Физ смысл волновой функции. Волновая функция и ее физический смысл

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема : .

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова - Бома.

Уравне́ние Шрёдингера - уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна - Гордона,уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из важнейших уравнений физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае . Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классическойтеорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Зависимое от времени уравнение

Наиболее общая форма уравнения Шрёдингера - это форма, включающая зависимость от времени :

Пример нерелятивистского уравнения Шрёдингера в координатном представлении для точечной частицы массы , движущейся в потенциальном поле c потенциалом :

Зависящее от времени уравнение Шрёдингера

Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в n-мерном конфигурационном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , - постоянная Планка; - масса частицы, - внешняя по отношению к частице потенциальная энергия в точке в момент времени , - оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

30 вопрос Фундаментальные физические взаимодействия. Понятие физического вакуума в современной научной картине мира.

Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.

1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 10 0 , радиус действия порядка

10 -15 , время протекания t »10 -23 с. Частицы – переносчики - p-мезоны.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t » 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица – переносчик – фотон.

3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t » 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействияr»10 -18 м. (Частица – переносчик - векторный бозон).

4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как его константа равна 10 -38 , т.е. из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума приспонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

31 вопрос Структурные уровни материи. Микромир. Макромир. Мегамир.

Структурные уровни материи

(1) - Характерной чертой материи является ее структура, поэтому одной из важнейших задач естествознания является исследование этой структуры.

В настоящее время принято, что наиболее естественным и наглядным признаком структуры материи являются характерный размер объекта на данном уровне и его масса. В соответствии с этими представлениями выделяются следующие уровни:

(3) - Понятие «микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы. Макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, начиная с элементарное единицей живого – клетки, человеком и продуктами его деятельности, т.е. макротелами . Наиболее крупные объекты (планеты, звезды, галактики и их скопления образуют мегамир. Важно сознавать, что жестких границ между этими мирами нет, а речь идет лишь о различных уровнях рассмотрения материи.

Для каждого из рассмотренных основных уровней, в свою очередь, можно выделить подуровни, характеризуемые свой структурой, своими особенностями организации.

Изучение материи на ее различных структурных уровнях требует своих специфических средств и методов.

32 вопрос Эволюция Вселенной (Фридман, Хаббл, Гамов) и реликтовое излучение.

> Волновая функция

Читайте о волновой функции и теории вероятностей квантовой механики: суть уравнения Шредингера, состояние квантовой частицы, гармонический осциллятор, схема.

Речь идет об амплитуде вероятности в квантовой механике, описывающей квантовое состояние частицы и ее поведение.

Задача обучения

  • Объединить волновую функцию и плотность вероятности определения частички.

Основные пункты

  • |ψ| 2 (x) соответствует плотности вероятности определения частички в конкретном месте и моменте.
  • Законы квантовой механики характеризуют эволюцию волновой функции. Уравнение Шредингера объясняет ее наименование.
  • Волновая функция должна удовлетворять множество математических ограничений для вычислений и физической интерпретации.

Термины

  • Уравнение Шредингера – частичный дифференциал, характеризующий изменение состояния физической системы. Его сформулировал в 1925 году Эрвин Шредингер.
  • Гармонический осциллятор – система, которая при смещении от изначальной позиции, испытывает влияние силы F, пропорциональной смещению х.

В пределах квантовой механики волновая функция отображает амплитуду вероятности, характеризующую квантовое состояние частички и ее поведение. Обычно значение – комплексное число. Наиболее распространенными символами волновой функции выступают ψ (x) или Ψ(x). Хотя ψ – комплексное число, |ψ| 2 – вещественное и соответствует плотности вероятности нахождения частицы в конкретном месте и времени.

Здесь отображены траектории гармонического осциллятора в классической (А-В) и квантовой (C- H) механиках. В квантовой шар обладает волновой функцией, отображенной с реальной частью в синем и мнимой в красном. Траектории C- F – примеры стоячих волн. Каждая такая частота будет пропорциональной возможному уровню энергии осциллятора

Законы квантовой механики эволюционируют со временем. Волновая функция напоминает другие, вроде волн в воде или струне. Дело в том, что формула Шредингера выступает типом волнового уравнения в математике. Это приводит к двойственности волновых частиц.

