Основные виды полимерных материалов в строительстве. О полимерах. Базовые понятия

Полимерные материалы (пластмассы, пластики) представляют собой, как правило, затвердевшие композиционные составы, связующим в которых служат полимеры, олигомеры. Широко распространенное название «пластмассы» (что не совсем корректно) они получили за то, что при переработке в изделия находятся в пластическом (текучем) состоянии. Поэтому научно обоснованные названия - «полимерные материалы», «композиционные материалы на основе полимеров».

Полимеры (от греч. poly - много, meres - части) - это высокомолекулярные химические соединения, молекулы которых состоят из огромного числа многократно повторяющихся элементарных звеньев одинаковой структуры. Такие молекулы называют макромолекулами. В зависимости от расположения в них атомов и атомных групп (элементарных звеньев) они могут иметь линейное (цеповидное), разветвленное, сетчатое и пространственное (трехмерное) строение, что и определяет их физико-механические и химические свойства. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.

Различают также формополимеры (предполимеры, преполимеры), которые представляют собой соединения, содержащие функциональные группы и способные участвовать в реакциях роста или сшивания полимерной цепи с образованием высокомолекулярных линейных и сетчатых полимеров. Прежде всего, это тоже жидкие продукты полиолов с избытком полиизоционатов или других соединений при производстве изделий из полиуретанов.

По происхождению полимеры могут быть природными, искусственными и синтетическими.

Природные полимеры - это в основном биополимеры - белковые вещества, крахмал, природные смолы (сосновая канифоль), целлюлоза, натуральный каучук, битум и др. Многие из них образуются в процессе биосинтеза в клетках живых и растительных организмов. Однако в промышленности в большинстве случаев используются искусственные и синтетические полимеры.

Основным сырьем для производства полимеров являются побочные продукты угольной и нефтяной промышленности, производства удобрений, природный газ, целлюлоза и другие вещества. Процесс образования таких макромолекул и в целом полимера вызывается воздействием на исходное вещество (мономер) потока световых лучей, электрических разрядов токов высокой частоты, нагреванием, давлением и т. п.

В зависимости от способа получения полимеров их можно подразделить на полимеризационные, поликонденсационные и модифицированные природные полимеры. Процесс получения полимеров путем последовательного присоединения звеньев мономера друг к другу в результате раскрытия кратных (ненасыщенных) связей называют реакцией полимеризации. В процессе этой реакции вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. При этом реакция не сопровождается отделением каких-либо низкомолекулярных побочных продуктов. Как мономер, так и полимер характеризуются одинаковым элементным составом. Реакцией полимеризации получают полиэтилен из этилена, полипропилен из пропилена, полиизобутилен из изобутилена и многие другие полимеры.

При реакции поликонденсации происходит перегруппировка атомов двух или нескольких мономеров и выделение из сферы реакции побочных низкомолекулярных продуктов (например, воды, спиртов или других низкомолекулярных веществ). Реакцией поликонденсации получают полиамиды, полиэфиры, эпоксидные, фенолоформальдегидные, кремнийорганические и другие синтетические полимеры, называемые еще смолами.

В зависимости от отношения к нагреванию и растворителям полимеры, как и материалы на их основе, делят на термопластичные и термореактивные.

Термопластичные полимеры (термопласты) при переработке в изделия могут многократно переходить из твердого агрегатного состояния в вязко-текучее (плавиться), а при охлаждении вновь отвердевать. Они имеют, как правило, не высокую температуру перехода в вязко-текучее состояние, хорошо перерабатываются литьем под давлением, экструзией и прессованием. Формообразование изделий из них является процессом физическим, который состоит в затвердевании жидкого или размягченного материала при его охлаждении и химических изменений не происходит. Большинство из термопластов способны также растворяться в соответствующих растворителях. Термопластичные полимеры имеют линейное или слегка разветвленное строение макромолекул. К ним относят отдельные разновидности полиэтилена, поливинилхлорид, фторопласты, полиуретаны, битумы и др.

