Являются ли силовые и эквипотенциальные линии замкнутыми. Эквипотенциальные поверхности. Эквипотенциальные линии их свойства

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Между напряженностью электрического доля и электрическим потенциалом существует интегральная и дифференциальная связь:

j 1 - j 2 = ∫ Е dl (1)

E = -grad j (2)

Электрическое поле может быть представлено графически двумя способами, дополняющими друг друга: с помощью эквипотенциальных поверхностей и ли­ний напряженности (силовых линий).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Линия пересечения ее с плоскостью чертежа называется эквипотенциалью. Силовые линии - линии, касательные к которым в каждой точке совпадают с направлением вектора Е . На рисунке 1 пунктирными линиями показаны эквипотенциали, сплошными - силовые линии электрического поля.


Рис.1

Разность потенциалов между точками 1 и 2 равна 0, так как они находятся на одной эквипотенциали. В этом случае из (1):

∫Е dl = 0 или ∫Е dlcos ( Edl ) = 0 (3)

Поскольку Е и dl в выражении (3) не равны 0, то cos ( Edl ) = 0 . Следовательно, угол между эквипотенциалью и силовой линией составляет p/2.

Из дифференциальной связи (2) следует, что силовые линии всегда направлены в сторону убывания потенциала.

Величина напряженности электрического поля определяется «густотой» сило­вых линий. Чем гуще силовые линии, тем меньше расстояние между эквипотенциалями, так что силовые линии и эквипотенциали образуют "криволинейные квадраты". Исходя из этих принципов, можно построить картину силовых линий, располагая картиной эквипотенциалей, и наоборот.

Достаточно полная картина эквипотенциалей поля позволяет рассчитать в раз­ных точках значение проекции вектора напряженности Е на выбранное направ­ление х , усредненное по некоторому интервалу координаты ∆х :

Е ср. ∆х = - ∆ j /∆х,

где ∆х - приращение координаты при переходе с одной эквипотенциали на дру­гую,

j - соответствующее ему приращение потенциала,

Е ср. ∆х - среднее значение Е х между двумя потенциалами.

ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКА ИЗМЕРЕНИЙ.

Для моделирования электрического поля удобно использовать аналогию, су­ществующую между электрическим полем, созданным заряженными телами и электрическим полем постоянного тока, текущего по проводящей пленке с одно­родной проводимостью. При этом расположение силовых линий электрического поля оказывается аналогично расположению линий электрических токов.

То же утверждение справедливо для потенциалов. Распределение потенциалов поля в проводящей пленке такое же, как в электрическом поле в вакууме.

В качестве проводящей пленки в работе используется электропроводная бума­га с одинаковой во всех направлениях проводимостью.

На бумаге устанавливаются электроды так, чтобы обеспечивался хороший кон­такт между каждым электродом и проводящей бумагой.

Рабочая схема установки приведена на рисунке 2. Установка состоит из модуля II, выносного элемента I, индикатора III, источника питания IV. Модуль служит для подключения всех используемых приборов. Выносной элемент представляет собой диэлектрическую панель 1, на которую помещают лист белой бумаги 2, по­верх нее - лист копировальной бумаги 3, затем - лист электропроводящей бумаги 4, на котором крепятся электроды 5. Напряжение на электроды подается от моду­ля II с помощью соединительных проводов. Индикатор III и зонд 6 используются для определения потенциалов точек на поверхности электропроводящей бумаги.

В качестве зонда применяется провод со штекером на конце. Потенциал j зонда равен потенциалу той точки поверхности электропроводящей бумаги, которой он касается. Совокупность точек поля с одинаковым потенциалом и есть изображе­ние эквипотенциали поля. В качестве источника питания IV используется блок питания ТЕС – 42, который подключается к модулю с помощью штепсельного разъема на задней стенке модуля. В качестве индикатора Ш используется вольт­метр В7 – 38.



ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

1. Установить на панели 1 лист белой бумаги 2. На него положить копироваль­ную бумагу 3 и лист электропроводящей бумаги 4 (рис.2).

2. Установить на электропроводящей бумаге электроды 5 и закрепить гайками.

3. Подключить к модулю блок питания IV (ТЕС – 42) с помощью штепсельного разъема на задней стенке модуля.

4. С помощью двух проводников подключить индикатор III (вольтметр В7 – 38) к гнездам "PV" на лицевой панели модуля. Нажать соответствующую кнопку на вольтметре для измерения постоянного напряжения (рис.2).

