Применения газового разряда. Самостоятельный дуговой разряд (низких, средних и высоких давлений)

В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  • тлеющий разряд;
  • искровой разряд;
  • дуговой разряд;
  • коронный разряд.
  • 1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

    Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

    Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала .

    В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

    Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

    Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

    Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

    Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

    2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами .

    Т газа = 10 000 К

    ~ 40 см I = 100 кА t = 10 –4 c l ~ 10 км

    После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

    В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 10 4 – 10 5 А, длиной 20 км (рис. 8.7).

    3. Дуговой разряд . Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

    ~ 10 3 А
    Рис. 8.8

    При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

    4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

    Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙10 6 В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

В нормальном состоянии газы являются хорошими электрическими изоляторами. Однако, приложив достаточно сильное электрическое поле, можно вызвать нарушение их изолирующих свойств, благодаря чему появляется возможность пропускать через газ значительные токи. Прохождение тока через газ по историческим причинам получило название электрического «разряда».

Возникающие при этом явления зависят от рода и давления газа, от материала, из которого изготовлены электроды, от геометрии электродов и окружающего их сосуда, а также от протекающего тока. Различные формы разряда получили специальные названия, как-то: темный разряд, корона, тлеющий разряд и т. д. Мощные разряды, однако, даже при различных условиях обладают рядом общих особенностей, позволяющих объединить их под одним названием — «дуговой разряд».

Термин «дуга» применяется только к устойчивым или квазиустойчивым видам разряда. Дугой принято считать конечную форму разряда, развившегося при любых обстоятельствах, если через газ проходит достаточно большой ток. Такой разряд можно получить различными путями.

Во-первых, дуга может возникнуть в результате непрерывного или скачкообразного перехода из какого-либо устойчивого маломощного (например, тлеющего) разряда. Такой путь возникновения дуги показан на рисунке. Предполагается, что пpo6oй уже произошел и что разрядный ток имеет небольшую постоянную величину. Если постепенно увеличивать ток, напряжение между электродами будет изменяться по кривой, изображенной на рисунке. Разряд будет проходить при этом через несколько различных стадий. В точке Е начинается крутой спад напряжения до довольно низкого значения и возникает дуговой разряд. Приведенная кривая характерна для разряда, горящего между электродами, удаленными один от другого на несколько сантиметров, в трубке диаметром несколько сантиметров, содержащей газ при давлении несколько миллиметров ртутного столба. Числовые значения тока и напряжения даны только для указания порядка величин. Напряжение есть функция тока (вернее, плотности тока), а не наоборот, за исключением возможного разрыва непрерывности, обозначенного пунктирной линией FG, переход от очень малых значений тока в точке F к характерным для дугового разряда большим значениям в точке Н происходит плавно через ряд устойчивых состояний. Но он не может произойти весьма быстро, если приложить к электродам сразу большое напряжение в отсутствие последовательно включенного сопротивления, ограничивающего быстрый рост тока до значения, соответствующего точке Н. В этом случае промежуточные этапы не успевают достигнуть равновесия и ход кривой напряжения имеет несколько иной вид.

Во-вторых, дуга может развиться из неустойчивого переходного искрового разряда. В этом случае дуга может быть получена, например, если разряд возникает между электродами в газе при давлении порядка атмосферного под действием напряжения, способного вызвать пробой промежутка и поддерживать ток при значении, достаточном для горения дуги. Все промежуточные стадии перед дуговым разрядом являются неустойчивыми, и, если напряжение недостаточно для поддержания тока дуги, разряд гаснет или становится прерывистым. В этих условиях напряжение между электродами не будет больше функцией только или даже главным образом тока, но зависит также и от времени. Поэтому ход процесса лучше изображать с помощью кривой тока и кривой напряжения в зависимости от времени (рисунок). Из этого рисунка видно, что за промежуток времени порядка 10^-8 сек происходит крутой спад напряжения от значения, близкого к пробивному; после этого наблюдается более или менее резко выраженная «ступенька» (которой иногда может и не быть). Спустя примерно 10^-6 сек напряжение составляет лишь несколько десятков вольт. Затем происходит постепенное приближение к устойчивому состоянию, которое наступает лишь после установления теплового равновесия для электродов и сосуда. Этот процесс может длиться несколько минут. На рисунке точка А соответствует началу резкого спада напряжения. Между началом пробоя и моментом спада напряжения в точке A может пройти относительно большой промежуток времени (время формирования). Неустойчивый разряд, возникающий в точке А, называется искрой.

