Теоремы сложения и умножения вероятностей онлайн калькулятор. Операции над событиями. Правила сложения и умножения вероятностей

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей . Решение простейших задач на определение вероятности с использованием сложения вероятностей.

Методические указания по теме 3.1:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей:

Изучение каждого явления в порядке наблюдения или производства опыта связан с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти, - невозможным.

События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления случайного события.

Вероятностью события называется отношение числа исходов m , благоприятствующих наступлению данного события , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. . Невозможному событию соответствует вероятность , а достоверному - вероятность

Пример 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле, получим .

Пример 2. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

Обозначим событие, состоящее в появлении черного шара, через . Общее число случаев . Число случаев m , благоприятствующих появлению события , равно 3. По формуле получим .

Пример 3. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

Обозначим событие, состоящее в появлении двух черных шаров через . Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m , благоприятствующих событию , составляет


По формуле находим вероятность появления двух черных шаров:

Теорема сложения вероятностей. Решение простейших задач на определение вероятности с использованием теоремы сложения вероятностей:

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равно сумме вероятностей этих событий:

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример 4. В ящике в случайном порядке разложены 20 деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что по крайней мере она из взятых деталей окажется стандартной.

Очевидно, что по крайней мере одна из взятых деталей окажется стандартной, если произойдет любое из трех несовместных событий: B - одна деталь стандартная, две нестандартные; C - две детали стандартные, одна нестандартная и D - три детали стандартные.

Таким образом, событие A можно представить в виде суммы этих трех событий: A = B + C + D. По теореме сложения имеем P(A) = P(B) + P(C) + P(D). Находим вероятность каждого из этих событий:

Сложив найденные величины, получим

Пример 5. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.

Пусть A - событие, состоящее в том, что наудачу взятое число кратно 3, а B - в том, что оно кратно 5. Найдем Так как A и B совместные события, то воспользуемся формулой:

Всего имеется 90 двузначных чисел: 10, 11, 98, 99. Из них 30 являются кратными 3 (благоприятствуют наступлению события A ); 18 - кратными 5 (благоприятствуют наступлению события B ) и 6 - кратными одновременно 3 и 5 (благоприятствуют наступлению события AB ). Таким образом, т.е.

Теорема умножения вероятностей:

Теорема умножения вероятностей независимых событий. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:

Пример 6. В одной урне находятся 4 белых и 8 черных шаров, в другой - 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

Пусть - появление белого шара из первой урны, а - появление белого шара из второй урны. Очевидно, что события и независимы. Найдем

По формуле получим:

Вопросы для самопроверки по теме 3.1:

1. Что такое событие?

2. Какие события называются достоверными?

3. Какие события называются невозможными?

4. Дать определение вероятности.

5. Сформулировать теорему сложения вероятностей.

6. Сформулировать теорему умножения вероятностей.

Задания для самостоятельного решения по теме 3.1:

1. В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.

2. В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется: 1) белым; 2) черным или красным.

3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.

4. Рабочий обслуживает два автомата, работающих независимо друг от друга. Вероятность того, что в течение часа первый автомат не потребует внимания рабочего, равна 0,8, а для второго автомата эта вероятность равна0,7. Найдите вероятность того, что в течение часа ни один и автоматов не потребует внимания рабочего.

5. В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.

6. В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вынутых один за другим шара окажутся черными.

Теоремы сложения и умножения вероятностей

Теорема сложения

Вероятность наступления одного из нескольких несовместных событий равна сумме вероятностей этих событий.

В случае двух несовместных событий А и В имеем:

Р(А+В) = Р(А) + Р(В) (7)

Событие, противоположное событию А обозначают . Объединение событий А и даёт событие достоверное, а поскольку события А и несовместны, то

Р(А) +Р() = 1 (8)

Вероятность события А, вычисленная в предположении, что событие В наступило, называется условной вероятностью события А и обозначается символом Р В (А).

Если события А и В независимые, то Р(В) = Р А (В).