Волновая функция обязана соответствовать ограничениям:

  • всегда конечная.
  • всегда непрерывная и непрерывно дифференцируемая.
  • удовлетворяет соответствующее условие нормировки, чтобы частичка существовала со 100% определенностью.

Если требования не удовлетворены, то волновую функцию нельзя интерпретировать в качестве амплитуды вероятности. Если мы проигнорируем эти позиции и воспользуемся волновой функцией, чтобы определить наблюдения квантовой системы, то не получим конечных и определенных значений.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения таких частиц. Теория, охватывающая все свойства элементарных частиц, должна учитывать не только их корпускулярные свойства, но и волновые. Из опытов, рассмотренных ранее, следует, что пучок элементарных частиц обладает свойствами плоской волны, распространяющейся в направлении скорости частиц. В случае распространения вдоль оси этот волновой процесс может быть описан уравнением волны де Бройля (7.43.5):

(7.44.1)

где – энергия, – импульс частицы. При распространении в произвольном направлении :

(7.44.2)

Назовем функцию волновой функцией и выясним ее физический смысл путём сравнения дифракции световых волн и микрочастиц.

Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задаётся квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Интенсивность же больше там, где больше число частиц. Таким образом, дифракционная картина для микрочастиц является проявлением статистической закономерности и можно говорить, что знание вида волны де Бройля, т.е. Ψ -функции, позволяет судить о вероятности того или иного из возможных процессов.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объёмом равна

(7.44.3)

Величина

(7.44.4)

имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объёме в окрестности заданной точки. Таким образом, физический смысл имеет не сама - функция, а квадрат её модуля , которым задаётся интенсивность волн де Бройля. Вероятность найти частицу в момент времени в конечном объёме , согласно теореме сложения вероятностей, равна

(7.44.5)

Так как частица существует, то она обязательно где-то обнаруживается в пространстве. Вероятность достоверного события равна единице, тогда


. (7.44.6)

Выражение (7.44.6) называется условием нормировки вероятности. Волновая функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объёма, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

3. ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

3.1.Волновая функция

Всякая микрочастица – это образование особого рода, сочетающее в себе свойства и частицы, и волны. Отличие микрочастицы от волны состоит в том, что она обнаруживается как неделимое целое. Например, никто не наблюдал полэлектрона. В тоже время волну можно разделить на части и затем воспринимать каждую часть в отдельности.

Отличие микрочастицы в квантовой механике от обычной микрочастицы заключается в том, что она не обладает одновременно определенными значениями координат и импульса, поэтому понятие траектории для микрочастицы утрачивает смысл.

Распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства будем описывать волновой функцией (x , y , z , t ) (пси-функция). Вероятность dP того, что частица находится в элементе объема dV , пропорциональная
и элементу объемуdV :

dP =
dV .

Физический смысл имеет не сама функция
, а квадрат ее модуля – это плотность вероятности. Она определяет вероятность пребывания частицы в данной точке пространства.

Волновая функция
является основной характеристикой состояния микрообъектов (микрочастиц). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией
.

3.2. Принцип неопределенности

В классической механике состояние частицы задают координатами, импульсом, энергией и т.п. Это динамические переменные. Микрочастицу описывать такими динамическими переменными нельзя. Особенность микрочастиц состоит в том, что не для всех переменных получаются при измерениях определенные значения. Например, частица не может иметь одновременно точных значений координаты х и компоненты импульсар х . Неопределенность значенийх ир х удовлетворяет соотношению:

(3.1)

– чем меньше неопределенность координаты Δх , тем больше неопределенность импульса Δр х , и наоборот.

Соотношение (3.1) называется соотношением неопределенности Гейзенберга и было получено в 1927 г.

Величины Δх и Δр х называются канонически сопряженными. Такими же канонически сопряженными являются Δу и Δр у , и т.п.

Принцип неопределенности Гейзенберга гласит: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка ħ.

Энергия и время тоже являются канонически сопряженными, поэтому
. Это означает, что определение энергии с точностью ΔЕ должно занять интервал времени:

Δt ~ ħ/ ΔЕ .