В-третьих, дугу можно получить, раздвигая два токонесущих, первоначально соприкасавшихся электрода. Этот способ зажигания дуги широко применяется на практике, так как в этом случае нет нужды в пробоя газа между электродами. Другими словами, отпадает необходимость в источнике высокого напряжения, требующегося для пробоя газа; достаточна значительно меньшая величина напряжения, обеспечивающая поддержание уже установившегося дугового разряда. Возникший указанным путем разряд называется дугоразмыкания. То обстоятельство, что между раздвигающимися контактами может загораться дуга, бывает часто неблагоприятным. Такие дуги возникают между контактами выключателей. Их бывает трудно гасить и они оказывают разрушающее действие на выключатель.

  • 2.1.3. Условия гашения дуги постоянного тока
  • 2.1.4. Энергия, выделяемая в дуге
  • 2.1.5. Условия гашения дуги переменного тока
  • Лекция № 3
  • 2.1.6. Способы гашения электрической дуги
  • 2.1.7. Дугогасительные устройства постоянного и переменного тока
  • 2.1.8. Применение полупроводниковых приборов для гашения дуги
  • Лекция № 4
  • 2.2. Электрические контакты
  • 2.2.1.Общие сведения
  • 2.2.2. Режимы работы контактов
  • 2.2.3. Материалы контактов
  • 2.2.4. Конструкция твёрдометаллических контактов
  • 2.2.5. Жидкометаллические контакты
  • 2.2.6. Расчёт контактов аппаратов
  • Лекция № 5
  • 2.3. Электродинамические усилия в электрических аппаратах
  • 2.3.1. Общие сведения
  • 2.3.2. Методы расчёта электродинамических усилий (эду)
  • 2.3.3. Усилия между параллельными проводниками
  • 2.3.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
  • 2.3.5. Усилия в витке, катушке и между катушками
  • Лекция № 6
  • 2.3.6. Усилия в месте изменения сечения проводника
  • 2.3.7. Усилия при наличии ферромагнитных частей
  • 2.3.8. Электродинамические усилия при переменном токе
  • 2.3.9. Электродинамическая стойкость электрических аппаратов
  • 2.3.10. Расчёт динамической стойкости шин
  • Лекция 7
  • 2.4. Нагрев электрических аппаратов
  • 2.4.1. Общие сведения
  • 2.4.2. Активные потери энергии в аппаратах
  • 2.4.3. Способы передачи тепла внутри нагретых тел и с их поверхности
  • 2.4.4. Установившийся режим нагрева
  • 2.4.5. Нагрев аппаратов в переходных режимах
  • 2.4.6. Нагрев аппаратов при коротком замыкании
  • 2.4.7. Допустимая температура частей электрических аппаратов
  • 2.4.8. Термическая стойкость электрических аппаратов
  • Лекция № 8
  • 3.1. Электромагнитные контакторы переменного тока
  • 3.1.1. Назначение контакторов
  • 3.1.2. Классификация контакторов
  • 3.1.3. Область применения контакторов
  • 3.1.4. Узлы контактора и принцип его действия; физические явления, происходящие в электрическом аппарате
  • 3.1.5. Параметры контакторов
  • Лекция № 9
  • 3.1.6. Контакторы переменного тока, их конструкция и параметры
  • 3.1.6.1.Контактная система
  • 3.1.6.2. Электромагнитные системы: физические явления, происходящие в электрических аппаратах
  • 3.1.6.3. Конструкция контакторов переменного тока
  • 3.1.6.4. Контакторы серии кт6600
  • 3.1.6.5. Контакторы серии кт64 и кт65
  • 3.1.6.6.Контакторы серии мк
  • 3.1.6.7. Контакторы переменного тока на напряжение 1140 в
  • 3.1.6.8. Контакторы переменного тока вакуумные
  • 3.1.6.9. Выбор, применение и эксплуатация контакторов
  • Лекция № 10
  • 3.2. Электромагнитные контакторы постоянного тока
  • 3.2.1. Режимы работы контакторов, физические явления, происходящие в электрических аппаратах
  • 3.2.2. Контакторы постоянного тока, их конструкция и параметры
  • 3.2.3. Контакторы серии кпв-600
  • 3.2.4. Контакторы типа ктпв-600
  • 3.2.5. Контакторы типа кмв. Контакторы серии кп81
  • 3.2.6. Выбор электрических аппаратов
  • 3.3.3. Конструкция и схема включения
  • 3.3.4. Магнитные пускатели серии пмл
  • 3.3.5. Пускатели серии пма
  • 3.3.6. Нереверсивные пускатели
  • 3.3.7. Схема включения нереверсивного пускателя
  • 3.3.8. Реверсивный магнитный пускатель
  • 3.3.9. Схема включения реверсивного пускателя
  • 3.3.10. Выбор магнитных пускателей
  • Лекция №12
  • 4.1. Электромагнитные реле
  • 4.1.1. Назначение и область применения реле
  • 4.1.2. Классификация реле
  • 4.1.3.Устройство и принцип действия и электромагнитных реле, физические явления в электрических аппаратах
  • Поляризованные электромагнитные системы
  • 4.1.4. Основные характеристики и параметры реле
  • 4.1.5. Требования, предъявляемые к реле
  • 4.1.6. Согласование тяговых и противодействующих характеристик реле
  • 4.1.7. Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода
  • 4.1.8. Выбор, применение и эксплуатация максимально-токовых реле
  • Iуст.(1,3 – 1,5)Iпуск,
  • I уст 0,75i пуск.
  • 4.2.2. Основные параметры герконового реле
  • 4.2.3. Конструкции герконовых реле
  • 4.2.4. Реле тока на герконе
  • 4.2.5. Поляризованные гр
  • 4.2.6. Управление герконом с помощью ферромагнитного экрана
  • Лекция № 15
  • 5.1. Тяговые электромагниты
  • 5.1.1. Основные понятия, физические явления в электрических аппаратах
  • 5.1.2. Энергия магнитного поля и индуктивность системы
  • 5.1.3. Работа, производимая якорем магнита при перемещении
  • 5.1.4. Вычисление сил и моментов электромагнита
  • 5.1.5. Электромагниты переменного тока
  • 5.1.6. Короткозамкнутый виток
  • 5.1.7. Статические тяговые характеристики электромагнитов и механические характеристики аппаратов
  • Лекция № 17
  • 6.1. Предохранители низкого напряжения
  • 6.1.1. Назначение, принцип действия и устройство предохранителя
  • 6.1.2. Параметры предохранителя
  • 6.1.3. Конструкция предохранителей
  • 6.1.4. Предохранители с гашением дуги в закрытом объёме
  • 6.1.5. Предохранители с мелкозернистым наполнителем (пн-2, прс)
  • 6.1.8. Предохранитель-выключатель
  • 6.1.9. Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств
  • Лекция № 18
  • 6.2 Автоматические воздушные выключатели (автоматы)
  • 6.2.1. Назначение, классификация и область применения автоматов
  • 6.2.2. Требования, предъявляемые к автоматам
  • 6.2.3. Узлы автомата и принцип его действия, физические явления в электрическом аппарате
  • 6.2.4. Основные параметры автомата
  • 6.4. Изменение тока цепи и напряжения на контактах в процессе отключения
  • 6.2.5. Универсальные и установочные автоматы
  • 6.2.8. Выбор, применение и эксплуатация автоматических воздушных выключателей
  • Лекция № 23
  • 7.4. Токоограничивающие реакторы
  • 7.4.1. Назначение, область применения и принцип работы реактора, физические явления в электрическом аппарате
  • 7.4.2. Основные параметры реактора
  • Лекция № 24
  • 7.5. Разрядники
  • 7.5. Назначение, область применения разрядников
  • 7.5.1. Требования, предъявляемые к разрядникам
  • 7.5.2. Основные параметры разрядников
  • 7.5.4. Конструкции разрядников, физические явления в них
  • 7.5.5. Трубчатые разрядники, физические явления в них
  • 7.5.8. Ограничители перенапряжения, физические явления в электрических аппаратах
  • 7.5.9. Выбор разрядников
  • Лекция № 25
  • 7.6. Предохранители высокого напряжения
  • 7.6.1. Назначение предохранителей
  • 7.6.2. Требования, предъявляемые к предохранителям вн
  • 7.6.3. Принцип действия, устройство и основные параметры предохранителей вн, физические явления в электрических аппаратах
  • 7.6.4. Предохранители с мелкозернистым наполнителем серий пк и пкт
  • 7.6.5. Предохранители серии пктн
  • 7.6.6. Предохранители с автогазовым, газовым и жидкостным гашением дуги
  • 7.6.7. Выбор, применение и эксплуатация предохранителей вн
  • I отк. Пред I кз. Уст лекция № 26
  • 8.1. Измерительные трансформаторы тока (тт)
  • 8.1.1.Назначение, принцип действия, включение трансформатора тока
  • 8.1.2. Основные параметры трансформаторов тока
  • 8.1.3. Режимы работы трансформаторов тока
  • I"1апер,i2апер,I"0апер– кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
  • 8.1.4. Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
  • 8.1.5. Выбор трансформаторов тока
  • Список рекомендованной литературы
  • Список вопросов кзачетупо ЭиЭа
  • 2.1.1. Свойства дугового разряда

    В коммутационных ЭА, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250-300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

    Если ток в цепи напряжения выше значений = 0,03-0,9 А, то имеет место дуговой разряд. Основные свойства дугового разряда:

    1.Дуговой разряд имеет место только при токах большой величины. Минимальный ток дуги для различных материалов и для металлов составляет 0,5А.

    2. Температура центральной части дуги очень велика и в аппаратах может достигать 6000-25000 К.

    3. Плотность тока на катоде чрезвычайно велика и достигает .

    4. Падение напряжения у катода составляет всего 10-20 В и практически не зависит от тока.

    В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги и околоанодную.

    Электрическая сварочная дуга

    Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

    Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

    С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

    Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

    Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

    В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

    Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

    Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

    Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

    Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

    В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

    При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

    Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

    Строение дуги Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

    К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

    Влияние на дугу магнитных полей

    При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

    Столб сварочной дуги резко откланяется от нормального положения; - дуга горит неустойчиво, часто обрывается; - изменяется звук горения дуги - появляются хлопки.

    Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

    Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

    В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

    Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

    Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

    Уменьшить влияние магнитного дутья на сварочный процесс можно:

    Выполнением сварки короткой дугой; - наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья; - подведением токоподвода ближе к дуге.

    Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

    У электродов в прианодной и в прикатодной областях имеет место резкое падение напряжения: катодное Ukи анодноеUa. Величина этого падения напряжения зависит от материалов электродов и от газа (15В – 30В). В остальной части дуги, называемой стволом, падение напряжения прямопропорционально длине дугиlд. Градиент приблизительно постоянен вдоль ствола и достигает от 100 до 200 В/см. Итоговое напряжение на дуге

    Uд=Uк+Uа+lд∙Ед

    ДУГОВОЙ РАЗРЯД, самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 0,01-1 Па (10-4-10-2 мм ртутного столба), при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Для дугового разряда характерны высокая плотность тока на катоде (102-108 А/см 2) и низкое катодное падение потенциала, не превышающее эффективный потенциал ионизации среды в разрядном промежутке. Впервые дуговой разряд между двумя угольными электродами в воздухе наблюдали в 1802 году В. В. Петров и независимо от него в 1808 Г. Дэви. Светящийся токовый канал этого разряда при горизонтальном расположении электродов под действием конвективных потоков изогнут дугообразно, отсюда и названия - дуговой разряд, электрическая дуга.

    Для большинства дуговых разрядов при большой плотности тока на катоде возникает малое очень яркое пятно, перемещающееся по всей поверхности катода. Температура в пятне может достигать температуры кипения (или возгонки) материала катода. Значительная роль в механизме поддержания тока дугового разряда играет термоэлектронная эмиссия. Над катодным пятном образуется слой положительного объёмного заряда, обеспечивающего ускорение эмитируемых электронов до энергий, достаточных для ударной ионизации атомов и молекул газа. Поскольку этот слой очень тонкий (меньше длины свободного пробега электрона), он создаёт высокую напряжённость поля у поверхности катода, особенно у микронеоднородностей, поэтому существенными оказываются и автоэлектронная эмиссия, и термоавтоэлектронная эмиссия. Высокая плотность тока и «перескоки» пятна с точки на точку создают условия для взрывной электронной эмиссии.

    От зоны катодного падения потенциала до анода расположен так называемый положительный столб. На аноде обычно формируется яркое анодное пятно, в котором температура поверхности почти такая же, как и в катодном. В некоторых видах дугового разряда при токах в десятки ампер на катоде и аноде возникают факелы в виде плазменных струй, вылетающих с большой скоростью перпендикулярно поверхности электродов. При токах 100-300 А возникают добавочные факелы, образуя пучок плазменных струй. Нагретый до высокой температуры и ионизованный газ в столбе представляет собой плазму. Электропроводность плазмы может быть очень высокой, но обычно она на несколько порядков ниже электропроводности металлов.