События А, В, С, … называются независимыми в совокупности , если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой комбинации их и в любом числе.

Теорема умножения

Вероятность того, что произойдут события и А, и В, и С, … равна произведению их вероятностей, вычисленных в предположении, что все предшествующие каждому из них события имели место, т. е.

Р(АВ) = Р(А)Р А (В) (9)

Запись Р А (В) обозначает вероятность события В в предположении, что событие А уже имело место.

Если события А, В, С, … независимы в совокупности, то вероятность того, что произойдут все они, равна произведению их вероятностей:

Р(АВС) = Р(А)Р(В)Р(С) (10)

Пример 3.1. В мешке лежат шары: 10 белых, 15 чёрных, 20 голубых и 25 красных. Вынули один шар. Найти вероятность того, что вынутый шар окажется белым? чёрным? И ещё: белый или чёрный?

Решение.

Число всех возможных испытаний n = 10 + 15 + 20 + 25 = 70;

Вероятность Р(б) = 10/70 = 1/7, Р(ч) = 15/70 = 3/14.

Применяем теорему сложения вероятностей:

Р(б + ч) = Р(б) + Р(ч) = 1/7 + 3/14 = 5/14.

Примечание: заглавные буквы в скобках соответственно обозначают цвет каждого шара согласно условию задачи.

Пример 3.2 В первом ящике два белых и десять чёрных шаров. Во втором ящике восемь белых и четыре чёрных шара. Из каждого ящика вынули по шару. Определить вероятность того, что оба шара окажутся белыми.

Решение.

Событие А – появление белого шара из первого ящика. Событие В – появление белого шара из второго ящика. События А и В – независимые.

Вероятности Р(А) = 2/12 = 1/6, Р(В) = 8/12 = 2/3.

Применяем теорему умножения вероятностей:

Р(АВ) = Р(А)Р(В) = 2/18 = 1/9.

Вопросы для повторения

1 Что называется факториалом?

2 Перечислите основные задачи комбинаторики.

3 Что называется перестановками?

4 Что называется перемещениями?

5 Что называется сочетаниями?

6 Какие события называются достоверными?

7 Какие события называются несовместными?

8 Что называется вероятностью события?

9 Что называется условной вероятностью?

10 Сформулируйте теоремы сложения и умножения вероятностей.

11 пр .Размещением из п элементов по к (к ≤ п ) называется любое множество, состоящее из к элементов, взятых в определенном порядке из данных п элементов.

Таким образом, два размещения из п элементов по к считаются различными, если они различаются самими элементами или порядком их расположения Число размещений из п элементов по к обозначают А п к и вычисляют по формуле

А п к =

Если размещения из п элементов по п отличаются друг от друга только порядком элементов, то они представляют собой перестановки из п элементов

Пример1 . Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета

Решение: Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Значит, в этом примере речь идет о размещениях из 9 элементов по 4. Имеем

А 9 4 = = 6 ∙ 7 ∙ 8 ∙ 9 = 3024

Расписание можно составить 3024 способами

Пример2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5,6 ?

Решение Если среди семи цифр нет нуля, то число трехзначных чисел (без повторения цифр), которые можно составить из этих цифр, равно числу размещений

22

из 7 элементов по 3. Однако среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтом из размещений из 7 элементов по3 надо исключить те, у которых первым элементом является 0. Их число равно числу размещений их 6 элементов по 2. =

Значит искомое число трехзначных чисел равно

А 7 3 - А 6 2 = - = 5 ∙ 6 ∙ 7 - 5 ∙ 6 = 180.

3. Закрепление полученных знаний в процессе решения задач

754 . Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет?

Решение. Число способов равно А 4 3 = = 1∙ 2 ∙ 3 ∙ 4 = 24

755. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. Т.к.любой из участников может быть как секретарем, так и председателем, то число способов их избрания равно

А 30 2 = = = 29 ∙ 30 = 870

762 Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: а) 1,3,5,7,9. б) 0,2,4,6,8?

Решение а) А 5 4 = = 1∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120

б)) А 5 4 - А 4 3 = 5! – 4! = 120 – 24= 96

Домашнее задание № 756, №757, № 758, №759.

6урок Тема: « Сочетания»

Цель: Дать понятие о сочетаниях, познакомить с формулой для вычисления сочетаний, научить применять эту формулу для подсчета числа сочетаний.

1 Проверка домашнего задания.

756 . На станции 7 запасных путей. Сколькими способами можно расставить на них 4 поезда?

23

Решение: А 7 4 = = 4 ∙ 5 ∙ 6 ∙ 7 = 20 ∙ 42 = 840 способов

757 Сколькими способами тренер может определить, кто из 12 спортсменок, готовых к участию в эстафете 4х100м, побежит на первом, втором, третьем и четвертом этапах?

Решение: А 12 4 = = 9 ∙ 10 ∙ 11 ∙12 = 90 ∙132 = 11 880

758. В круговой диаграмме круг разбит на 5 секторов. Секторы решили закрасить разными красками, взятыми из набора, содержащего 10 красок. Сколькими способами это можно сделать?

Решение: А 10 5 = = 6 ∙ 7 ∙ 8 ∙ 9∙ 10 = 30 240

759. Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой 20 одноместных столов?

Решение: А 20 6 = = 15∙ 16 ∙17∙ 18∙19 ∙20 = 27 907 200

Организовать проверку домашнего задания можно разными способами: устно проверить решение домашних упражнений, решения некоторых из них записать на доске, а пока идет запись решений провести опрос уч-ся по вопросам:



1. Что означает запись п!

2.Что называется перестановкой из п элементов?

3.По какой формуле считают число перестановок?

4. Что называют размещением из п элементов по к?

5. п элементов по к?

2 Объяснение нового материала

Пусть имеются 5 гвоздик разного цвета. Обозначим их буквами а, в, с, д, е. Требуется составить букет из трех гвоздик. Выясним, какие букеты могут быть составлены.

Если в букет входит гвоздика а , то можно составить такие букеты:

авс, авд, аве, асд, асе, аде.

Если в букет не входит гвоздика а, но входит гвоздика в , то можно получить такие букеты:

всд, все, вде.

Наконец, если в букет не входит ни гвоздика а, ни гвоздика в, то возможен только один вариант составления букета:

сде.

24

Мы указали все возможные способы составления букетов, в которых по – разному сочетаются три гвоздики из 5. Говорят, что мы составили все возможные сочетания из 5 элементов по 3, мы нашли, что С 5 3 = 10.

Выведем формулу числа сочетаний из п элементов по к, где к ≤ п.

Выясним сначала, как С 5 3 выражается через А 5 3 и Р 3 . Мы нашли, что их 5 элементов можно составить следующие сочетания по 3 элемента:

авс, авд, аве, асд, асе, аде, всд, все, вде, сде.

В каждом сочетании выполним все перестановки. Число перестановок из 3 элементов равно Р 3 . В результате получим все возможные комбинации из 5 элементов по 3, которые различаится либо самими элементами, либо порядком элементов, т.е. все размещения из 5 элементов по 3. Всего мы получим А 5 3 размещений.

Значит , С 5 3 ∙ Р 3 = А 5 3 , отсюда С 5 3 = А 5 3: Р 3

Рассуждая в общем случае получим С п к = А п к: Р к,

Пользуясь тем, что А п к = , где к ≤ п., получим С п к = .

Это формула для вычисления числа сочетаний из п элементов по к при любом

к ≤ п.

Пример1 . Из набора, состоящего из 15 красок, надо выбрать3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор?

Решение: Каждый выбор трех красок отличается от другого хотя бы одной краской. Значит, здесь речь идет о сочетаниях из 15 элементов по 3

С 15 3 = = (13∙ 14∙15) : ( 1∙ 2 ∙ 3) = 455

Приме2 В классе учатся 12 мальчиков и 10 девочек. Для уборки территории около школы требуется выделить трех мальчиков и двух девочек. Сколькими способами можно сделать этот выбор?