Определим значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Δх , расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель ее составляющая импульсар х имеет точное значение,р х = 0 (щель перпендикулярна к вектору импульса), поэтому неопределенность импульса равна нулю, Δр х = 0, зато координатах частицы является совершенно неопределенной (рис.3.1).

Вмомент прохождения частицы через щель положение меняется. Вместо полной неопределенности координатых появляется неопределенность Δх , и появляется неопределенность импульса Δр х .

Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла 2φ , гдеφ – угол, соответствующий первому дифракционному минимуму (максимумами высших порядков пренебрегаем, т.к. их интенсивность мала по сравнению с интенсивностью центрального максимума).

Таким образом, появляется неопределенность:

Δр х =р sinφ ,

но sinφ = λ / Δх – это условие первого минимума. Тогда

Δр х ~рλ/ Δх ,

Δх Δр х ~рλ = 2πħ ħ/ 2.

Соотношение неопределенностей указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Движение по траектории характеризуется определенными значениями скорости частицы и ее координат в каждый момент времени. Подставив в соотношение неопределенностей вместо р х выражение для импульса
, имеем:

чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, тем с большей точностью применимы к ней понятия траектории.

Например, для микрочастицы размером 1·10 -6 м неопределенности Δх и Δ выходят за пределы точности измерения этих величин, и движение частицы неотделимо от движения по траектории.

Соотношение неопределенностей является фундаментальным положением квантовой механики. Оно, например, позволяет объяснить тот факт, что электрон не падает на ядро атома. Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона Δr и неопределенность импульса Δр удовлетворяли соотношению

Δr Δp ħ/ 2,

и значение r = 0 невозможно.

Энергия электрона в атоме будет минимальна при r = 0 и р = 0, поэтому для оценки наименьшей возможной энергии положим Δr r , Δp p . Тогда Δr Δp ħ/ 2, и для наименьшего значения неопределенности имеем:

нас интересует только порядок величин, входящих в это соотношение, поэтому множитель можно отбросить. В этом случае имеем
, отсюдар = ħ/ r . Энергия электрона в атоме водорода

(3.2)

Найдем r , при котором энергия Е минимальна. Продифференцируем (3.2) и приравняем производную к нулю:

,

численные множители в этом выражении мы отбросили. Отсюда
- радиус атома (радиус первой боровской орбиты). Для энергии имеем

Можно подумать, что с помощью микроскопа удастся определить положение частицы и тем самым ниспровергнуть принцип неопределенности. Однако микроскоп позволит определить положение частицы в лучшем случае с точностью до длины волны используемого света, т.е. Δх ≈ λ , но т.к. Δр = 0, то Δр Δх = 0 и принцип неопределенности не выполняется?! Так ли это?

Мы пользуемся светом, а свет, согласно квантовой теории, состоит из фотонов с импульсом р = k . Чтобы обнаружить частицу, на ней должен рассеяться или поглотиться хотя бы один из фотонов пучка света. Следовательно, частице будет передан импульс, по крайней мере достигающей h . Таким образом, в момент наблюдения частицы с неопределенностью координаты Δх ≈ λ неопределенность импульса должна быть Δр ≥ h .

Перемножая эти неопределенности, получаем:

принцип неопределенности выполняется.

Процесс взаимодействия прибора с изучаемым объектом называется измерением. Этот процесс протекает в пространстве и во времени. Существует важное различие между взаимодействием прибора с макро- и микрообъектами. Взаимодействие прибора с макрообъектом есть взаимодействие двух макрообъектов, которое достаточно точно описывается законами классической физики. При этом можно считать, что прибор не оказывает на измеряемый объект влияния, либо это влияние мало. При взаимодействии прибора с микрообъектами возникает иная ситуация. Процесс фиксации определенного положения микрочастицы вносит в ее импульс изменение, которое нельзя сделать равным нулю:

Δр х ≥ ħ/ Δх.

Поэтому воздействие прибора на микрочастицу нельзя считать малым и несущественным, прибор изменяет состояние микрообъекта – в результате измерения определенные классические характеристики частицы (импульс и др.) оказываются заданными лишь в рамках, ограниченных соотношением неопределенностей.

