть физики, изучающую механическое движение, называют механикой . Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей.

Кинематика – первый раздел механики, она изучает законы движения тел, не интересуясь причинами, вызывающими это движение.

1. Материальная точка. Система отсчета. Траектория.

Путь. Вектор перемещения

Простейшая модель кинематики - материальная точка . Это тело, размерами которого в данной задаче можно пренебречь. Любое тело можно представить как совокупность материальных точек.

Чтобы математически описать движение тела, необходимо определиться с системой отсчета. Система отсчета (СО) состоит из тела отсчета и связанных с ним системы координат и часов . Если в условии задачи нет специальных указаний, считается, что система координат связана с поверхностью Земли. В качестве системы координат чаще всего используется декартова система.

Пусть требуется описать движение материальной точки в декартовой системе координат ХУ Z (рис.1). В некоторый момент времени t 1 точка находится в положении А . Положение точки в пространстве можно характеризовать радиусом - вектором r 1 , проведенным из начала координат в положение А , и координатами x 1 , y 1 , z 1 . Здесь и далее векторные величины обозначены жирным курсивом. К моменту времени t 2 = t 1 + Δ t материальная точка переместится в положение В с радиус вектором r 2 и координатами x 2 , y 2 , z 2 .

Траекторией движения называется кривая в пространстве, по которой движется тело. По виду траектории различают прямолинейное, криволинейное движения и движение по окружности.

Длина пути (или путь ) - длина участка АВ , измеренная по траектории движения, обозначается через Δs (или s). Путь в международной системе единиц (СИ) измеряется в метрах (м).

Вектор перемещения материальной точки Δr представляет собой разность векторов r 2 и r 1 , т.е.

Δr = r 2 - r 1.

Модуль этого вектора, называемый перемещением, является кратчайшим расстоянием между положениями А и В (начальным и конечным) движущейся точки. Очевидно, что Δs ≥ Δr , причем равенство выполняется при прямолинейном движении.

При движении материальной точки значение пройденного пути, радиуса-вектора и его координат меняется со временем. Кинематическими уравнениями движения (в дальнейшем уравнениями движения ) называют их зависимости от времени, т.е. уравнения вида

s =s(t ), r= r (t ), x =х (t ), y =у (t ), z =z(t ).

Если для движущегося тела известно такое уравнение, то в любой момент времени можно найти скорость его движения, ускорение и т.д., в чем далее убедимся.

Любое движение тела можно представить как совокупность поступательного и вращательного движений.

2. Кинематика поступательного движения

Поступательным называют такое движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной самой себе.

Скорость характеризует быстроту движения и направление движения.

Средней скоростью движения в интервале времени Δt называется величина

(1)

где - s отрезок пути, пройденный телом за время за время t .

Мгновенной скоростью движения (скорость в данный момент времени) называют величину, модуль которой определяется первой производной от пути по времени

(2)

Скорость - векторная величина. Вектор мгновенной скорости всегда направлен по касательной к траектории движения (рис.2). Единица измерения скорости – м/с.

Значение скорости зависит от выбора системы отсчета. Если человек сидит в вагоне поезда, он вместе с поездом движется относительно СО, связанной с землей, но покоится относительно СО, связанной с вагоном. Если человек ходит по вагону со скоростью , то его скорость относительно СО «земля»  з зависит от направления движения. Вдоль движения поезда  з =  поезда +  , против   з =  поезда - .

Проекции вектора скорости на оси координат υ х ,υ у z определяются как первые производные от соответствующих координат по времени (рис. 2):

Если известны проекции скорости на оси координат, модуль скорости можно определить по теореме Пифагора:

(3)

Равномерным называют движение с постоянной скоростью (υ = const). Если при этом не меняется направление вектора скорости v , то движение будет равномерным прямолинейным.

Ускорение - физическая величина, характеризующая быстроту изменения скорости по величине и направлению Среднее ускорение определяется как

(4)

где Δυ - изменение скорости за отрезок времени Δt .

Вектор мгновенного ускорения определяется как производная от вектора скорости v по времени:

(5)

Поскольку при криволинейном движении скорость может изменяться как по величине, так и по направлению, принято разлагать вектор ускорения на две взаимно перпендикулярные составляющие

а = а τ + а n . (6)

Тангенциальное (или касательное) ускорение а τ характеризует быстроту изменения скорости по величине, его модуль

.(7)

Тангенциальное ускорение направлено по касательной к траектории движения по скорости при ускоренном движении и против скорости при замедленном движении (рис. 3)..

Нормальное (центростремительное) ускорение а n характеризует изменение скорости по направлению, его модуль

(8)

где R - радиус кривизны траектории.

Вектор нормального ускорения направлен к центру окружности, которую можно провести касательно к данной точке траектории; он всегда перпендикулярен вектору тангенциального ускорения (рис.3).

Модуль полного ускорения определяется по теореме Пифагора

. (9)

Направление вектора полного ускорения а определяется векторной суммой векторов нормального и тангенциального ускорений (рис.3)

Равнопеременным называют движение с постоянным ускорением. Если ускорение положительно, то это равноускоренное движение , если же оно отрицательно - равнозамедленное .

При прямолинейном движении а ם =0 и а = а τ . Если а ם =0 и а τ = 0, тело движется прямолинейно и равномерно ; при а ם =0 и а τ = const движение прямолинейное равнопеременное .

При равномерном движении пройденный путь вычисляется по формуле:

ds = dt s = ∫dt = ∫dt = t + s 0 , (10)

где s 0 - начальный путь для t = 0. Последнюю формулу необходимо запомнить.

Графические зависимости υ (t ) и s (t ) приведены на рис.4.

Для равнопеременного движения  = ∫а dt = а ∫ dt , отсюда

= а t +  0 , (11)

где  0 - начальная скорость при t =0.

Пройденный путь s = ∫dt = ∫(а t +  0)dt . Решая этот интеграл, получим

s = а t 2 /2 +  0 t + s 0 , (12)

где s 0 - начальный путь (для t = 0). Формулы (11), (12) рекомендуем запомнить.

Графические зависимости а (t ), υ (t ) и s (t ) приведены на рис.5.

К равнопеременному движению с ускорением свободного падения g = 9,81 м/с 2 относится свободное движение тел в вертикальной плоскости: вниз тела падают с g ›0, при движении вверх ускорение g ‹ 0. Скорость движения и пройденный путь при этом изменяется согласно (11):

 =  0 + g t ; (13)

h = g t 2 /2 +  0 t + h 0 . (14)

Рассмотрим движение тела, брошенного под углом к горизонту (мяч, камень, пушечный снаряд,…). Это сложное движение состоит из двух простых: по горизонтали вдоль оси ОХ и вертикали вдоль оси ОУ (рис.6). По горизонтальной оси в отсутствие сопротивления среды движение равномерное; по вертикальной оси - равнопеременное: равнозамедленное до максимальной точки подъема и равноускоренное после нее. Траектория движения имеет вид параболы. Пусть  0 - начальная скорость тела, брошенного под углом α к горизонту из точки А (начало координат). Ее составляющие по выбранным осям:

 0x =  x =  0 cos α = const ; (15)

 0у =  0 sinα. (16)

Согласно формуле (13) имеем для нашего примера в любой точке траектории до точки С

 у =  0у - g t =  0 sinα. - g t ;

 х =  0х =  0 cos α = const.

В наивысшей точке траектории, точке С , вертикальная составляющая скорости  у = 0. Отсюда можно найти время движения до точки С:

 у =  0у - g t =  0 sinα. - g t = 0 → t =  0 sinα/ g . (17)

Зная это время, можно определить максимальную высоту подъема тела по (14):

h max =  0у t - g t 2 /2= 0 sinα  0 sinα/g g ( 0 sinα /g ) 2 /2 = ( 0 sinα) 2 /(2g ) (18)

Поскольку траектория движения симметрична, то полное время движения до конечной точки В равно

t 1 =2 t = 2 0 sinα / g . (19)

Дальность полета АВ с учетом (15) и (19) определится так:

АВ =  х t 1 =  0 cosα 2 0 sinα/ g = 2 0 2 cosα sinα/ g . (20)

Полное ускорение движущегося тела в любой точке траектории равно ускорению свободного падения g ; его можно разложить на нормальное и тангенциальное, как было показано на рис.3.

МАТЕРИАЛЬНАЯ ТОЧКА – модельное понятие (абстракция) классической механики, обозначающее тело исчезающе малых размеров, но обладающее некоторой массой .

С одной стороны, материальная точка – простейший объект механики, так как его положение в пространстве определяется всего тремя числами. Например, тремя декартовыми координатами той точки пространства, в которой находится наша материальная точка.

С другой стороны, материальная точка – основной опорный объект механики, так как именно для нее сформулированы основные законы механики. Все другие объекты механики – материальные тела и среды – могут быть представлены в виде той или иной совокупности материальных точек. Например, любое тело можно «разрезать» на малые части и каждую из них принять в качестве материальной точки с соответствующей массой.

Когда можно «заменить» реальное тело материальной точкой при постановке задачи о движении тела, зависит от тех вопросов, на которые должно ответить решение формулируемой задачи.

Возможны различные подходы к вопросу об использовании модели материальной точки.

Один из них носит эмпирический характер. Считают, что модель материальной точки применима тогда, когда размеры движущихся тел пренебрежимо малы по сравнению с величиной относительных перемещений этих тел. В качестве иллюстрации можно привести Солнечную систему. Если считать, что Солнце – неподвижная материальная точка и считать оно действует на другую материальную точку-планету по закону всемирного тяготения, то задача о движении точки-планеты имеет известное решение. Среди возможных траекторий движения точки есть и такие, на которых выполняются законы Кеплера, эмпирически установленные для планет солнечной системы.

Таким образом, при описании орбитальных движений планет модель материальной точки вполне удовлетворительна. (Однако, построение математической модели таких явлений как солнечные и лунные затмения требует учета реальных размеров Солнца, Земли и Луны, хотя эти явления, очевидно, связаны с орбитальными движениями.)

Отношение диаметра Солнца к диаметру орбиты ближайшей планеты – Меркурию – составляет величину ~ 1·10 –2 , а отношения диаметров ближних к Солнцу планет к диаметрам их орбит – величины ~ 1 ÷ 2·10 –4 . Могут ли эти числа служить формальным критерием для пренебрежения размерами тела в других задачах и, следовательно, для приемлемости модели материальной точки? Практика показывает, что нет.

Например, маленькая пуля размером l = 1 ÷ 2 см пролетает расстояние L = 1 ÷ 2 км, т.е. отношение , однако траектория полета (да и дальность) существенно зависит не только от массы пули, но и от ее формы, и от того, вращается ли она. Поэтому даже маленькую пулю, строго говоря, нельзя считать материальной точкой. Если в задачах внешней баллистики метаемое тело часто считают материальной точкой, то это сопровождается оговорками ряда дополнительных условий, как правило, эмпирически учитывающих реальные характеристики тела.

Если обратиться к космонавтике, то когда космический аппарат (КА) выведен на рабочую орбиту, при дальнейших расчетах траектории его полета он считается материальной точкой, так как никакие изменения формы КА не оказывают сколько-нибудь заметного влияния на траекторию. Лишь иногда, при коррекциях траектории возникает необходимость обеспечения точной ориентации реактивных двигателей в пространстве.

Когда же спускаемый отсек приблизится к поверхности Земли на расстояние ~100 км, он сразу «превращается» в тело, поскольку от того, каким «боком» он входит в плотные слои атмосферы, зависит, доставит ли отсек в нужную точку Земли космонавтов и возвращаемые материалы.

Модель материальной точки оказалась практически неприемлемой для описания движений таких физических объектов микромира, как элементарные частицы, атомные ядра, электрон и т.п.

Другой подход к вопросу об использовании модели материальной точки носит рациональный характер. По закону изменения количества движения системы, примененному к отдельному телу, центр масс С тела имеет такое же ускорение, как и некоторая (назовем ее эквивалентной) материальная точка, на которую действуют те же силы, что и на тело, т.е.

Вообще говоря, результирующая сила может быть представлена в виде суммы , где зависит только от и (радиус-вектор и скорость точки С), а – и от угловой скорости тела и его ориентации.

Если F 2 = 0, то приведенное выше соотношение превращается в уравнение движения эквивалентной материальной точки.

В этом случае говорят, что движение центра масс тела не зависит от вращательного движения тела. Таким образом, возможность использования модели материальной точки получает математическое строгое (а не только эмпирическое) обоснование.

Естественно, что на практике условие F 2 = 0 выполняется редко и обычно F 2 № 0, однако может оказаться, что F 2 в каком-то смысле мало по сравнению с F 1 . Тогда можно говорить, что модель эквивалентной материальной точки является некоторым приближением при описании движения тела. Оценка точности такого приближения может быть получена математически и если эта оценка окажется приемлемой для «потребителя», то замена тела на эквивалентную материальную точку допустима, в противном случае такая замена приведет к значительным ошибкам.

Это может иметь место и тогда, когда тело движется поступательно и с точки зрения кинематики его можно «заменить» на некоторую эквивалентную точку.

Естественно, что модель материальной точки не пригодна для ответа на такие вопросы, как «почему Луна обращена к Земле лишь одной своей стороной?» Подобные явления связаны с вращательным движением тела.

Виталий Самсонов

Материальная точка. Система отсчета.

Механическим движением тела называется изменение с течением времени его положения относительно других тел.

Практически все физические явления сопровождаются движением тел. В физике есть специальный раздел, который изучает движение, – это механика .

Слово «механика» произошло от греческого «механэ» - машина, приспособление.

При действии разных машин и механизмов происходит движение их частей: рычагов, канатов, колес,... К механике так же относят нахождение условий, при которых тело находится в покое, - условий равновесия тел. Эти вопросы играют огромную роль в строительном деле. Двигаться могут не только материальные тела, но и солнечный зайчик, тень, световые сигналы, радиосигналы.

Для изучения движения необходимо уметь описывать движение. Нам не интересно как возникло это движение, нас интересует сам процесс. Раздел механики, который изучает движение без исследования причины, его вызывающего, называется кинематикой .

Движение каждого тела можно рассматривать по отношению к разным телам и относительно их данное тело будет совершать различные движения: чемодан, лежащий в вагоне на полке идущего поезда, относительно вагона – покоится, а относительно Земли – движется. Воздушный шар, уносимый ветром – относительно Земли – движется, а относительно воздуха - покоится. Самолет, летящий в эскадрильи, относительно других самолетов строя покоится, а относительно Земли движется с большой скоростью.

Поэтому всякое движение, а так же и покой тела – относительны.

Отвечая на вопрос, движется или покоится тело, мы должны указать относительно чего рассматриваем движение.

Тело, относительно которого рассматривается данное движение, называется телом отсчета.

С телом отсчета связывают систему координат и прибор для измерения времени. Вся эта совокупность образует систему отсчета .

Что значит описать движение? Это значит, что нужно определить:

1.траекторию, 2. скорость, 3. путь, 4. положение тела.

Очень просто дело обстоит с точкой. Из курса математики известно, что положение точки можно задать с помощью координат. А если мы имеем тело, которое имеет размер? У него каждая точка будет иметь свои координаты. Во многих случаях при рассмотрении движения тела, тело можно принимать за материальную точку, или точку, обладающую массой этого тела. А для точки можно единственным образом определить координаты.

Итак, материальная точка – это абстрактное понятие, которое вводится для упрощения решения задач.

Условие, при котором тело можно принять за материальную точку:

Часто можно тело принимать за материальную точку и при условии, что его размеры сопоставимы с пройденным путем, когда в любой момент времени все точки движутся одинаково. Этот вид движения называется поступательным.

Признаком поступательного движения является условие, что прямая, мысленно проведенная через любые две точки тела, остается параллельной самой себе.

Пример: человек движется на эскалаторе, игла в швейной машине , поршень в двигателе внутреннего сгорания, кузов машины при езде по прямой дороге.

Разные движения различаются между собой по виду траектории.

Если траектория прямая линия – то движение прямолинейное , если траектория – кривая линия, то движение криволинейное.

Перемещение.

Путь и перемещение: в чем разница?

S = AB + BC + CD

Перемещение – это вектор (или направленный отрезок), соединяющий начальное положение с его последующим положением.

Перемещение – векторная величина, а значит характеризуется двумя величинами: числовым значением или модулем и направлением.

Обозначается – S, и измеряется в метрах, (км, см, мм).

Если знать вектор перемещения, то можно однозначно определить положение тела.

Вектора и действия с векторами.

ОПРЕДЕЛЕНИЕ ВЕКТОРА

Вектором называется направленный отрезок, то есть отрезок, у которого указаны начало (наз. также точкой приложения вектора) и ко­нец.

МОДУЛЬ ВЕКТОРА

Длина направленного отрезка, изо­бражающего вектор, называется длиной, или модулем , вектора. Длина вектора обозначается .

НУЛЬ-ВЕКТОР

Нуль-вектор () - вектор, начало и конец которого совпадают; его модуль равен 0, а направление неопределенное.

КООРДИНАТНОЕ ПРЕДСТАВЛЕНИЕ

Пусть на плоскости задана декартова система координат XOY.

Тогда вектор может быть задан двумя числами:

https://pandia.ru/text/78/050/images/image010_22.gif" width="84" height="25 src=">

Эти числа https://pandia.ru/text/78/050/images/image012_18.gif" width="20" height="25 src="> в геометрии называют координатами вектора , а в физике – проекциями вектора на соответствующие оси координат.

Чтобы найти проекцию вектора надо: из начала и конца вектора опустить перпендикуляры на оси координат.

Тогда проекцией будет длина отрезка, заключенного между перпендикулярами.

Проекция может принимать как положительное, так и отрицательное значение.

Если проекция получилась со знаком «-«, то вектор направлен в противоположную сторону оси, на которую его спроектировали.

При таком определении вектора его модуль , а направление задается углом a, который однозначно определяется соотношениями:

https://pandia.ru/text/78/050/images/image015_13.gif" width="75" height="48 src=">

КОЛЛИНЕАРНЫЕ ВЕКТОРЫ

Д) шахматная фигура,

Е) люстра в комнате,

G) подводная лодка,

Y) самолет на взлетной полосе.

8. Путь или перемещение мы оплачиваем в поездке в такси?

9. Катер прошел по озеру в направлении на северо-восток 2 км, а затем в северном направлении еще 1 км. Найти геометрическим построение перемещение и его модуль.