    При концентрации заряженных частиц более 10 18 см -3 состояние плазмы иногда можно считать близким к равновесному. При меньших плотностях, вплоть до 10 15 см -3 , может возникнуть состояние локального термодинамического равновесия (ЛТР), когда в каждой точке плазмы все статистические распределения близки к равновесным при одном значении температуры, которая различна в разных точках. Исключение в этом случае составляет лишь излучение плазмы: оно далеко от равновесного и определяется составом плазмы и скоростями радиационных процессов. При ограниченных размерах столба дугового разряда даже в плотной плазме на оси столба состояние ЛТР нарушается за счёт радиационных потерь. Это выражается в сильном отклонении состава плазмы и населённостей возбуждённых уровней от их равновесных значений. Кинетика плазмы в столбе дугового разряда при высоких плотностях определяется в основном процессами соударений, а по мере снижения плотности (удаления от оси) всё большую роль играют радиационные процессы.

    Диаметр столба дугового разряда определяется условиями баланса возникающей и теряемой энергии. С ростом тока или давления меняются механизмы потерь, обусловленные теплопроводностью газа, амбиполярной диффузией, радиационными процессами и др. При таких сменах может происходить самосжатие (контракция) столба (смотри Контрагированный разряд).

    В зависимости от условий горения дугового разряда его параметры меняются в широких пределах. Классический пример дугового разряда - разряд постоянного тока, свободно горящий в воздухе между угольными электродами. Его типичные параметры: ток от 1 А до сотен ампер, расстояние между электродами от миллиметров до нескольких сантиметров, температура плазмы около 7000 К, температура анодного пятна около 3900 К.

    Дуговой разряд применяется как лабораторный источник света и в технике (дуговые угольные лампы). Дуговой разряд с угольным анодом, просверлённым и заполненным исследуемыми веществами, используется в спектральном анализе руд, минералов, солей и т.п. Дуговой разряд применяется в плазмотронах, дуговых печах для выплавки металлов, при электросварке, в различных электронных и осветительных приборах. Так называемая вакуумная дуга, которая зажигается в вакууме и горит в парах металла, испарившегося с катода, используется в вакуумных высоковольтных выключателях.

    Лит.: Кесаев И. Г. Катодные процессы электрической дуги. М., 1968; Грановский В. Л. Электрический ток в газе. М., 1971; Райзер Ю. П. Физика газового разряда. 2-е изд. М., 1992.

    ДУГОВОЙ РАЗРЯД

    один из типов стационарного электрического разряда в газе, характеризующийся большой плотностью тока и малым падением напряжения (сравнимым с потенциалом ионизации газа). Д. р. может возникнуть в результате электрич. пробоя разрядного промежутка при кратковрем. резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то Д. р. предшествует искровой разряд . Д. р. используется в дуговых печах, в газоразрядных источниках света, при дуговой сварке, в плазматронах и т. д.


    Большой энциклопедический политехнический словарь . 2004 .

    Смотреть что такое "ДУГОВОЙ РАЗРЯД" в других словарях:

      Самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… … Физическая энциклопедия

      дуговой разряд - Самостоятельный электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов и который характеризуется малым катодным падением потенциала (порядка или меньше… … Справочник технического переводчика

      дуговой разряд - дуговой разряд; отрасл. дугообразный разряд; вольтова дуга Электрический разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением в нем объемных зарядов, характеризуемый малым катодным… … Политехнический терминологический толковый словарь

      Электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при… … Большой Энциклопедический словарь

      ДУГОВОЙ РАЗРЯД - один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в… … Большая политехническая энциклопедия

      Один из типов стационарного электрического разряда в газах (См. Электрический разряд в газах). Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808 09 Г. Дэви. Светящийся токовый канал… … Большая советская энциклопедия

      дуговой разряд - lankinis išlydis statusas T sritis fizika atitikmenys: angl. arc discharge; electric arc in gas vok. Bogenentladung, f rus. дуговой разряд, m; дуговой разряд в газе, m pranc. décharge d’arc, f; décharge en régime d’arc, f; décharge par arc, f … Fizikos terminų žodynas

      Электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10 2 10 3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе… … Энциклопедический словарь

      Электрическая дуга в воздухе Электрическая дуга физическое явление, один из видов электрического разряда в газе. Синонимы: Вольтова дуга, Дуговой разряд. Впервые была описана в 1802 году русским ученым В. В. Петровым. Электрическая дуга является… … Википедия

      дуговой разряд - lankinis išlydis statusas T sritis automatika atitikmenys: angl. arc discharge vok. Bogenentladung, f; Lichtbogenentladung, f rus. дуговой разряд, m pranc. décharge d arc, f; décharge en arc, f … Automatikos terminų žodynas

      дуговой разряд - lankinis išlydis statusas T sritis chemija apibrėžtis Savaiminio elektros išlydžio dujose rūšis. atitikmenys: angl. arc discharge rus. дуговой разряд … Chemijos terminų aiškinamasis žodynas