Решение: Выбрать 3 мальчиков из 12 можно С 12 3 , а двух девочек из 10 можно выбрать С 10 2 . Т. к. при каждом выборе мальчиков можно С 10 2 способами выбрать девочек, то сделать выбор учащихся, о котором говориться в задаче можно

С 12 3 ∙ С 10 2 = ∙ = 220 ∙ 45 = 9900

3) Закрепление нового материала, в процессе решения задач

25

Задача

У Саши в домашней библиотеке есть 8 исторических романов. Петя хочет взять у него 2 любых романа. Сколькими способами можно сделать этот выбор?

Решение: С 8 2 = = (7 ∙ 8) : ( 1∙ 2) = 56: 2 = 28

779 а

В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира команду из 4 человек?

Решение: С 16 4 = = (13∙ 14∙15 ∙16) : ( 1∙ 2 ∙ 3 ∙ 4) = 13 ∙ 7 ∙5∙ 4 = 91 ∙20 = 1820

774 Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта спротзала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

С 12 4 ∙ С 5 2 = ∙ = 495 ∙ 10 = 4950

Домашняя работа №768, №769, № 770, № 775

7урок Тема: « Решение задач на применение формул для подсчета числа перемещений, размещений, сочетаний»

Цель: Закрепление знаний учащихся. Формирование навыков решения простейших комбинаторных задач

1 Проверка домашнего задания

768 В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С 7 2 = = (6∙ 7) : 2 = 21

769 В магазине « Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение: С 8 3 = = (6 ∙ 7 ∙ 8) : ( 1∙ 2 ∙ 3) = 56

26

770 Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: С 10 6 = = (7 ∙ 8 ∙ 9∙ 10) : ( 1∙ 2 ∙ 3 ∙ 4) = 210

775 В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С 10 3 ∙ С 4 2 = ∙ = 120 ∙ 6 = 720

Вопросы классу

1.Что называется перестановкой из п элементов?

2.По какой формуле считают число перестановок?

3. Что называют размещением из п элементов по к?

4. По какой формуле считают число размещений из п элементов по к?

5. Что называют сочетанием из п элементов по к?

6. По какой формуле считают число сочетаний из п элементов по к?

Задачи для совместного решения

При решении каждой задачи вначале идет обсуждение: какая из трех изученных формул поможет получить ответ и почему

1. Сколько четырехзначных чисел можно составить из цифр 4,6,8,9, при условии, что все цифры разные?

2. Из 15 человек в группе студентов надо выбрать старосту и его заместителя. Сколькими способами это можно сделать?

3. Из 10 лучших учащихся школы два человека надо послать на слет лидеров.

Сколькими способами это можно сделать?

Замечание: В задаче №3 не имеет значения кого выбрать: любых 2 человек из 10, поэтому здесь работает формула для подсчета числа сочетаний.

В задаче №2 выбирают упорядоченную пару,т.к. в выбранной паре,если фамилии поменять местами это будет уже другой выбор, поэтому здесь работает формула для подсчета числа размещений

Ответы к задачам для совместного решения:

№1 24 числа. №2 210 способов. №3 45 способов

Задачи для совместного обсуждения и самостоятельных вычислений

№1Встретились 6 друзей и каждый пожал руку каждому своему другу. Сколько было рукопожатий?

27

№2 Сколькими способами можно составить расписание для учащихся 1класса на один день, если у них 7 предметов, и в этот день должно быть 4 урока?

(Число размещений из 7 по 4)

№3 В семье 6 человек, а за столом в кухне 6 стульев. Было решено каждый вечер перед ужином рассаживаться на эти 6 стульев по- новому. Сколько дней члены семьи смогут делать это без повторений.

№4 К хозяину дома пришли гости А,В,С,Д. За круглым столом – пять разных стульев. Сколько существует способов рассаживания?

(В гости пришли 4 человека + хозяин = 5 человек рассаживаются на 5 стульях, надо посчитать число перестановок)

5. В книжке раскраске нарисованы непересекающиеся треугольник, квадрат и круг. Каждую фигуру надо раскрасить в один из цветов радуги, разные фигуры в разные цвета. Сколько существует способов раскрашивания?