5. С помощью двух проводников подключить электроды 5 к модулю П.

6. Подключить зонд (провод с двумя штекерами) к гнезду на лицевой панели модуля.

7. Подключить стенд к сети 220 В. Включить общее питание стенда.

Графическое изображение полей, можно составить не только с линиями напряженности, но и с помощью разности потенциалов. Если объединить в электрическом поле точки с равными потенциалами, то мы получим поверхности равного потенциала или как еще их называют эквипотенциальные поверхности. В пересечении с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изображая эквипотенциальные линии, которые соответствуют различным значениям потенциала, мы получаем наглядную картину, которая отражает, как изменяется потенциал конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда работы не требует, так как все точки поля по такой поверхности имеют равный потенциал и сила, которая действует на заряд, всегда перпендикулярна перемещению.

Следовательно, линии напряженности всегда перпендикулярны поверхностям с равными потенциалами.

Наиболее наглядная картина поля будет представлена, если изображать эквипотенциальные линии с равными изменениями потенциала, например в 10 В, 20В, 30 В и т.д. В таком случае скорость изменения потенциала будет обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. То есть густота эквипотенциальных линий пропорциональна напряженности поля (чем выше напряженность поля, тем теснее изображаются линии). Зная эквипотенциальные линии, можно построить линии напряженности рассматриваемого поля и наоборот.

Следовательно, изображения полей с помощью эквипотенциальных линий и линий напряженности равнозначны.

Нумерация эквипотенциальных линий на чертеже

Довольно часто эквипотенциальные линии на чертеже нумеруют. Для того, чтобы указать разность потенциалов на чертеже, произвольную линию обозначают цифрой 0, возле всех остальных линий расставляют цифры 1,2,3 и т.д. Эти цифры указывают разность потенциалов в вольтах избранной эквипотенциальной линии и линии, которую выбрали нулевой. При этом отмечаем, что выбор нулевой линии не важен, так как физический смысл имеет только разность потенциалов для двух поверхностей, и она не зависит от выбора нуля.

Поле точечного заряда с положительным зарядом

Рассмотрим как пример поле точечного заряда, который имеет положительный заряд. Линиями поля точечного заряда являются радиальные прямые, следовательно, эквипотенциальные поверхности - это система концентрических сфер. Линии поля перпендикуляры поверхностям сфер в каждой точке поля. Эквипотенциальными линиями же служат концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Что очевидно из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность ($\varphi \left(\infty \right)=0$):

\[\varphi =\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r}\left(1\right).\]

Система параллельных плоскостей, которые находятся на равных расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Пример 1

Задание: Потенциал поля, создаваемый системой зарядов, имеет вид:

\[\varphi =a\left(x^2+y^2\right)+bz^2,\]

где $a,b$ -- постоянные больше нуля. Какова форма имеют эквипотенциальных поверхностей?

Эквипотенциальные поверхности, как мы знаем, -- это поверхности, в которых в любых точках потенциалы равны. Зная вышесказанное, изучим уравнение, которое предложено в условиях задачи. Разделим правую и левую части уравнения $=a\left(x^2+y^2\right)+bz^2,$ на $\varphi $, получим:

\[{\frac{a}{\varphi }x}^2+{\frac{a}{\varphi }y}^2+\frac{b}{\varphi }z^2=1\ \left(1.1\right).\]

Запишем уравнение (1.1) в каноническом виде:

\[\frac{x^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{y^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{z^2}{{\left(\sqrt{\frac{\varphi }{b}}\right)}^2}=1\ (1.2)\]

Из уравнения $(1.2)\ $ видно, что заданной фигурой является эллипсоид вращения. Его полуоси

\[\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi}{a}},\ \sqrt{\frac{\varphi}{b}}.\]

Ответ: Эквипотенциальная поверхность заданного поля -- эллипсоид вращения с полуосями ($\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{b}}$).

Пример 2

Задание: Потенциал поля, имеет вид:

\[\varphi =a\left(x^2+y^2\right)-bz^2,\]

где $a,b$ -- $const$ больше нуля. Что представляют собой эквипотенциальные поверхности?

Рассмотрим случай при $\varphi >0$. Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на $\varphi ,$ получим:

\[\frac{a}{\varphi }x^2+{\frac{a}{\varphi }y}^2-\frac{b}{\varphi }z^2=1\ \left(2.1\right).\]

\[\frac{x^2}{\frac{\varphi }{a}}+\frac{y^2}{\frac{\varphi }{a}}-\frac{z^2}{\frac{\varphi }{b}}=1\ \left(2.2\right).\]

В (2.2) мы получили каноническое уравнение однополостного гиперболоида. Его полуоси равны ($\sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{b}}(мнимая\ полуось)$).