К термореактивным (реактопластам) относят полимеры, переработка в изделия которых сопровождается химической реакцией образования сетчатого или трехмерного полимера (отверждением, сшивкой цепей) и переход из жидкого состояния в твердое, происходит необратимо. Отвержденное состояние их является термостабильным, и они теряют способность к повторному переходу в вязко-текучее состояние (например, фенолоальдегидные, полиэфирные, эпоксидные полимеры и др.).

Классификация и свойства полимерных материалов

Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) - органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты - стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) - пенополистирол, пенополиуретан и др.

В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.

Жесткие - это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.

Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных - превышать 2 000 кг/м3.

Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков - более 200 МПа, при растяжении - для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых - 276.414 МПа и более.

Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных - 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.

Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах - 350 °С.

Являясь углеводородными соединениями, многие полимерные материалы сгораемы или имеют низкую огнестойкость. К легковоспламеняемым и сгораемым с обильным выделением сажи относятся изделия на основе полиэтилена, полистирола, производных целлюлозы. Трудно сгораемыми являются изделия на основе поливинилхлорида, полиэфирные стеклопластики, фенопласты, которые при повышенной температуре лишь обугливаются. Негорючими являются полимерные материалы с большим содержанием хлора, фтора или кремния.

Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения - от 2 до 10 раз выше, чем у стали.

Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.

Полимеры - это соединения макромолекулярного типа. Их основа - мономеры, из которых формируется макроцепь полимерных веществ. Применение полимеров позволяет создавать материалы, обладающие высоким уровнем прочности, износостойкости и рядом других полезных характеристик.

Классификация полимеров

Природные . Образуются естественным природным путем. Пример: янтарь, шелк, натуральный каучук.

Синтетические . Производятся в лабораторных условиях и не содержат природных компонентов. Пример: поливинилхлорид, полипропилен, полиуретан.

Искусственные . Производятся в лабораторных условиях, но в их основе лежат природные составляющие. Пример: целлулоид, нитроцеллюлоза.

Виды полимеров и их применение очень многообразны. Большая часть предметов, которые окружают человека, созданы с использованием этих материалов. В зависимости от типа, они имеют различные свойства, которые и определяют сферу их применения.

Существует ряд распространенных полимеров, с которыми мы сталкиваемся ежедневно и этого даже не замечаем:

  • Полиэтилен. Используется для производства упаковки, труб, изоляций и других изделий, где требуется обеспечить влагонепроницаемость, устойчивость к агрессивным средам и диэлектрические характеристики.
  • Фенолформальдегид. Является основой пластмасс, лаков и клеевых составов.
  • Синтетический каучук. Обладает лучшими прочностными характеристиками и устойчивостью к истиранию, чем натуральный. Из него изготавливается резина и различные материалы на ее основе.
  • Полиметилметакрилат - всем известный плексиглас. Используется в электротехнике, а также в качестве конструкционного материала в других производственных областях.
  • Полиамил. Из него изготавливается ткань и нитки. Это капрон, нейлон и другие синтетические материалы.
  • Политетрафторэтилен, он же - тефлон. Применяется в медицине, пищевой промышленности и различных других областях. Всем известны сковородки с тефлоновым покрытием, которые были когда-то очень популярны.
  • Поливинилхлорид, он же ПВХ. Часто встречается в виде пленки, используется для изготовления изоляции кабелей, кожзаменителей, оконных профилей, натяжных потолков. Имеет очень широкую сферу использования.
  • Полистирол. Применяется для производства бытовых изделий и широкого ряда строительных материалов.
  • Полипропилен. Из этого полимера изготавливаются трубы, тара, нетканые материалы, бытовые изделия, строительные клеи и мастики.

Где применяются полимеры

Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать - они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.

По классификации материалы можно разделить на:

  • композиты;
  • пластмассы;
  • пленки;
  • волокна;
  • лаки;
  • резины;
  • клеящие субстанции.
Качества каждой разновидности определяет область применения полимеров.

Быт

Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути - это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.

Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны. Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы. Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.

Примеры:

  • пластиковая посуда и упаковка;
  • части различных бытовых приборов;
  • синтетические ткани;
  • игрушки;
  • кухонные принадлежности;
  • изделия для санузлов.

Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.

Строительная отрасль

Применение полимеров в строительстве тоже очень обширно. Их стали использовать сравнительно недавно, примерно 50-60 лет тому назад. Сейчас большая часть строительных материалов производится с применением полимеров.

Основные направления:

  • изготовление ограждающих и строительных конструкций различного типа;
  • клеящие составы и пены;
  • производство инженерных коммуникаций;
  • материалы для тепло- и гидроизоляции;
  • наливные полы;
  • различные отделочные материалы.

В сфере ограждающих и строительных конструкций - это полимербетон, композитная арматура и балки, рамы для стеклопакетов, поликарбонат, стеклопластик и различные другие материалы подобного типа. Все изделия на полимерной основе имеют высокие прочностные характеристики, длительный срок службы и устойчивость к негативным природным явлениям.

Клеи отличаются устойчивостью к влаге и отличной адгезией. Они используются для склеивания различных материалов и имеют высокую прочность соединения. Пены - идеальное решение для герметизации стыков. Они обеспечивают высокие теплосберегающие характеристики и насчитывают огромное количество разновидностей с различными качествами.

Применение полимерных материалов в сфере производства инженерных коммуникаций - одно из наиболее обширных направлений. Они используются в водоснабжении, электрообеспечении, теплосбережении, оборудовании канализационных сетей, вентиляции и отопительных систем.

Материалы для теплоизоляции имеют отличные теплосберегающие характеристики, малый вес и доступную стоимость. Гидроизоляция отличается высоким уровнем водонепроницаемости и может выпускаться в различном виде (рулонные изделия, порошок или жидкие смеси).

Полимерные полы - это специализированный материал, который позволяет создать на черновой основе идеально ровную поверхность без трудоемких работ. Такая технология используется как в бытовом, так и в промышленном строительстве.

Современная промышленность выпускает широкий ряд отделочных материалов на основе полимеров. Они могут иметь различную структуру и форму выпуска, но по характеристикам всегда превосходят натуральную отделку и имеют гораздо меньшую стоимость.

Медицина

Применение полимеров в медицине имеет широкое распространение. Самый простой пример - одноразовые шприцы. На данный момент производится около 3 тысяч изделий, используемых в медицинской сфере.

Чаще всего в данной области используются силиконы. Они незаменимы при проведении пластических операций, создания защиты на ожоговых поверхностях, а также изготовления различных изделий. В медицине полимеры использовались с 1788 года, но в ограниченном количестве. А 1895 году они получают более широкое распространение после операции, в ходе которой костный дефект был закрыт полимером на основе целлулоида.

Все материалы данного типа можно разделить на три группы согласно применению:

  • 1 группа - для введения в организм. Это искусственные органы, протезы, кровезаменители, клеи, лекарственные препараты.
  • 2 группа - полимеры, имеющие контакт с тканями, а также веществами, предназначенными для введения в организм. Это тара для хранения крови и плазмы, стоматологические материалы, шприцы и хирургические инструменты, составляющие медицинского оборудования.
  • 3 группа - материалы, не имеющие контакта с тканями и не вводящиеся в организм. Это оборудование и приборы, лабораторная посуда, инвентарь, больничные принадлежности, постельное белье, оправы для очков и линзы.

Сельское хозяйство

Наиболее активно полимеры используются в тепличном хозяйстве и мелиорации. В первом случае имеется потребность в различных пленках, агроволокне, сотовом поликарбонате, а также арматуре. Это все необходимо для сооружения теплиц.

В мелиорации используются трубы из полимерных материалов. Они имеют меньший вес, чем металлические, доступную стоимость и более длительный срок службы.

Пищевая промышленность

В пищевой промышленности полимерные материалы используются для изготовления тары и упаковки. Могут иметь форму твердых пластиков или пленок. Основное требование - полное соответствие санитарно-эпидемиологическим нормам. Не обойтись без полимеров и в пищевом машиностроении. Их применение позволяет создавать поверхности с минимальной адгезией, что важно при транспортировке зерна и других сыпучих продуктов. Также антиадгезионные покрытия необходимы в линиях выпечки хлеба и производства полуфабрикатов.

Полимеры применяются в различных отраслях деятельности человека, что обусловливает их высокую востребованность. Обойтись без них невозможно. Натуральные материалы не могут обеспечить ряда характеристик, необходимых для соответствия конкретным условиям использования.

Подробности Опубликовано: 25 Декабрь 2013

Термин полимер, широко используется в наше время в производстве пластмасс и композитной промышленности, довольно часто слово «полимер» используют для обозначения пластиков. На самом деле, термин " полимер " означает намного-намного больше.

Специалисты компании ООО НПП «Симплекс» решили рассказать подробно, что же такое полимеры:
Полимер – вещество с химическим составом молекул соединенных в длинные повторяющиеся цепочки. Благодаря этому все материалы, изготовленные из полимеров, обладают уникальными свойствами и могут быть адаптированы в зависимости от их назначения.
Полимеры бываю как искусственного, так и естественного происхождения. Самым распространенным в природе является натуральный каучук, который является чрезвычайно полезным и используется человечеством уже несколько тысяч лет. Каучук (резина) обладает отличной эластичностью. Это результат того, что молекулярные цепи в молекуле чрезвычайно длинные. Абсолютно все виды полимеров обладают свойствами повышенной упругости, однако вместе с этими свойствами, могут демонстрировать и широкий спектр дополнительных полезных свойств. В зависимости от назначения, полимеры могут быть тонко синтезированы для максимально удобного и выгодного использования их определенных свойств.

Основные физические свойства полимеров:

  • Ударопрочность
  • Жесткость
  • Прозрачность
  • Гибкость
  • Упругость

    Ученые химики давно заметили одну интересную особенность, связанную с полимерами: если посмотреть на полимерную цепь под микроскопом, то можно увидеть, что визуальная структура и физические свойства молекулы цепочки будет имитировать реальные физические свойства полимера.

    Например, если полимерная цепь состоит из туго скрученных между нитей мономеров и их трудно разделить, то, скорее всего, этот полимер будет сильным и упругим. Или, если полимерная цепь на молекулярном уровне проявляет эластичность, скорее всего, и полимер будет иметь гибкие свойства.

    Переработка полимеров
    Большинство изделий из полимеров можно изменить и деформировать под воздействием высоких температур, однако на молекулярном уровне сам полимер может, не изменится и из него можно будет создать новое изделие. Например, можно расплавить пластиковую тару и бутылки и затем сделать из этих полимеров пластиковые контейнеры или детали автомобилей.

    Примеры Полимеров
    Ниже приводится список самых распространенных полимеров, используемых в наше время, а также их основное применение:

    • Полипропилен (PP) – Производство ковровых покрытий, тара для продуктов, фляги.
    • Неопрен – Гидрокостюмы
    • Поли-винил-хлорид) (PVC) - Производство трубопроводов, профнастил
    • Полиэтилен низкой плотности (LDPE) - Продуктовые пакеты
    • Полиэтилен высокой плотности (HDPE) – Тара для моющих средств, бутылки, игрушки
    • Полистирол (PS) - Игрушки, пены, бескаркасная мебель
    • Политетрафторэтилен (ПТФЭ, фторопласт) - антипригарные сковородки, электрическая изоляция
    • Полиметилметакрилат (ПММА, плексигласа, оргстекла) – офтальмология, производство акриловых ванн, осветительная техника
    • (ПВА) - Краски, клеи

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски
Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

Не многим из нас, участников полимерного бизнеса, в пору студенческих лет выпала честь получить профессиональное образование по профилю переработки вторичных полимеров. Вместе с тем, сфера «доходов на отходах» всегда привлекала предпринимателей как реальная возможность извлечь деньги. Сектор по-прежнему развит достаточно слабо, особенно это касается информационной поддержки бизнеса. Начинающим специалистам зачастую приходится сложно осваивать теоретическую базу знаний о химии полимерных материалов. Информации либо крайне мало, либо она описана в сложных технических и химических терминах. В нашей практике достаточно часто встречаются партнеры и начинающие игроки, которые жадно задают вопросы о том, что нам хорошо известно. И мы готовы делиться знаниями, поскольку тернистый путь от изучения азов до комплексных поставок и консультаций в сфере сырья и оборудования мы прошли с самого начала и самостоятельно.

В этой статье речь пойдёт о самых простых и одновременно важных понятиях, которые как раз и описаны в литературе, порой, сложнее всего остального.

Что такое полимеры?

Полимеры, или полимерные материалы - это огромная группа схожих по строению веществ. Такое строение присуще и живому и неживому. Если рассматривать полимер под микроскопом, то мы увидим красивую структуру повторяющихся фрагментов - мономеров - крепко связанных друг с другом. Иными словами, полимер - это способ организации молекулы в виде многократного повторения определенных звеньев по сложному химическому алгоритму. Пластмассы - это одна из разновидностей полимеров.

Откуда берутся полимеры?

По происхождению все полимеры можно разделить на три большие группы: природные, искусственные и синтетические.

Природные полимеры - это продукт жизнедеятельности растений и животных. Они в большом количестве содержатся в шерсти, древесине, коже. Например, знакомый всем крахмал - это полимер, продукт жизнедеятельности картофеля. Полимерную структуру содержит в себе и человек. Белок - основа жизни - представляет собой именно полимерную, повторяющуюся структуру. Из курса школьной биологии многим нравилось рассматривать цепочку ДНК: разноцветные нуклеотиды, хранящие в себе генетическую информацию о целом поколении рода, объединенные в цепь, которая в полном составе способна рассказать многое о владельце.

Искусственные полимеры - это модификация природных. Как правило, природные полимеры проходят процедуру очистки и насыщения дополнительными свойствами, после чего их можно смело отнести к классу искусственных. Продуктом такой переработки является, например, каучук модифицированный и латекса (смолы).

Синтетические полимеры - отдельная категория полимеров. Это двигатели технической революции. Такие материалы не имеют аналогов в природе, их получают в лабораториях при сложных условиях и химических реакциях превращения. Основа синтетических полимеров - нефтегазовая переработка, синтез углеводородов. Именно синтетические полимеры и совершили революцию орудий труда, обратив 21 век, по праву, в век высокой химии, век полимеров и пластмасс. Именно они открыли нам двери в интересный и такой полезный бизнес по переработке вторичных материалов.

Так откуда же взялись синтетические полимеры, если они не имеют аналогов в природе? Рассмотрим поэтапно путь гранулы от сырой нефти до готового к переработке сырья.

Этап

Процесс

Описание

Полезный результат

Отходы

Добыча нефти и газа

Сопровождается сгоранием в факелах попутных нефтяных газов - отходов нефтяных и газовых производств.

Есть 2 варианта действий: загрязнять этими газами атмосферу или использовать их для дальнейших превращений.

Первичный сбор нефти и газа

Отработанные попутные газы, которые по трубопроводам поступают на следующий этап.

Газопереработка

Газоперерабатывающие заводы покупают попутные газы и перерабатывают до получения специального очищенного сырья - ШФЛУ (широкая фракция легких углеводородов). Это ещё не полимеры.

Сухой газ, поступающий в конфорки наших домой и ТЭЦ

Остаточная смесь газов широкой фракции после очистки и переработки

Газофракционирование

Разделение ШФЛУ на ценные фракции до жидких однородных газов

Пропан, бутан, пентан, изобутан

Сжиженные углеводородные газы

Пиролиз

Пиролизная установка получает сжиженные углеводородные газы и нагревает их до момента, пока они не распадутся на мелкие звенья, а именно, пока не выделятся ценные газы, например, пропилен или этилен.
Это мономеры - сырье для полимеров.

Мономеры этилена и пропилена

Мономеры этилена и пропилена

Производство первичных полимеров

В анклавах или трубчатых реакторах происходят химические реакции полимеризации, в которых мономеры - кирпичики больших звеньев - при помощи катализаторов превращаются в полимеры

Первичные полимеры

Первичные полимеры

Именно так на свет появляется первичное сырьё, точнее, сырьё с заводов производителей. Таких заводов не очень много и у них, как правило, колоссальная выработка, и это неудивительно: этих объемов должно хватать на всю нашу страну и ещё немного для экспорта нашим партнерам за рубежом. Соответственно, вторичное сырьё -это сырьё, которое уже успело послужить человеку и проживает свою вторую жизнь в виде вторичной гранулы, ожидая следующей переработки. Количество таких переработок может быть очень большим, потому что синтетические полимеры - удивительно стабильные вещества.

Что такое термопласт?

Тот факт, что все пластмассовые изделия изначально были гранулами, а впоследствии приняли какую-либо форму изделия, говорит о том, что гранулы пережили технологический процесс превращения. Мы назовем это переработкой, и будем правы.

Методов переработки полимеров множество, но в основе все они сводятся к тому, что гранулы в специализированном оборудовании нагревают до высокой температуры, перемешивают до однородной массы, придают этой массе нужную форму и остужают. Сформованное таким образом изделие при этом не особенно теряет в качестве, полимеры стабильные вещества. Однако не все полимеры пригодны для подобной переработки. Поэтому прямо сейчас мы введем классификацию полимеров по их пригодности к вторичной переработке. Эта классификация очень проста

Те, что пригодны, мы назовём термопластами, а те, что непригодны-реактопластами. Интересуют нас именно термопласты , потому что на полимерах, которые нельзя переработать, нечего и заработать.

Итак, термопласты, или термопластичные полимеры, - это полимеры, которые при нагревании могут спокойно нагреться, расплавиться, не растеряв своих ценных химических свойств, а вот физически способны принять любую форму при остывании, хоть седло от унитаза, хоть крышка (от него же). Именно термопластичные полимеры принимают участие в бесконечных циклах переработки пластмасс. Это явление в производстве называют рециклинг. А вот реактопласты повторную температурную обработку пережить не смогут. При повторном нагревании они полностью разрушаются. Тем не менее, реактопласты служат человеку в виде клеевых основ, мастики и прочих химических товаров.

Вместо итогов

На практике, понимая два эти простые и, одновременно, сложные понятия, нам не составит особого труда расшифровать научные определения представителей полимеров: полипропилен и полиэтилен . В любой литературе будет написано как-то так:

Полипропилен (ПП) - это синтетический термопластичный полимер, продукт полимеризации пропилена.

Полиэтилен (ПЭ) - это синтетический термопластичный полимер, продукт полимеризации этилена.

Сложная формулировка может звучать значительно проще. Теперь мы знаем, что означает «синтетический», «термопластичный», представляет себе, что такое мономер. Непонятно только, что такое полимеризация. Полимеризация - это химическая реакция «превращения» мономера в полимер.

В нашей работе важно понимать, что такое полимерное сырьё, и какие у него особенности, характеристики и свойства. Этим вопросам посвящены многие наши статьи, но начало обучения лежит именно здесь. В базовых понятиях и терминологии такой сложной и такой интересной химии полимеров.

С уважением, генеральный директор ООО «Мировое оборудование»

Александра Александровна Клемина