(Посчитайте число размещений из 7 по 3)

№6 В классе 10 мальчиков и 4 девочки. Надо выбрать 3 человека дежурными так, чтобы среди них было 2 мальчика и 1 девочка. Сколькими способами это можно сделать?

(Число сочетаний из 10 по 2 умножить на число сочетаний из 4 по 1)

Ответы для задач с самостоятельным вычислением

1 15 рукопожатий

2 840 способов

3 720дней

5 120 способов

6 180 способов

Домашнее задание №835, №841

8 урок Тема: « Самостоятельная работа»

Цель: Проверка знаний учащихся

1.Проверка домашнего задании

^ 835 Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр а) 1,2,3,7 . б) 1,2,3,4.

28

а) Наши числа должны оканчиваться четной цифрой, такая цйфра в условии одна это цифра 2 , поставим ее на последнее место, а оставшиеся 3 цифры будем переставлять, число таких перестановок равно 3! = 6 .Значит можно составить 6 четных чисел

б) рассуждаем как в примере а) поставив на последнее место цифру 2 получим 6 четных чисел, поставив на последнее место цифру 4 получим еще 6 четных чисел,

значит всего 12 четных чисел

841 Сколькими способами из класса, где учатся 24 учащихся можно выбрать: а) двух дежурных; б) старосту и его помощника?

а) т.к. дежурными могут быть любые 2 человека из 24 , то количество пар равно

С 24 2 = = 23 ∙ 24:2 = 276

б) здесь выдирают упорядоченную пару элементов из 24 элементов, количество таких пар равно А 24 2 = = 23 ∙ 24 = 552

1 вариант решает задания № 1,2,3,4,5.

2 вариант решает задания №6,7,8,9,10.

Решение простейших комбинаторных задач

(по материалам к.р. в апреле 2010 года)

1 . Сколькими способами можно расставить на полке пять книг разных авторов?

2. Сколькими способами можно составить полдник из напитка и пирожка, если в меню указаны: чай, кофе, какао и пирожки с яблоком или с вишней?

3. В среду по расписанию в 9 «А» классе должно быть 5 уроков: химия, физика, алгебра, биология и ОБЖ. Сколькими способами можно составить расписание на этот день?

4. Имеются 2 белых лошади и 4 гнедых. Сколькими способами можно

составить пару из лошадей разной масти?

5. Каким числом способов можно разложить 5 различных монет в 5 разных карманов?

29

6. В шкафу на полке лежат 3 шапки различных фасонов и 4 шарфа разных цветов. Сколькими способами можно составить набор из одной шапки и одного шарфа?

7. В финал конкурса красоты вышли 4 участницы. Сколькими способами

можно установить очередность выступления участниц финала красоты?

^ 8 .Имеются 4 утки и 3 гуся. Сколькими способами можно из них выбрать две разных птицы?

9. Сколькими способами можно разложить 5 разных писем по 5 разным

конвертам, если в каждый конверт кладется только одно письмо?

10. В коробке хранятся 5 красных и 4 зелёных шара. Сколькими способами можно составить пару из шаров разного цвета?

Ответы для заданий самостоятельной работы

Тип задания: 4

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Вероятность того, что ручка бракованная, равна 0,05 . Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A \cap B, его вероятность равна P(A \cap B) = P(A) \cdot P(B) = 0,4 \cdot 0,4 = 0,16 (так как события A и B независимы).

Искомая вероятность равна 1 - P(A \cap B) = 1 - 0,16 = 0,84.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

В гостинице стоят два кулера. Каждый из них может быть неисправен с вероятностью 0,2 независимо от другого кулера. Определите вероятность того, что хотя бы один из этих кулеров исправен.

Показать решение

Решение

Сначала найдём вероятность события «оба кулера неисправны», противоположного событию из условия задачи. Обозначим через A и B события «первый кулер неисправен» и «второй кулер неисправен». По условию P(A) = P(B) = 0,2. Событие «оба кулера неисправны» — это A \cap B , пересечение событий A и B , его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,2\cdot 0,2 = 0,04 (так как события A и B независимы). Искомая вероятность равна 1-P(A \cap B)=1-0,04=0,96.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На экзамене по физике студент отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что этот вопрос на тему «Механика», равна 0,25 . Вероятность того, что этот вопрос на тему «Электричество», равна 0,3 . Вопросов, которые относились бы сразу к двум темам, нет. Найдите вероятность того, что студенту попадётся вопрос по одной из этих двух тем.

Лекция 7. Теория вероятностей

СЛЕДСТВИЯ ТЕОРЕМ СЛОЖЕНИЯ И УМНОЖЕНИЯ

Теорема сложения вероятностей совместных событий

Была рассмотрена теорема сложения для несовместных событий. Здесь будет изложена теорема сложения для совместных событий.

Два события называют совместными , если появление одного из них не исключает появления другого в одном и том же испытании.

Пример 1 . А – появление четырех очков при бросании игральной кости; В – появление четного числа очков. События А и В – совместные.

Пусть события А и В совместны, причем даны вероятности этих событий и вероятность их совместного появления. Как найти вероятность события А + В, состоящего в том, что появится хотя бы одно из событий А и В? Ответ на этот вопрос дает теорема сложения вероятностей совместных событий.

Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления: Р(А + В) = Р(А) + Р(В) – Р(АВ).

Доказательство . Поскольку события А и В, по условию, совместны, то событие А + В наступит, если наступит одно из следующих трех несовместных событий: . По теореме сложения вероятностей несовместных событий, имеем:

Р(А + В) = Р(А ) + Р( В) + Р(АВ). (*)

Событие А произойдет, если наступит одно из двух несовместных событий: А
или АВ. По теореме сложения вероятностей несовместных событий имеем

Р(А) = Р(А ) + Р(АВ).

Р(А )=Р(А) – Р(АВ). (**)

Аналогично имеем

Р(В) = Р(ĀВ) + Р(АВ).

Р(ĀВ) = Р(В) – Р(АВ). (***)

Подставив (**) и (***) в (*), окончательно получим

Р(А + В) = Р(А) + Р(В) – Р(АВ). (****)

Что и требовалось доказать.

Замечание 1. При использовании полученной формулы следует иметь в виду, что события А и В могут быть как независимыми , так и зависимыми .

Для независимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р(В);

Для зависимых событий

Р(А + В) = Р(А) + Р(В) – Р(А)*Р А (В).

Замечание 2. Если события А и В несовместны , то их совмещение есть невозможное событие и, следовательно, Р(АВ) = 0.

Формула (****) для несовместных событий принимает вид

Р(А + В) = Р(А) + Р(В).

Мы вновь получили теорему сложения для несовместных событий. Таким образом, формула (****) справедлива как для совместных, так и для несовместных событий.

Пример 2. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: p 1 = 0,7; p 2 = 0,8. Найти вероятность попадания при одном залпе
(из обоих орудий) хотя бы одним из орудий.

Решение . Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А (попадание первого орудия) и В (попадание второго орудия) независимы.


Вероятность события АВ (оба орудия дали попадание)

Р(АВ) = Р(А) * Р(В) = 0,7 * 0,8 = 0,56.

Искомая вероятность Р(А + В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Замечание 3. Так как в настоящем примере события А и В независимые, то можно было воспользоваться формулой Р = 1 – q 1 q 2

В самом деле, вероятности событий, противоположных событиям А и В, т.е. вероятности промахов, таковы:

q 1 = 1 – p 1 = 1 – 0,7 = 0,3;

q 2 = 1 – p 2 = 1 – 0,8 = 0,2;

Искомая вероятность того, что при одном залпе хотя бы одно орудие даст попадание, равна

P = 1 – q 1 q 2 = 1 – 0,3 * 0,2 = 1 – 0,06 = 0,94.

Как и следовало ожидать, получен тот же результат.