Рассмотрим случай, когда $\varphi

Представим $\varphi =-\left|\varphi \right|$ Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на минус модуль $\varphi ,$ получим:

\[-\frac{a}{\left|\varphi \right|}x^2-{\frac{a}{\left|\varphi \right|}y}^2+\frac{b}{\left|\varphi \right|}z^2=1\ \left(2.3\right).\]

Перепишем уравнение (1.1) в виде:

\[-\frac{x^2}{\frac{\left|\varphi \right|}{a}}-\frac{y^2}{\frac{\left|\varphi \right|}{a}}+\frac{z^2}{\frac{\left|\varphi \right|}{b}}=1\ \left(2.4\right).\]

Мы получили каноническое уравнение двуполостного гиперболоида, его полуоси:

($\sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{b}}(\ действительная\ полуось)$).

Рассмотрим случай, когда $\varphi =0.$ Тогда уравнение поля имеет вид:

Перепишем уравнение (2.5) в виде:

\[\frac{x^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}+\frac{y^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}-\frac{z^2}{{\left(\frac{1}{\sqrt{b}}\right)}^2}=0\left(2.6\right).\]

Мы получили каноническое уравнение прямого круглого конуса, который опирается на эллипс с полуосями $(\frac{\sqrt{b}}{\sqrt{a}}$;$\ \frac{\sqrt{b}}{\sqrt{a}}$).

Ответ: В качестве эквипотенциальных поверхностей для заданного уравнения потенциала мы получили: при $\varphi >0$ -- однополостной гиперболоид, при $\varphi

Для наглядного представления векторных полей используют картину силовых линий. Силовая линия есть воображаемая математическая кривая в пространстве, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора поля в той же точке (рис. 1.17).
Рис. 1.17 :
Условие параллельности вектора E → и касательной можно записать в виде равенства нулю векторного произведения E → и элемента дуги d r → силовой линии:

Эквипотенциалью называют поверхность, на которой постоянна величина электрического потенциала ϕ . В поле точечного заряда, как показано на рис. , эквипотенциальными являются сферические поверхности с центров в месте расположения заряда; это видно из уравнения ϕ = q ∕ r = const .

Анализируя геометрию электрических силовых линий и эквипотенциальных поверхностей, можно указать ряд общих свойств геометрии электростатического поля.

Во-первых, силовые линии начинаются на зарядах. Они либо уходят на бесконечность, либо заканчиваются на других зарядах, как на рис. .


Рис. 1.19:

Во-вторых, в потенциальном поле силовые линии не могут быть замкнуты. В противном случае можно было бы указать такой замкнутый контур, что работа электрического поля при перемещении заряда по этому контуру не равна нулю.

В-третьих, силовые линии пересекают любую эквипотенциаль по нормали к ней. Действительно, электрическое поле всюду направлено в сторону скорейшего уменьшения потенциала, а на эквипотенциальной поверхности потенциал постоянен по определению (рис. ).
Рис. 1.20 :
И наконец, силовые линии нигде не пересекаются за исключением точек, где E → = 0 . Пересечение силовых линий означает, что поле в точке пересечения есть неоднозначная функция координат, а вектор E → не имеет определенного направления. Единственным вектором, который обладает таким свойством, является нулевой вектор. Структура электрического поля вблизи точки нуля будет проанализирована в задачах к ?? .

Метод силовых линий, конечно, применим для графического представления любых векторных полей. Так, в главе ?? мы встретим понятие магнитных силовых линий. Однако геометрия магнитного поля совершенно отлична от геометрии электрического поля.


Рис. 1.21 :
Представление о силовых линиях тесно связано с понятием силовой трубки. Возьмем какой-либо произвольный замкнутый контур L и через каждую точку его проведём электрическую силовую линию (рис. ). Эти линии и образуют силовую трубку. Рассмотрим произвольное сечение трубки поверхностью S . Положительную нормаль проведём в ту же сторону, в какую направлены силовые линии. Пусть N — поток вектора E → через сечение S . Нетрудно видеть, что если внутри трубки нет электрических зарядов, то поток N остаётся одним и тем же по всей длине трубки. Для доказательства нужно взять другое поперечное сечение S ′ . По теореме Гаусса, поток электрического поля через замкнутую поверхность, ограниченную боковой поверхностью трубки и сечениями S , S ′ , равен нулю, так как внутри силовой трубки нет электрических зарядов. Поток через боковую поверхность равен нулю, так как вектор E → касается этой поверхности. Следовательно, поток через сечение S ′ численно равен N , но противоположен по знаку. Внешняя нормаль к замкнутой поверхности на этом сечении направлена противоположно n → . Если же направить нормаль в ту же сторону, то потоки через сечения S и S ′ совпадут и повеличине, и по знаку. В частности, если трубка бесконечно тонкая, а сечения S и S ′ нормальны к ней, то

E S = E ′ S ′ .

Получается полная аналогия с течением несжимаемой жидкости. В тех местах, где трубка тоньше, поле E → сильнее. В тех местах, где она шире, поле E → сильнее. Следовательно, по густоте силовых линий можно судить о напряженности электрического поля.

До изобретения компьютеров для экспериментального воспроизведения силовых линий брали стеклянный сосуд с плоским дном и наливали в него жидкость, не проводящую электрически ток, например, касторовое масло или глицерин. В жидкости равномерно размешивали истертые в порошок кристаллики гипса, асбеста или какие-либо другие продолговатые частицы. В жидкость погружали металлические электроды. При соединении с источниками электричества, электроды возбуждали электрическое поле. В этом поле частицы электризуются и, притягиваясь друг к другу разноименно наэлектризованными концами, располагаются в виде цепочек вдоль силовых линий. Картина силовых линий искажается течениями жидкости, вызываемыми силами, действующими на неё в неоднородном электрическом поле.

To Be Done Yet
Рис. 1.22 :
Лучшие результаты получаются по методу, применявшемуся Робертом В. Полем (1884-1976). На стеклянную пластинку наклеиваются электроды из станиоля, между которыми создается электрическое напряжение. Затем на пластинку насыпают, слегка постукивая по ней, продолговатые частички, например, кристаллики гипса. Они располагаются по ней вдоль силовых линий. На рис. ?? изображена полученная таким образом картина силовых линий между двумя разноименно заряженными кружками из станиоля.

▸ Задача 9.1

Записать уравнение силовых линий в произвольных ортогональных координатах.

▸ Задача 9.2

Записать уравнение силовых линий в сферических координатах.

Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий.

Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке.

Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя.

Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ().

Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями.

Эквипотенциальные линии являются замкнутыми сами на себя.

Силовые линии и эквипотенциальные линии пересекаются под прямым углом.

Р
ассмотрим эквипотенциальную поверхность:

(так как точки лежат на эквипотенциальной поверхности).

– скалярное произведение

Линии напряженности электростатического поля пронизывают эквипотенциальную поверхность под углом 90 0 , тогда угол между векторами
равен 90 градусам, а их скалярное произведение равно 0.

Уравнение эквипотенциальной линии

Рассмотрим силовую линию:

Н
апряженность электростатического поля направлена по касательной к силовой линии (см. определение силовой линии), также направлен и элемент пути, поэтому угол между этими двумя векторами равен нулю.

или

Уравнение силовой линии

Градиент потенциала

Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.

Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.

Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.

В определении градиента существенны два положения:

    Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.

    Направление таково, что скалярная функция в этом направлении возрастает.

Для декартовой системы координат:

Скорость изменения потенциала в направлении оси Х, Y, Z:

;
;

Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х , взятой с обратным знаком. Аналогично для осей Y и Z .

;
;
.

В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид.

Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии .

Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определитьмежду двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

При перемещении по этой поверхности на dl потенциал не изменится:

Отсюда следует, что проекция вектора на dl равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине.

Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Можно решить и обратную задачу, т.е. по известным значениям в каждой точке поля найти разность потенциаловмежду двумя произвольными точками поля. Для этого воспользуемся тем, что работа, совершаемая силами поля над зарядом q при перемещении его из точки 1 в точку 2, может быть, вычислена как:

С другой стороны работу можно представить в виде:

, тогда

Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. Для обхода по замкнутому контуру получим:

т.е. пришли к известной нам теореме о циркуляции вектора напряженности: циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю.

Поле, обладающее этим свойством, называется потенциальным.

Из обращения в нуль циркуляции вектора следует, что линии электростатического поля не могут быть замкнутыми:они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность (рис. 3.4).

Это соотношение верно только для электростатического поля. Впоследствии мы с вами выясним, что поле движущихся зарядов не является потенциальным, и для него это соотношение не выполняется.