3.3.Уравнение Шредингера

В 1926 г. Шредингер получил свое знаменитое уравнение. Это основное уравнение квантовой механики, основное предположение, на котором основана вся квантовая механика. Все вытекающие из этого уравнения следствия согласуются с опытом – в этом его подтверждение.

Вероятностное (статистическое) истолкование волн де Бройля и соотношение неопределенностей указывают, что уравнение движения в квантовой механике должно быть таким, чтобы оно позволило объяснить наблюдаемые на опыте волновые свойства частиц. Положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции
(x , y , z , t ), а точнее квадратом модуля этой величины.
– это вероятность нахождения частицы в точкеx , y , z в момент времени t . Основное уравнение квантовой механики должно быть уравнением относительно функции
(x , y , z , t ). Далее, это уравнение должно быть волновым, из него должны получить свое объяснение эксперименты по дифракции микрочастиц, подтверждающие их волновую природу.

Уравнение Шредингера имеет следующий вид:

. (3.3)

где m – масса частицы, i – мнимая единица,
– оператор Лапласа,
,U – оператор потенциальной энергии частицы.

Вид Ψ-функции определяется функцией U , т.е. характером сил, действующих на частицу. Если силовое поле стационарно, то решение уравнения имеет вид:

, (3.4)

где Е – полная энергия частицы, она остается постоянной при каждого состояния, Е= const .

Уравнение (3.4) называется уравнением Шредингера для стационарных состояний. Его еще можно записать в виде:

.

Это уравнение применимо к нерелятивистским системам при условии, что распределение вероятностей не меняется во времени, т.е. когда функции ψ имеют вид стоячих волн.

Уравнение Шредингера можно получить следующим образом.

Рассмотрим одномерный случай – свободно движущуюся частицу по оси х . Ей соответствует плоская волна де Бройля:

,

но
, поэтому
. Продифференцируем это выражение поt :

.

Найдем теперь вторую производную от пси-функции по координате

,

В нерелятивистской классической механике энергия и импульс связаны соотношением:
где Е – кинетическая энергия. Частица движется свободно, ее потенциальная энергия U = 0, и полная Е=Е k . Поэтому

,

– это уравнение Шредингера для свободной частицы.

Если частица движется в силовом поле, то Е – вся энергия (и кинетическая, и потенциальная), поэтому:

,

тогда получим
, или
,

и окончательно

Это уравнение Шредингера.

Приведенные рассуждения – не вывод уравнения Шредингера, а пример того, как это уравнение можно установить. Само же уравнение Шредингера постулируется.

В выражении

левая часть обозначает оператор Гамильтона– гамильтониан – это сумма операторов
иU . Гамильтониан – это оператор энергии. Подробно об операторах физических величин будем говорить в дальнейшем. (Оператор выражает некоторое действие под функцией ψ , которая стоит под знаком оператора). С учетом сказанного имеем:

.

Физический смысл имеет не сама ψ -функция, а квадрат ее модуля, определяющий плотность вероятности нахождения частицы в данном месте пространства. Квантовая механика имеет статистический смысл. Она не позволяет определить местонахождение частицы в пространстве или траекторию, по которой движется частица. Пси-функция лишь дает вероятность, с какой частица может быть обнаружена в данной точке пространства. В связи с этим пси-функция должна удовлетворять следующим условиям:

Она должна быть однозначной, непрерывной и конечной, т.к. определяет состояние частицы;

Она должна иметь непрерывную и конечную производную;

Функция Iψ I 2 должна быть интегрируема, т.е. интеграл

должен быть конечным, так как он определяет вероятность обнаружения частицы.

Интеграл

,

Это условие нормировки. Оно означает, что вероятность того, что частица находится в какой-нибудь из точек пространства, равна единице.

корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).

Определение 1

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:

где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).

Пример 1

Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.

Рисунок 1.

Решение:

Запишем условие нормировки для нашего случая в виде:

\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]

Проведем интегрирование в левой части:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]

Из формулы (1.4) выразим искомый коэффициент:

Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$

Пример 2

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac{dP}{dr}$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:

\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]

Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается: