Нефрон состоит из. Нефрон – структурно-функциональная единица почки. Функции нефрона у человека

19576 0

Канальцевую часть нефрона принято делить на четыре отдела:

1) главный (проксимальный);

2) тонкий сегмент петли Генле;

3) дистальный;

4) собирательные трубки .

Главный (проксимальный) отдел состоит из извилистой и прямой частей. Клетки извитой части имеют более сложное строение, чем клетки других отделов нефрона. Это высокие (до 8 мкм) клетки со щеточной каемкой, внутриклеточными мембранами, большим числом правильно ориентированных митохондрий, хорошо развитыми пластинчатым комплексом и эндоплазматической сетью, лизосомами и другими ультраструктурами (рис. 1). В их цитоплазме много аминокислот, основных и кислых белков, полисахаридов и активных SH-групп, высокоактивных дегидрогеназ, диафораз, гидролаз [Серов В. В., Уфимцева А. Г., 1977; Jakobsen N., Jorgensen F. 1975].

Рис. 1. Схема ультраструктуры клеток канальцев различных отделов нефрона . 1 - клетка извитой части главного отдела; 2 - клетка прямой части главного отдела; 3 - клетка тонкого сегмента петли Генле; 4 - клетка прямой (восходящей) части дистального отдела; 5 - клетка извитой части дистального отдела; 6 - "темная" клетка связующего отдела и собирательной трубки; 7 - «светлая» клетка связующего отдела и собирательной трубки.

Клетки прямой (нисходящей) части главного отдела в основном имеют то же строение, что и клетки извитой части, но пальцевидные выросты щеточной каемки более грубые и короткие, внутриклеточных мембран и митохондрий меньше, они не так строго ориентированы, значительно меньше цитоплазматических гранул.

Щеточная каемка состоит из многочисленных пальцевидных выростов цитоплазмы, покрытых клеточной мембраной и гликокаликсом. Их число на поверхности клетки достигает 6500, что увеличивает рабочую площадь каждой клетки в 40 раз . Эти сведения дают представление о поверхности, на которой совершается обмен в проксимальном отделе канальцев. В щеточной каемке доказана активность щелочной фосфатазы, АТФ-азы, 5-нуклеотидазы, аминопептидазы и ряда других ферментов . Мембрана щеточной каемки содержит натрийзависимую транспортную систему. Считают, что гликокаликс, покрывающий микроворсинки щеточной каемки, проницаем для малых молекул. Большие молекулы поступают в каналец с помощью пиноцитоза, который осуществляется благодаря кратерообразным углублениям в щеточной каемке .

Внутриклеточные мембраны образованы не только изгибами БМ клетки, но и латеральными мембранами соседних клеток, которые как бы перекрывают друг друга. Внутриклеточные мембраны являются по существу и межклеточными, что служит активному транспорту жидкости. При этом главное значение в транспорте придается базальному лабиринту, образованному выпячиваниями БМ внутрь клетки; он рассматривается как «единое диффузионное пространство» .

Многочисленные митохондрии расположены в базальной части между внутриклеточными мембранами, что и создает впечатление их правильной ориентации. Каждая митохондрия, таким образом, заключена в камере, образованной складками внутри- и межклеточных мембран. Это позволяет продуктам энзиматических процессов, развивающихся в митохондриях, легко выходить за пределы клетки. Энергия, вырабатываемая в митохондриях, служит как транспорту вещества, так и секреции, осуществляемой с помощью гранулярной эндоплазматической сети и пластинчатого комплекса, который претерпевает циклические изменения в различные фазы диуреза.

Ультраструктура и ферментохимия клеток канальцев главного отдела объясняют его сложную и дифференцированную функцию. Щеточная каемка, как и лабиринт внутриклеточных мембран, является своеобразным приспособлением для колоссальной по объему функции реабсорбции, выполняемой этими клетками. Ферментная транспортная система щеточной каемки, зависимая от натрия, обеспечивает реабсорбцию глюкозы, аминокислот, фосфатов [Наточин Ю. В., 1974; Kinne R., 1976]. С внутриклеточными мембранами, особенно с базальным лабиринтом, связывают реабсорбцию воды, глюкозы, аминокислот, фосфатов и ряда других веществ , которую выполняет натрийнезависимая транспортная система мембран лабиринта.

Особый интерес представляет вопрос о канальцевой реабсорбции белка. Считают доказанным, что весь фильтрирующийся в клубочках белок реабсорбируется в проксимальном отделе канальцев, чем объясняется его отсутствие в моче здорового человека. Это положение основывается на многих исследованиях, выполненных, в частности, с помощью электронного микроскопа. Так, транспорт белка в клетке проксимального канальца изучен в опытах с микроинъекцией меченного ¹³¹I альбумина непосредственно в каналец крысы с последующей электронно-микроскопической радиографией этого канальца .

Альбумин находят прежде всего в инвагинатах мембраны щеточной каемки, затем в пиноцитозных пузырьках, которые сливаются в вакуоли. Белок с вакуолей появляется затем в лизосомах и пластинчатом комплексе (рис. 2) и расщепляется гидролитическими ферментами . Вероятнее всего, «основные усилия» высокой дегидрогеназной, диафоразной и гидролазной активности в проксимальном отделе канальцев направлены на реабсорбцию белка.

Рис. 2. Схема реабсорбции белка клеткой канальцев главного отдела .

I - микропиноцитоз у основания щеточной каемки; Mvb -вакуоли, содержащие белок ферритин;

II - заполненные ферритином вакуоли (а) перемещаются к базальной части клетки; б - лизосома; в - слияние лизосомы с вакуолью; г - лизосомы с инкорпорированным белком; АГ - пластинчатый комплекс с цистернами, содержащими КФ (окрашены в черный цвет);

III - выделение через БМ низкомолекулярных фрагментов реабсорбированного белка, образовавшихся после «переваривания» в лизосомах (показано двойными стрелками).

В связи с этими данными становятся понятными механизмы "повреждения" канальцев главного отдела. При НС любого генеза, протеинурических состояниях изменения эпителия канальцев проксимального отдела в виде белковой дистрофии (гиалиново-капельной, вакуольной) отражают резорбционную недостаточность канальцев в условиях повышенной порозности гломерулярного фильтра для белка [Давыдовский И. В., 1958; Серов В. В., 1968]. Нет необходимости видеть в изменениях канальцев при НС первично-дистрофические процессы.

В равной мере нельзя рассматривать и протеинурию как результат только повышенной порозности гломерулярного фильтра. Протеинурия при нефрозах отражает как первичное повреждение фильтра почки, так и вторичное истощение (блокаду) ферментных систем канальцев, осуществляющих реабсорбцию белка.

При ряде инфекций и интоксикаций блокада ферментных систем клеток канальцев главного отдела может наступить остро, поскольку эти канальцы первыми подвергаются действию токсинов и ядов при их элиминации почками. Активация гидролаз лизосомного аппарата клетки завершает в ряде случаев дистрофический процесс развитием некроза клетки (острый нефроз). В свете приведенных данных становится понятной патология «выпадения» ферментов канальцев почек наследственного порядка (так называемые наследственные канальцевые ферментопатии). Определенная роль в повреждении канальцев (тубулолизис) отводится антителам, реагирующим с антигеном тубулярной базальной мембраны и щеточной каемки.

Клетки тонкого сегмента петли Генле характеризуются той особенностью, что внутриклеточные мембраны и пластинки пересекают тело клетки на всю ее высоту, образуя в цитоплазме щели шириной до 7 нм . Создается впечатление, что цитоплазма состоит из отдельных сегментов, причем часть сегментов одной клетки как бы вклинивается между сегментами соседней клетки. Ферментохимия тонкого сегмента отражает функциональную особенность этого отдела нефрона, который как дополнительное приспособление уменьшает до минимума фильтрационный заряд воды и обеспечивает ее «пассивную» резорбцию [Уфимцева А. Г., 1963].

Соподчиненная работа тонкого сегмента петли Генле, канальцев прямой части дистального отдела, собирательных трубок и прямых сосудов пирамид обеспечивает осмотическое концентрирование мочи на основе противоточного умножителя . Новые представления о пространственной организации противоточно-множительной системы (рис. 3) убеждают в том, что концентрирующая деятельность почки обеспечивается не только структурно-функциональной специализацией различных отделов нефрона, но и высокоспециализированным взаиморасположением канальцевых структур и сосудов почки [Перов Ю. Л., 1975; Kriz W., Lever А., 1969].

Рис. 3. Схема расположения структур противоточно-множительной системы в мозговой веществе почки . 1 - артериальный прямой сосуд; 2 - венозный прямой сосуд; 3 - тонкий сегмент петли Генле; 4 - прямая часть дистального отдела; СТ - собирательные трубки; К - капилляры.

Дистальный отдел канальцев состоит из прямой (восходящей) и извитой частей. Клетки дистального отдела ультраструктурно напоминают клетки проксимального отдела. Они богаты сигарообразными митохондриями, заполняющими пространства между внутриклеточными мембранами, а также цитоплазматическими вакуолями и гранулами вокруг ядра, расположенного апикально, но лишены щеточной каемки. Эпителий дистального отдела богат аминокислотами, основными и кислыми белками, РНК, полисахаридами и реактивными SH-группами; для него характерна высокая активность гидролитических, гликолитических ферментов и ферментов цикла Кребса.

Сложность устройства клеток дистальных канальцев, обилие митохондрий, внутриклеточных мембран и пластического материала, высокая ферментативная активность свидетельствуют о сложности их функции - факультативной реабсорбции, направленной на поддержание постоянства физико-химических условий внутренней среды. Факультативная реабсорбция регулируется в основном гормонами задней доли гипофиза, надпочечников и ЮГА почки.

Местом приложения действия антидиуретического гормона гипофиза (АДГ), в почке, «гистохимическим плацдармом» этой регуляции служит система гиалуроновая кислота - гиалуронидаза, заложенная в пирамидах, главным образом в их сосочках. Альдостерон, по некоторым данным, и кортизон влияют на уровень дистальной реабсорбции прямым включением в ферментную систему клетки, обеспечивающую перенос ионов натрия из просвета канальца в интерстиции почки. Особое значение в этом процессе принадлежит эпителию прямой части дистального отдела, причем дистальный эффект действия альдостерона опосредован секрецией ренина, закрепленной за клетками ЮГА. Ангиотензин, образующийся под действием ренина, не только стимулирует секрецию альдостерона, но и участвует в дистальной реабсорбции натрия.

В извитой части дистального отдела канальца, там, где он подходит к полюсу сосудистого клубочка, различают macula densa . Эпителиальные клетки в этой части становятся цилиндрическими, их ядра - гиперхромными; они располагаются полисадообразно, причем непрерывной базальной мембраны здесь нет. Клетки macula densa имеют тесные контакты с гранулированными эпителиоидными клетками и lacis-клетками ЮГА, что обеспечивает влияние химического состава мочи дистального канальца на гломерулярный кровоток и, наоборот гормональные влияния ЮГА на macula densa.

Со структурно-функциональной особенностью канальцев дистального отдела, их повышенной чувствительностью к кислородному голоданию связано до некоторой степени их избирательное поражение при острых гемодинамических повреждениях почек, в патогенезе которых основную роль играют глубокие нарушения почечного кровообращения с развитием аноксии тубулярного аппарата. В условиях острой аноксии клетки дистальных канальцев подвергаются воздействию содержащей токсические продукты кислой мочи, что ведет к их поражению вплоть до некроза. При хронической аноксии клетки дистального канальца чаще, чем проксимального, подвергаются атрофии.

Собирательные трубки , выстланные кубическим, а в дистальных отделах цилиндрическим эпителием (светлые и темные клетки) с хорошо развитым базальным лабиринтом, высокопроникаемы для воды. С темными клетками связывают секрецию ионов водорода, в них обнаружена высокая активность карбоангидразы [Зуфаров К. А. и др., 1974]. Пассивный транспорт воды в собирательных трубках обеспечивается особенностями и функции противоточно-множительной системы .

Заканчивая описание гистофизиологии нефрона, следует остановиться на его структурно-функциональном различии в разных отделах почки. На этом основании выделяют кортикальные и юкстамедуллярные нефроны, различающиеся строением клубочков и канальцев, а также своеобразием функции; различно и кровоснабжение этих нефронов.

Клиническая нефрология

под ред. Е.М. Тареева

Человеческий организм – разумный и достаточно сбалансированный механизм.

Среди всех известных науке инфекционных заболеваний, инфекционному мононуклеозу отводится особое место...

О заболевании, которое официальная медицина называет «стенокардией», миру известно уже достаточно давно.

Свинкой (научное название – эпидемический паротит) называют инфекционное заболевание...

Печеночная колика является типичным проявлением желчнокаменной болезни.

Отек головного мозга – это последствия чрезмерных нагрузок организма.

В мире не существует людей, которые ни разу не болели ОРВИ (острые респираторные вирусные заболевания)...

Здоровый организм человека способен усвоить столько солей, получаемых с водой и едой...

Бурсит коленного сустава является широко распространённым заболеванием среди спортсменов...

Почки строение нефрона

Нефрон как структурная единица почки: типы и строение, нарушение функций и восстановление

Нефроном является структурная единица почки, отвечающая за формирование урины. Работая 24 часа, органы пропускают до 1700 л плазмы, образуя немногим больше литра урины.

Нефрон

От работы нефрона, которым является структурно-функциональная единица почки, зависит, насколько успешно осуществляется поддержание баланса, выводятся отработанные продукты. За сутки два миллионов нефронов почек, столько, сколько их в организме, вырабатывают 170 л первичной мочи, сгущают до суточного количества, доходящего до полутора литров. Суммарная площадь выделительной поверхности нефронов составляет почти 8 м2, что в 3 раза превышает площадь кожи.

У выделительной системы высокий резерв прочности. Создается он благодаря тому, что одновременно работает лишь третья часть нефронов, что позволяет выжить при удалении почки.

Очищается в почках артериальная кровь, идущая по приносящей артериоле. Выходит очищенная кровь по выходящей артериоле. Поперечник приносящей артериолы больше, чем у артериолы, за счет чего создается перепад давления.

Отделы нефрона почки такие:

  • Начинаются в корковом слое почки капсулой Боумена, которая располагается над клубочком капилляров артериолы.
  • Капсула нефрона почки сообщается с проксимальным (ближайшим) канальцем, направляемым в мозговое вещество - это и является ответом на вопрос в какой части почки находятся капсулы нефронов.
  • Каналец переходит в петлю Генле – сначала в проксимальный отрезок, затем – дистальный.
  • Окончанием нефрона принято считать место, где начинается собирательная трубочка, куда поступает вторичная моча из множества нефронов.

Схема нефрона

Капсула

Клетки подоциты, окружают клубочек капилляров подобием шапочки. Образование называют почечным тельцем. В его поры проникает жидкость, которая оказывается в пространстве Боумена. Здесь собирается инфильтрат – продукт фильтрации кровяной плазмы.

Проксимальный каналец

Этот вид состоит из клеток, покрытых снаружи базальной мембраной. Внутренняя часть эпителия снабжена выростами – микроворсинками, как щеточка, выстилающими каналец по всей длине.

Снаружи находится базальная мембрана, собранная в многочисленные складки, которые при наполнении канальцев распрямляются. Каналец при этом приобретает округлую форму в поперечнике, а эпителий уплощается. При отсутствии жидкости поперечник канальца становится узким, клетки приобретают призматический вид.

К функциям относится реабсорбция:

  • Na – 85%;
  • ионов Ca, Mg, K, Cl;
  • солей - фосфатов, сульфатов, бикарбоната;
  • соединений - белков, креатинина, витаминов, глюкозы.

Из канальца реабсорбенты попадают в кровеносные сосуды, которые густой сетью оплетают каналец. На этом участке в полость канальца всасывается желчная кислота, поглощаются щавелевая, парааминогиппуровая, мочевая кислоты, происходит всасывание адреналина, ацетилхолина, тиамина, гистамина, транспортируются лекарственные средства – пенициллина, фуросемида, атропина и др.

Здесь происходит расщепление гормонов, идущих из фильтрата, при помощи ферментов каймы эпителия. Инсулин, гастрин, пролактин, брадикинин разрушаются, их концентрация в плазме понижается.

После вхождения в мозговой луч проксимальный каналец переходит в начальный отдел петли Генле. Каналец переходит в нисходящий отрезок петли, которая спускается в мозговое вещество. Затем восходящая часть поднимается в корковое вещество, сближаясь с капсулой Боумена.

Внутреннее устройство петли сначала не отличается от строения проксимального канальца. Затем просвет петли сужается, через него проходит фильтрация Na в межтканевую жидкость, которая становится гипертонической. Это имеет значение для работы собирательных трубочек: благодаря высокой концентрации соли в омывающей жидкости, в них происходит всасывание воды. Восходящий отдел расширяется, переходит в дистальный каналец.

Петля Гентле

Дистальный каналец

Этот участок уже, короче, состоит из низких эпителиальных клеток. Ворсинки внутри канала отсутствуют, с наружной стороны хорошо выражена складчатость базальной мембраны. Здесь идет реабсорбция натрия, продолжается реабсорбция воды, секреция в просвет канальца ионов водорода, аммиака.

На видео схема строения почки и нефрона:

Виды нефронов

По особенностям строения, функциональному назначению различают такие типы нефронов, которые функционируют в почке:

  • корковые - суперфициальные, интракортикальные;
  • юкстамедуллярные.

Корковые

В корковом слое находятся две разновидности нефронов. Суперфициальные составляют около 1% от общего числа нефронов. Отличаются поверхностным расположением клубочков в коре, самой короткую петлей Генле, небольшим объемом фильтрации.

Количество интракортикальных - более 80% нефронов почки, располагаются в середине коркового слоя, играют основную роль в фильтрации урины. Кровь в клубочке интракортикального нефрона проходит под давлением, так как приводящая артериола значительно шире выводящей.

Юкстамедуллярные

Юкстамедуллярные - малочисленная часть нефронов почки. Их число не превышает 20% от числа нефронов. Капсула находится на границе коркового и мозгового слоя, остальная его часть расположена в мозговом слое, петля Генле спускается почти к самой почечной лоханке.

Этот вид нефронов имеет определяющее значение в способности концентрировать мочу. У особенности юкстамедуллярного нефрона относится то, что выводящая артериола этого вида нефрона имеет тот же диаметр, что и приносящая, а петля Генле самая длинная из всех.

Выносящие артериолы образуют петли, которые движутся в мозговой слой параллельно петле Генле, впадают в венозную сеть.

Функции

В функции нефрона почки входит:

  • концентрирование урины;
  • регуляция тонуса сосудов;
  • контроль над давлением крови.

Моча образуется в несколько этапов:

  • в клубочках фильтруется плазма крови, поступающая по артериоле, образуется первичная моча;
  • реабсорбция из фильтрата полезных веществ;
  • концентрация мочи.

Корковые нефроны

Основная функция - образование урины, реабсорбция полезных соединений, белков, аминокислот, глюкозы, гормонов, минералов. Корковые нефроны участвуют в процессах фильтрации, реабсорбции за счет особенностей кровоснабжения, а реабсорбированные соединения сразу проникают в кровь через близко расположенную капиллярную сеть выносящей артериолы.

Юкстамедуллярные нефроны

Основная работа юкстамедуллярного нефрона заключается в концентрировании мочи, что возможно, благодаря особенностям движения крови в выходящей артериоле. Артериола не переходит в капиллярную сеть, а переходит в венулы, впадающие в вены.

Нефроны этого вида участвуют в формировании структурного образования, регулирующего кровяное давление. Этот комплекс секретирует ренин, необходимый для выработки ангиотензина 2 – сосудосуживающего соединения.

Нарушение работы нефрона приводит к изменениям, которые отражаются на всех системах организма.

К расстройствам, вызванным дисфункцией нефронов, относятся нарушения:

  • кислотности;
  • водно-солевого баланса;
  • обмена веществ.

Заболевания, которые вызываются нарушением транспортных функций нефронов, называются тубулопатиями, среди которых различают:

  • первичные тубулопатии – врожденные дисфункции;
  • вторичные – приобретенные нарушения транспортной функции.

Причинами появления вторичной тубулопатии служит повреждение нефрона, вызванное действием токсинов, в том числе лекарств, злокачественных опухолей, тяжелых металлов, миеломы.

По месту локализации тубулопатии:

  • проксимальные – повреждение проксимальных канальцев;
  • дистальные – повреждение функций дистальных извитых канальцев.

Виды тубулопатии

Проксимальная тубулопатия

Повреждение проксимальных участков нефрона приводит к формированию:

  • фосфатурии;
  • гипераминоацидурии;
  • почечного ацидоза;
  • глюкозурии.

Нарушение реабсорбции фосфатов приводит к развитию рахитоподобного строения костей – состояния, устойчивого к лечению витамином D. Патологию связывают с отсутствием белка-переносчика фосфата, нехваткой рецепторов, связывающих кальцитриол.

Почечная глюкозурия связана со снижением способности всасывать глюкозу. Гипераминоацидурия – это явления, при котором нарушается транспортная функция аминокислот в канальцах. В зависимости от вида аминокислоты, патология приводит к различным системным заболеваниям.

Так, если нарушена реабсорбция цистина, развивается заболевание цистинурия – аутосомно-рецессивное заболевание. Болезнь проявляется отставанием в развитии, почечной коликой. В моче при цистинурии возможно появление цистиновых камней, которые легко растворяются в щелочной среде.

Проксимальный канальцевый ацидоз вызывается неспособностью поглощать бикарбонат, из-за чего он выделяется с мочой, а в крови его концентрация понижается, а ионов Cl, напротив, повышается. Это приводит к метаболическому ацидозу, при этом происходит усиление выведения ионов K.

Патологии дистальных отделов проявляются почечным водным диабетом, псевдогипоальдостеронизмом, канальцевым ацидозом. Почечный диабет - повреждение наследственное. Врожденное нарушение вызвано отсутствием реакции клеток дистальных канальцев на антидиуретический гормон. Отсутствие реакции приводит к нарушению способности к концентрации урины. У больного развивается полиурия, в день может выделяться до 30 л мочи.

При комбинированных нарушениях развиваются сложные патологии, одна из которых называется синдромом де Тони-Дебре-Фанкони. При этом нарушена реабсорбция фосфатов, бикарбонатов, не всасываются аминокислоты, глюкоза. Синдром проявляется задержкой развития, остеопорозом, патологией строения костей, ацидозом.

gidmed.com

Отделы нефрона, главной составляющей почки. Его строение, функции и виды

Почки осуществляют большое количество полезной функциональной работы в организме, без которой нельзя представить нашу жизнь. Главная из них – это ликвидация из организма лишней воды и заключительных продуктов метаболизма. Происходит это в мельчайших структурах почки – нефронах.

Немного об анатомии почки

Для того, чтобы перейти к мельчайшим единицам почки, нужно разобрать общее ее строение. Если рассмотреть почку в разрезе, то по своей форме она напоминает боб или фасоль.

Строение почки

Человек рождается с двумя почками, но, правда, бывают исключения, когда присутствует всего одна почка. Расположены они у задней стенки брюшины, на уровне I и II поясничных позвонков.

Весит каждая почка примерно 110-170 грамм, ее длина составляет 10-15 см, ширина - 5-9 см, а толщина – 2-4 см.

Почка имеет заднюю и переднюю поверхности. Задняя поверхность располагается в почечном ложе. Это напоминает большую и мягкую кровать, которая выстелена поясничной мышцей. А вот передняя поверхность соприкасается с другими соседними органами.

Левая почка контактирует с левым надпочечником, ободочной кишкой, желудком и поджелудочной железой, а правая сообщается с правым надпочечником, толстым и тонким кишечником.

Ведущие структурные компоненты почки:

  • Почечная капсула – это ее оболочка. Она включает в себя три слоя. Фиброзная капсула почки - по своей толщине довольно неплотная, имеет очень прочное строение. Защищает почку от различных повреждающих воздействий. Жировая капсула – слой жировой ткани, которая по своей структуре нежная, мягкая и рыхлая. Предохраняет почку от сотрясений и ударов. Наружная капсула – почечная фасция. Состоит из тонкой соединительной ткани.
  • Паренхима почки – ткань, которая состоит из нескольких слоев: коркового и мозгового вещества. Последнее складывается из 6-14 почечных пирамид. А вот сами пирамидки формируются из собирательных канальцев. В корковом веществе располагаются нефроны. Эти слои четко различимы по цвету.
  • Лоханка почки – углубление, похожее на воронку, которое получает мочу от нефронов. Состоит она из чашечек разного калибра. Самые маленькие – это чашечки I порядка, в них проникает моча из паренхимы. Соединяясь, маленькие чашечки, образуют более крупные – чашечки II порядка. Насчитывают таких чашечек в почке около трех. При слиянии этих трех чашечек образуется почечная лоханка.
  • Почечная артерия – крупный кровеносный сосуд, ответвляясь от аорты, он доставляет зашлакованную кровь в почку. Примерно 25% всей крови поступает ежеминутно в почки для очищения. В течение дня почечная артерия снабжает почку примерно 200 литрами крови.
  • Почечная вена – по ней уже очищенная кровь из почки попадает в полую вену.

Функции почек

  • ренин – регулирует артериальное давление, изменяя уровни калия и объем жидкости в организме
  • брадикинин – расширяет кровеносные сосуды, следовательно, он снижает артериальное давление
  • простагландины – также расширяют сосуды крови
  • урокиназу – вызывает лизис тромбов, которые могут образовываться у здоровых людей в любой части кровеносного русла
  • эритропоэтин – этот фермент регулирует образование красных кровяных клеток - эритроцитов
  • кальцитриол – активная форма витамина Д, он регулирует обмен кальция и фосфата в организме человека

Что же такое нефрон

Капсула нефрона

Это главная составляющая наших почек. Они не только образуют структуру почки, но и выполняют некоторые функции. В каждой почке их количество достигает одного миллиона, точное значение колеблется от 800 тысяч до 1,2 миллиона.

Современные ученые пришли к выводу, что при нормальных условиях не все нефроны выполняют свои функции, только 35% из них работает. Это связано с резервной функцией организма, чтобы на случай какой-то экстренной ситуации почки продолжали функционировать и очищать наш организм.

Количество нефронов меняется в зависимости от возраста, а именно при старении человек теряет их некоторое количество. Как показывают исследования, то примерно 1% каждый год. Начинается этот процесс после 40 лет, а возникает из-за отсутствия способности регенерации у нефронов.

По подсчетам к 80 годам человек теряет около 40% нефронов, но это незначительно влияет на функции почек. Но вот при потере более 75%, например, при алкоголизме, травмах, хронических заболеваниях почек может развиться серьезное заболевание – почечная недостаточность.

Длина нефрона колеблется от 2 до 5 см. Если вытянуть все нефроны в одну линию, то их длина составит примерно 100 км!

Из чего состоит нефрон

Каждый нефрон покрыт небольшой капсулой, которая похожа на двустенную чашу (капсула Шумлянского – Боумена, названа в честь русского и английского ученых, которые ее открыли и изучили). Внутренняя стенка этой капсулы является фильтром, который постоянно очищает нашу кровь.

Строение нефрона

Состоит этот фильтр из базальной мембраны и 2 слоев покровных (эпителиальных) клеток. В этой мембране тоже 2 слоя покровных клеток, причем наружный слой – это клетки сосудов, а внешний – клетки мочевого пространства.

Все эти слои имеют внутри себя специальные поры. Начиная от внешних слоев базальной мембраны, диаметр этих пор уменьшается. Так и создается фильтрующий аппарат.

Между ее стенками возникает щелевидное пространство, именно оттуда берут свое начало почечные канальцы. Внутри капсулы находится капиллярный клубочек, он образуется из-за многочисленных ветвлений почечной артерии.

Капиллярный клубочек называют еще мальпигиевым тельцем. Открыл их итальянский ученый М. Мальпиги в 17 веке. Погружен он в гелеобразное вещество, которое выделяется специальными клетками – мезаглиоцитами. А самое вещество именуется, как мезангий.

Это вещество защищает капилляры от непреднамеренных разрывов из-за высокого давления внутри них. А если все-таки произошло повреждение, то в гелеобразном веществе находятся необходимые материалы, которые заделают эти повреждения.

От токсических веществ микроорганизмов также защитит вещество, выделяемое мезаглиоцитами. Оно просто их сразу же уничтожит. Более того этими специфичными клетками вырабатывается особый почечный гормон.

Каналец, выходящий из капсулы, именуется извитым канальцем I порядка. Он правда не ровный, а извитой. Проходя по мозговому слою почки, этот каналец формирует петлю Генле и вновь поворачивается в сторону коркового слоя. На своем пути извитой каналец делает несколько витков и в обязательном порядке соприкасается с основанием клубочка.

В корковом слое образуется каналец II порядка, он вливается в собирательную трубочку. Небольшое количество собирательных трубочек, соединяясь вместе, объединяются в выводные протоки, переходящие в почечную лоханку. Именно эти трубочки, двигаясь к мозговому веществу, формируют мозговые лучи.

Типы нефронов

Выделяют эти типы из-за специфичности местонахождения клубочков в коре почек, структуры канальцев и особенностей состава и локализации кровеносных сосудов. К ним относят:

Корковый нефрон

  • корковые – занимают примерно 85% от общего числа всех нефронов
  • юкстамедуллярные – 15% из всего количества

Корковые нефроны самые многочисленные и тоже имеют внутри себя классификацию:

  1. Суперфициальные или их еще называют поверхностными. Главная особенность их в расположении почечных тел. Они находятся во внешнем слое коркового вещества почки. Их количество примерно 25%.
  2. Интракортикальные. У них мальпигиевые тельца располагаются в средней части коркового вещества. Преобладают по численности - 60% всех нефронов.

Корковые нефроны имеют сравнительно укороченную петлю Генле. Из-за своих маленьких размеров она способна проникнуть только во внешнюю часть мозгового вещества почек.

Образование первичной мочи - вот главная функция таких нефронов.

У юкстамедуллярных нефронов мальпигиевые тельца обнаруживаются в основании коркового вещества, находятся практически на линии начала мозгового слоя. Петля Генле у них более продолжительна, чем у корковых, она инфильтрируется настолько глубоко в мозговой слой, что достигает вершин пирамид.

Эти нефроны в мозговом веществе формируют высокое осмотическое давление, которое необходимо, чтобы происходило сгущение (увеличение концентрации), и сокращение объемов конечной мочи.

Функция нефронов

Функция их заключается в образовании мочи. Процесс этот стадийный и состоит из 3 фаз:

  • фильтрация
  • реабсорбция
  • секреция

В начальную фазу формируется первичная моча. В капиллярных клубочках нефрона плазма крови очищается (ультрафильтруется). Совершается очищение плазмы из-за разности давления в клубочке (65 мм рт. ст.) и в оболочке нефрона (45 мм рт. ст.).

Около 200 л первичной мочи образуется в организме человека за сутки. Эта моча имеет схожий с плазмой крови состав.

Во вторую фазу – реабсорбции происходит повторное поглощение нужных для организма веществ из первичной мочи. В эти вещества входят: витамины, вода, различные полезные соли, растворенные аминокислоты и глюкоза. Происходит это в проксимальных извитых канальцах. Внутри которых находится большое количество ворсинок, они увеличивают площадь и скорость всасывания.

Из 150 л первичной мочи образуется всего 2 л вторичной мочи. В ней отсутствуют важные питательные вещества для организма, но сильно увеличивается концентрация токсичных веществ: мочевины, мочевой кислоты.

Третья фаза характеризуется выделением вредных веществ в мочу, которые не прошли почечный фильтр: антибиотики, различные красители, лекарственные средства, яды.

Структура нефрона очень сложная, несмотря на его маленькие размеры. Удивительно, но практически каждая составляющая нефрона выполняет свою функцию.

Ноя 7, 2016Виолетта Лекарь

vselekari.com

Нефрон – структурно-функциональная единица почки

Сложное строение почек обеспечивает выполнение всех их функций. Основной структурной и функциональной единицей почки является особое образование - нефрон. Он состоит из клубочков, канальцев, трубочек. Всего у человека в почках от 800 000 до 1 500 000 нефронов. Постоянно задействованы в работе чуть больше трети, остальные обеспечивают резерв для экстренных случаев, а также включаются в процесс очистки крови взамен погибших.

Как устроен

Благодаря своему строению данная структурно-функциональная единица почки может обеспечивать весь процесс переработки крови и образования мочи. Именно на уровне нефрона и обеспечивается выполнение почкой основных ее функций:

  • фильтрация крови и выведение продуктов распада из организма;
  • поддержание водного баланса.

Располагается данная структура в корковом веществе почки. Отсюда он сначала спускается в мозговое вещество, потом снова возвращается в корковое и переходит в собирательные трубочки. Они сливаются в общие протоки, выходящие в почечную лоханку, и дают начало мочеточникам, по которым моча выводится из организма.

Нефрон начинается почечным (мальпигиевым) тельцем, которое состоит из капсулы и расположенного внутри нее клубочка, состоящего из капилляров. Капсула представляет собой чашу, ее называют по фамилии ученого – капсула Шумлянского-Боумена. Состоит капсула нефрона из двух слоев, из ее полости выходит мочевой каналец. Поначалу он имеет извитую геометрию, а на границе коркового и мозгового слоев почек он выпрямляется. Далее образует петлю Генле и снова возвращается в почечный корковый слой, где снова приобретает извитой контур. В его структуру входят извитые канальцы первого и второго порядка. Протяженность каждого из них 2-5 см, а с учетом количества общая длина канальцев составит около 100 км. Благодаря этому становится возможной та огромная работа, которую проделывают почки. Строение нефрона позволяет фильтровать кровь и поддерживать необходимый уровень жидкости в организме.

Составляющие нефрона

  • Капсула;
  • Клубочек;
  • Извитые канальцы первого и второго порядка;
  • Восходящая и нисходящая части петли Генле;
  • Собирательные трубочки.

Зачем нам так много нефронов

Нефрон почки имеет очень небольшие размеры, но количество их велико, это позволяет почкам качественно справляться со своими задачами даже в трудных условиях. Именно благодаря такой особенности человек может совершенно нормально жить при потере одной почки.

Современные исследования показывают, что непосредственно заняты «делом» лишь 35% единиц, остальные «отдыхают». Зачем организму такой резерв?

Во-первых, может возникнуть экстренная ситуация, которая приведет к гибели части единиц. Тогда их функции возьмут на себя оставшиеся структуры. Такая ситуация возможна при заболеваниях или травмах.

Во-вторых, их потеря происходит у нас постоянно. С возрастом часть из них погибает в силу старения. До 40 лет гибели нефронов у человека со здоровыми почками не происходит. Далее около 1% этих структурных единиц мы теряем каждый год. Регенерироваться они не могут, получается, что к 80 годам даже при благоприятном состоянии здоровья в человеческом организме их функционирует примерно лишь 60%. Эти цифры не критичны, и позволяют почкам справляться со своими функциями, в одних случаях полностью, в других могут быть небольшие отклонения. Угроза почечной недостаточности подстерегает нас, когда происходит потеря 75% или более. Оставшегося количества недостаточно для обеспечения нормальной фильтрации крови.

К таким серьезным потерям может привести алкоголизм, острые и хронические инфекции, травмы спины или живота, вызывающие повреждение почек.

Разновидности

Принято выделять различные типы нефронов в зависимости от их особенностей и расположения клубочков. Большинство структурных единиц – корковые, их примерно 85%, остальные 15% юкстамедуллярные.

Корковые подразделяются на суперфициальные (поверхностные) и интракортикальные. Основная особенность поверхностных единиц – расположение почечного тельца во внешней части коркового вещества, то есть ближе к поверхности. У интракортикальных нефронов почечные тельца находятся ближе к середине коркового слоя почки. У юкстамедуллярных мальпигиевые тельца глубоко в корковом слое, практически на начале мозговой ткани почки.

Все виды нефронов имеют свои функции, связанные с особенностями строения. Так, у корковых достаточно короткая петля Генле, которая может проникнуть всего лишь во внешнюю часть почечного мозгового вещества. Функция корковых нефронов – образование первичной мочи. Именно поэтому их так много, ведь количество первичной мочи примерно в десять раз больше, чем количество выделяемой человеком.

Юкстамедуллярные имеют более продолжительную петлю Генле и способны проникнуть глубоко в мозговой слой. Они оказывают влияние на уровень осмотического давления, которое регулирует концентрацию конечной мочи и ее количество.

Как работают нефроны

Каждый нефрон состоит из нескольких структур, слаженная работа которых обеспечивает выполнение их функций. Процессы в почках идут постоянно, их можно разделить на три фазы:

  1. фильтрация;
  2. реабсорбция;
  3. секреция.

Итогом является моча, которая выделяется в мочевой пузырь и выводится из организма.

Механизм работы основан на процессах фильтрации. На первой стадии образуется первичная моча. Это происходит путем фильтрования плазмы крови в клубочке. Данный процесс возможен из-за разницы давления в оболочке и в клубочке. Кровь поступает в клубочки и фильтруется там через особую мембрану. Продукт фильтрации, то есть первичная моча, поступает в капсулу. Первичная моча по своему составу похожа на плазму крови, а процесс можно назвать предварительной очисткой. Она состоит из большого количества воды, в ней содержаться глюкоза, избыток солей, креатинин, аминокислоты и еще некоторые низкомолекулярные соединения. Часть из них останется в организме, часть будет удалена.

Если учесть работу всех активных нефронов почек, то скорость фильтрации составляет 125 мл за минуту. Работают они постоянно, без перерывов, поэтому в течение суток через них проходит огромное количество плазмы, в результате чего образуется 150- 200 литров первичной мочи.

Вторая фаза – реабсорбция. Первичная моча подвергается дальнейшей фильтрации. Это необходимо для возвращения в организм содержащихся в ней нужных и полезных веществ:

  • воды;
  • солей;
  • аминокислот;
  • глюкозы.

Главную роль на этой стадии играют проксимальные извитые канальцы. Внутри них есть ворсинки, которые значительно увеличивают площадь всасывания, а соответственно и его скорость. Первичная моча проходит через канальцы, в результате большая часть жидкости обратно возвращается в кровь, остается примерно десятая часть от количества первичной мочи, то есть около 2 литров. Весь процесс реабсорбции обеспечивают не только проксимальные канальцы, но и петли Генле, дистальные извитые канальцы и собирательные трубочки. Вторичная моча не содержит необходимых организму веществ, зато в ней остаются мочевина, мочевая кислота и другие токсичные, подлежащие удалению компоненты.

В норме ни одно из необходимых организму питательных веществ не должно уходить с мочой. Все они возвращаются в кровь в процессе реабсорбции, какие-то частично, какие-то полностью. Например, глюкоза и белок в здоровом организме вообще не должны содержаться в моче. Если анализ показывает даже их минимальное содержание, значит со здоровьем что-то неблагополучно.

Заключительный этап работы – канальцевая секреция. Суть ее в том, что в мочу поступают ионы водорода, калия, аммиак и некоторые вредные вещества, имеющиеся в крови. Это могут быть лекарства, токсичные соединения. Путем канальцевой секреции из организма выводятся вредные вещества, и поддерживается кислотно-щелочной баланс.

В результате прохождения всех фаз переработки и фильтрации в почечных лоханках скапливается моча, подлежащая выведению из организма. Оттуда она поступает через мочеточники в мочевой пузырь и удаляется.

Благодаря работе таких маленьких структур, как нейроны, организм очищается от продуктов переработки поступивших в него веществ, от шлаков, то есть от всего, что ему не нужно или вредно. Значительные повреждения аппарата нефронов приводят к нарушению этого процесса и отравлению организма. Последствиями может стать почечная недостаточность, которая требует особых мер. Поэтому любые проявления неблагополучия почек – повод для обращения к врачу.

beregipochki.ru

Нефрон: строение и функции:

Нефрон, строение которого напрямую зависит от здоровья человека, отвечает за работу почек. Почки состоят из нескольких тысяч таких нефронов, благодаря им в организме корректно осуществляется мочеобразование, выведение шлаков и очищение крови от вредных веществ после переработки полученных продуктов.

Что такое нефрон?

Нефрон, строение и значение которого очень важны для организма человека, является структурно-функциональной единицей внутри почки. Внутри этого структурного элемента осуществляется образование мочи, которая в дальнейшем выходит из организма с помощью соответствующих путей.

Биологи утверждают, что внутри каждой почки находится до двух миллионов таких нефронов, и каждый из них должен быть абсолютно здоров, чтобы мочеполовая система могла полностью выполнять свою функцию. В случае повреждения почки нефроны восстановить не удастся, они будут выведены вместе с новообразованной мочой.

Нефрон: его строение, функциональное значение

Нефрон представляет собой оболочку для небольшого клубка, которая состоит из двух стенок и закрывает собой небольшой клубок капилляров. Внутренняя часть этой оболочки покрыта эпителием, особые клетки которого помогают добиться дополнительной защиты. То пространство, которое образуется между двумя слоями, может трансформироваться в небольшое отверстие и канал.

Этот канал обладает щеточной кромкой из небольших ворсинок, сразу за ним начинается очень узкий участок петли оболочки, который спускается вниз. Стенка участка состоит из плоских и маленьких клеток эпителия. В некоторых случаях отсек петли достигает глубины мозгового вещества, а затем разворачивается к корке почечных образований, которые плавно перерастают в еще один сегмент нефроновой петли.

Как устроен нефрон?

Строение почечного нефрона является весьма сложным, до сих пор биологи всего мира бьются над попытками воссоздать его в виде искусственного образования, подходящего для пересадки. Петля появляется преимущественно из поднимающейся части, но может включать в себя еще и деликатную. Как только петля оказывается в том месте, где размещается клубок, она входит в изогнутый маленький канал.

В клетках полученного образования отсутствует ворсистая кромка, однако здесь можно найти большое количество митохондрий. Общая площадь мембраны может быть увеличена из-за многочисленных складок, которые формируются в результате образования петли внутри отдельного взятого нефрона.

Схема строения нефрона человека достаточно сложна, поскольку требует не только тщательной прорисовки, но и досконального знания предмета. Человеку, далекому от биологии, будет достаточно сложно ее изобразить. Последний участок нефрона представляет собой укороченный связующий канал, который выходит в накопительную трубку.

Канал формируется в корковой части почки, с помощью накопительных трубок он проходит сквозь «мозг» клетки. В среднем диаметр каждой оболочки составляет порядка 0,2 миллиметров, а вот максимальная длина канала нефрона, зафиксированная учеными, составляет порядка 5 сантиметров.

Секции почки и нефроны

Нефрон, строение которого доподлинно стало известно ученым только после целого ряда опытов, находится в каждом из структурных элементов важнейших для организма органов – почек. Специфика функций почек такова, что она требует существования сразу нескольких секций структурных элементов: тонкого сегмента петли, дистального и проксимального.

Все каналы нефрона соприкасаются с уложенными накопительными трубками. По мере развития эмбриона они произвольно совершенствуются, однако в уже сформировавшемся органе по своим функциям напоминают дистальный участок нефрона. Подробный процесс развития нефрона ученые неоднократно воспроизводили в своих лабораториях на протяжении нескольких лет, однако подлинные данные были получены лишь в конце XX века.

Разновидности нефронов в почках человека

Схема строения нефрона человека различается в зависимости от типа. Различают юкстамедуллярные, интракортикальные и суперфициальные. Главная разница между ними состоит в их местоположении внутри почки, глубины канальцев и локализации клубочков, а также в размерах самих клубков. Кроме того, ученые придают значение особенностям петель и длительности различных сегментов нефрона.

Суперфициальный тип представляет собой соединение, созданное из коротких петель, а юкстамедуллярный – из длинных. Такое разнообразие, по мнению ученых, появляется в результате потребности нефронов доставать до всех частей почки, в том числе и той, которая располагается ниже корковой субстанции.

Части нефрона

Нефрон, строение и значение которого для организма хорошо изучены, напрямую зависит от канальца, имеющегося в нем. Именно последний отвечает за постоянную функциональную работу. Все вещества, которые имеются внутри нефронов, несут ответственность за сохранность тех или иных разновидностей почечных клубков.

Внутри корковой субстанции можно найти большое количество соединительных элементов, специфических подразделений каналов, почечных клубочков. От того, правильно ли они будут размещены внутри нефрона и почки в целом, будет зависеть работа всего внутреннего органа. В первую очередь это будет влиять на равномерное распределение мочи, а уже потом на ее корректный вывод из организма.

Нефроны как фильтры

Схема строения нефрона на первый взгляд похожа на один большой фильтр, однако у него есть целый ряд особенностей. В середине XIX века ученые предполагали, что фильтрация жидкостей в организме предшествует этапу формирования мочи, спустя сто лет это было научно доказано. С помощью специального манипулятора ученым удалось получить внутреннюю жидкость из клубочковой оболочки, а затем провести ее тщательный анализ.

Выяснилось, что оболочка представляет собой своеобразный фильтр, с помощью которого происходит очистка воды и всех молекул, которые формируют плазму крови. Мембрана, с помощью которой происходит фильтрация всех жидкостей, основана на трех элементах: подоцитах, эндотелиальных клетках, также используется базальная мембрана. С их помощью жидкость, которую необходимо вывести из организма, попадает в клубок нефрона.

Внутренности нефрона: клетки и мембрана

Строение нефрона человека должно рассматриваться с учетом того, что содержится в клубочке нефрона. Во-первых, речь идет об эндотелиальных клетках, с помощью которых образуется слой, препятствующий попаданию внутри частичек белка и крови. Плазма и вода проходят дальше, беспрепятственно попадают в базальную мембрану.

Мембрана представляет собой тонкий слой, который отделяет эндотелий (эпителий) от ткани соединительного типа. Средняя толщина мембраны в организме человека - 325 нм, хотя могут встречаться более толстые и тонкие варианты. Мембрана состоит из узлового и двух периферических слоев, которые преграждают путь крупным молекулам.

Подоциты в нефроне

Отростки подоцитов отделены друг от друга щитовыми мембранами, от которых зависит сам нефрон, строение структурного элемента почки и ее работоспособность. Благодаря именно им определяются размеры веществ, которые необходимо отфильтровать. Эпителиальные клетки обладают небольшими отростками, за счет которых они соединяются с базальной мембраной.

Строение и функции нефрона таковы, что в совокупности все его элементы не пропускают молекулы диаметром более 6 нм и производят фильтрацию меньших по размерам молекул, которые должны быть выведены из организма. Белок не может пройти сквозь имеющийся фильтр благодаря особым элементам мембраны и молекулам с негативным зарядом.

Особенности почечного фильтра

Нефрон, строение которого требует внимательного изучения со стороны ученых, стремящихся воссоздать почку с помощью современных технологий, несет в себе определенный отрицательный заряд, который формирует лимит по фильтрации белков. Размер заряда зависит от габаритов фильтра, и по факту сама составляющая клубочкового вещества зависит от качества базальной мембраны и эпителиального покрытия.

Особенности преграды, использующейся в виде фильтра, могут быть реализованы в самых разных вариациях, каждый нефрон обладает индивидуальными параметрами. Если никаких нарушений в работе нефронов нет, то в первичной моче будут только лишь следы от белков, которые присущи плазме крови. Особо большие молекулы могут также проникать сквозь поры, однако в данном случае все будет зависеть от их параметров, а также от локализации молекулы и ее соприкосновения с формами, которые принимают поры.

Нефроны не способны регенерировать, поэтому при повреждении почек или же появлении каких-либо заболеваний их количество постепенно начинает снижаться. То же самое происходит по естественным причинам, когда организм начинает стареть. Восстановление нефронов – одна из важнейших задач, над которой работают ученые-биологи всего мира.

Нефрон является не только основной структурной, но также и функциональной единицей почки. Именно здесь проходят самые важные этапы Поэтому информация о том, как выглядит строение нефрона, и какие именно функции он выполняет, будет весьма интересной. Кроме того, особенности функционирования нефронов могут прояснить нюансы работы почечной системы

Строение нефрона: почечное тельце

Интересно, что в зрелой почке здорового человека находится от 1 до 1,3 миллиардов нефронов. Нефрон — это функциональная и структурная единица почки, которая состоит из почечного тельца и так называемой петли Генле.

Само почечное тельце состоит из мальпигиевого клубочка и капсулы Боумена - Шумлянского. Для начала стоит отметить, что клубочек на самом деле представляет собой совокупность мелких капилляров. Кровь попадает сюда через приносную артерию — здесь фильтруется плазма. Остаток крови выводится выносящей артериолой.

Капсула Боумена - Шумлянского состоит из двух листков — внутреннего и внешнего. И если внешний лист представляет собой обыкновенную ткань из то строение внутреннего листа заслуживает большего внимания. Внутренняя часть капсулы покрыта подоцитами — это клетки, которые выполняют роль дополнительного фильтра. Они пропускают глюкозу, аминокислоты и прочие вещества, но препятствуют движению больших протеиновых молекул. Таким образом, в почечном тельце образуется первичная моча, которая отличается от лишь отсутствием крупных молекул.

Нефрон: строение проксимального канальца и петли Генле

Проксимальный каналец представляет собой образование, которое соединяет почечное тельце и петлю Генле. Внутри каналец имеет ворсинки, которые увеличивают общую площадь внутреннего просвета, тем самым увеличивая показатели реабсорбции.

Проксимальный каналец плавно переходит в нисходящую часть петли Генле, которая характеризируется небольшим диаметром. Петля опускается в мозговой слой, где огибает собственную ось на 180 градусов и поднимается вверх — здесь начинается восходящая часть петли Генле, которая имеет гораздо большие размеры и, соответственно, диаметр. Восходящая петля поднимается примерно до уровня клубочка.

Строение нефрона: дистальные канальцы

Восходящая часть петли Генле в корковом веществе переходит в так называемый дистальный извилистый каналец. Он соприкасается с клубочком и контактирует с приносной и выносной артериолами. Здесь осуществляется конечная абсорбция полезных веществ. Дистальный каналец переходит в конечный отдел нефрона, который в свою очередь впадает в собирательную трубку, несущую жидкость в

Классификация нефронов

В зависимости от места расположения принято выделять три основных типа нефронов:

  • кортикальные нефроны составляют примерно 85% от количества всех структурных единиц в почке. Как правило, они расположены во внешней коре почки, о чем, собственно, и свидетельствует их название. Строение нефрона этого типа немного отличается — петля Генле здесь небольшая;
  • юкстамедуллярные нефроны — такие структуры находятся как раз между мозговым и корковым слоем, имеют длинные петли Генле, которые глубоко проникают в мозговой слой, иногда даже достигая пирамид;
  • субкапсулярные нефроны — структуры, которые расположены непосредственно под капсулой.

Можно заметить, что строение нефрона полностью соответствует его функциям.

Почка имеет сложное строение и состоит примерно из 1 миллиона структурных и функциональных единиц - нефронов (рис.100). Между нефронами находится соединительная (интерстициальная) ткань.

Функциональной единицей нефрон является потому, что он способен осуществить всю совокупность процессов, результатом которых является образование мочи.

Рис. 100. Схема строения нефрона (по Г. Смиту). 1 - клубочек; 3 - извитой каналец первого порядка; 3 - нисходящая часть петли Генле; 4 - восходящая часть петли Генле; 5 - извитой каналец второго порядка; 6 - собирательные трубки. В кружках изображено строение эпителия в различных частях нефрона.

Каждый нефрон начинается небольшой капсулой, имеющей форму двухстенной чаши (капсула Шумлянского-Боумена), внутри которой находится клубочек капиляров (мальпигиев клубочек).

Между стенками капсулы имеется полость, от которой начинается просвет канальца. Внутренний листок капсулы образован плоскими мелкими эпителиальными клетками. Как показали электронномикроскопические исследования, эти клетки, между которыми имеются щели, расположены на базальной мембране, состоящей из трех слоев молекул.

В клетках эндотелия капилляров мальпигиевого клубочка и отверстия диаметром около 0,1 мк. Таким образом, барьер между кровью, находящейся в капиллярах клубочка, и полостью капсулы образованы тонкой базальной мембраной.

От полости капсулы отходит мочевой каналец, имеющий вначале извитую форму, - извитой каналец первого порядка. Дойдя до границы между корковым и мозговым слоем, каналец суживается и выпрямляется. В мозговом слое почки он образует петлю Генле и возвращается в корковый слой почки. Таким образом, петля Генле состоит из нисходящей, или проксимальной, и восходящей, или дистальной, части.

В корковом слое почки или на границе мозгового и коркового слоев прямой каналец вновь приобретает извитую форму, образуя извитой каналец второго порядка. Последний впадает в выводной проток-собирательную рубку. Значительное количество таких собирательных трубок, сливаясь, образует общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полость почечной лоханки.

Диаметр каждой капсулы Шумлянского-Боумена около 0,2 мм, а общая длина канальцев одного нефрона достигает 35-50 мм.

Кровоснабжение почек . Артерии почек, разветвляясь на все более мелкие сосуды, образуют артериолы, каждая из которых входит в капсулу Шумлянского-Боумена и здесь распадается примерно на 50 капиллярных петель, образующих мальпигиев клубочек.

Сливаясь вместе, капилляры вновь образуют артериолу, выходящую из клубочка. Артериола, доставляющая кровь к клубочку, называется приносящим сосудом (vas affereos). Артериола, по которой кровь оттекает из клубочка, называется выносящим сосудом (vas efferens). Диаметр артериолы, выходящей из капсулы, уже, чем приходящей в капсулу. Вышедшая из клубочка артериола на коротком расстоянии от него вновь разветвляется на капилляры и образует густую капиллярную сеть, оплетающую извитые канальцы первого и второго порядка (рис. 101, А ). Таким образом кровь, прошедшая через капилляры клубочка, проходит затем через капилляры канальцев. Кроме того, кровоснабжение канальцев осуществляется капиллярами, отходящими от небольшого числа артериол, которые не учавствуют в образовании мальпигиевого клубочка.

Пройдя через сеть капилляров канальцев, кровь поступает в мелкие вены, которые, сливаясь, образуют дуговые вены (venae arcuatae). При дальнейшем слиянии последних образуется почечная вена, впадающая в нижнюю полую вену.

Юкстамедуллярные нефроны . В сравнительно недавнее время показано, что в почке имеются, кроме описанных выше нефронов, еще и другие, отличающиеся по положению и кровоснабжению,- юкстамедуллярные нефроны. Юкстамедуллярные нефроны расположены почти целиком в мозговом слое почки. Их клубочки находятся между корковым и мозговым слоем, а петля Генле располагается у границы с почечной лоханкой.

Кровоснабжение юкстамедуллярного нефрона отличается от кровоснабжения коркового нефрона тем, что диаметр выносящего сосуда такой же, как и приносящего. Выходящая из клубочка артериола не образует капиллярной сети вокруг канальцев, а пройдя некоторый путь, впадает в венозную систему (рис. 101, Б ).

Юкстагломерулярный комплекс . В стенке приводящей артериолы у места ее вхождения в клубочек имеется утолщение, образованное миоэпителиальными клетками,- юкстагломерулярный (околоклубочковый) комплекс. Клетки этого комплекса обладают внутрисекреторной функцией, выделяя при уменьшении почечного кровотока ренин (стр. 123), участвующий в регуляции уровня артериального давления и имеющий, по-видимому, значение в поддержании нормального баланса электролитов.

Рис. 101. Схема коркового (А) и юкстамедуллярного (Б) нефронов и их кровоснабжения (по Г. Смиту). I - корневое вещество почки; II - мозговое вещество почки. 1 - артерии; 2 - клубочек и капсула; 3 - артериола, подходящая к мальпигиевому клубочку; 4 - артериола, выходящая из мальпигиевого клубочка и образующая капиллярную сеть вокруг канальцев коркового нефроны; 5 - артериола, выходящая из мальпигиевого клубочка юкстамедуллярного нефрона; 6 - венулы; 7 - собирательные трубки.

Для существования организма человека в нём предусмотрена не только система доставки в него веществ для строительства тела или добычи из них энергии.

Есть ещё и целый комплекс различных высокоэффективных биологических конструкций для удаления отходов его жизнедеятельности.

Одной из таких конструкций являются почки, рабочей структурной единицей которых служит нефрон.

Общая информация

Так именуется одна из функциональных единиц почки (один из её элементов). Нефронов в органе не менее 1 миллиона, и вместе они образуют слаженно действующую систему. Благодаря своему строению нефроны позволяют осуществлять фильтрацию крови.

Почему – крови, ведь общеизвестно, что почки производят мочу?
Мочу они производят именно из крови, куда органы, выбрав из неё всё им необходимое, оправляют вещества:

  • либо в данный момент совершенно организму не требующиеся;
  • либо их излишки;
  • могущие стать для него опасными при продолжении их пребывания в крови.

Чтобы сбалансировать состав и свойства крови, требуется удаление из неё ненужных компонентов: излишков воды и солей, токсинов, низкомолекулярных белков.

Строение нефрона

Открытие метода позволило выяснить: способностью к сокращениям обладают не только сердце – все органы: печень, почки и даже мозг.

Почки сжимаются и расслабляются в определённом ритме – их размеры и объём то уменьшаются, то возрастают. При этом возникает то сжатие, то растяжение проходящих в недрах органа артерий. Уровень давления в них также меняется: при расслаблении почки он снижается, при сокращении – возрастает, делая возможной работу нефрона.

При возрастании давления в артерии срабатывает система естественных полупроницаемых мембран в структуре почки – и ненужные организму вещества, продавившись через них, удаляются из кровеносного русла. Они попадают в образования, являющиеся начальными участками мочевыводящих путей.

На определённых их отрезках есть участки, где происходит обратное всасывание (возвращение) воды и части солей в кровеносное русло.

Выполнение нефроном своей процеживающей (фильтрующей) функции с очисткой крови и образованием из её компонентов мочи возможно благодаря наличию в нём нескольких участков предельно тесного соприкосновения полупроницаемых структур первичных мочевыводящих путей с сетью капилляров (имеющих столь же тонкую стенку).

В нефроне различают:

  • зону первичной фильтрации (почечное тельце, состоящее из почечного клубочка, находящегося в капсуле Шумлянского-Боумена);
  • зону реабсорбции (капиллярную сеть на уровне начальных участков первичных мочеотводящих путей – почечных канальцев).

Почечный клубочек

Так называется действительно похожая на рыхлый клубок сеть капилляров, на которые здесь распадается приносящая (другое название: подводящая) артериола.

Такое строение обеспечивает максимальную площадь контакта стенок капилляров с интимно (очень близко) прилегающей к ним избирательно проницаемой трёхслойной мембраной, образующей внутреннюю стенку боуменовской капсулы.

Толщина стенок капилляров образована всего одним слоем эндотелиальных клеток с тонким цитоплазматическим слоем, в котором имеются фенестры (пустотные структуры), обеспечивающие транспорт веществ в одном направлении – из просвета капилляра в полость капсулы почечного тельца.

Пространства между капиллярными петлями заполнены мезангием – соединительной тканью особого строения, содержащей в себе мезангиальные клетки.

В зависимости от локализации по отношению к капиллярному клубочку (гломерулюсу) они являются:

  • интрагломерулярными (внутриклубочковыми);
  • экстрагломерулярными (внеклубочковыми).

Пройдя по капиллярным петлям и освободившись в них от шлаков и излишков, кровь собирается в отводящую артерию. Та в свою очередь образует ещё одну сеть капилляров, оплетающую почечные канальцы на их извитых участках, из которых кровь собирается в отводящую вену и таким образом возвращается в кровеносное русло почки.

Капсула Боумена-Шумлянского

Описать строение этой структуры позволяет сравнение с общеизвестным в обиходе предметом – спринцовкой шарообразной формы. Если вдавить её дно, из неё образуется чаша с внутренней вогнутой полусферической поверхностью, которая является одновременно и самостоятельной геометрической формой, и служит продолжением наружной полусферы.

Между двумя стенками образовавшейся формы остаётся щелевидное пространство-полость, продолжающееся в носик спринцовки. Другим примером для сравнения может служить колба термоса с узкой полостью между двумя её стенками.

В капсуле Боумена-Шумлянского также существует щелевидная внутренняя полость между двумя её стенками:

  • внешней, именуемой париетальной пластинкой и
  • внутренней (или висцеральной пластинкой).

Строение их существенно отличается. Если наружная образована одним рядом плоских эпителиальных клеток (продолжающимся в также однорядный кубический эпителий отводящего канальца), то внутренняя составлена элементами подоцитов – клеток почечного эпителия особого строения (буквальный перевод термина подоцит: клетка, имеющие ноги).

Более всего подоцит напоминает пень с несколькими толстыми основными корнями, от которых равномерно отходят на обе стороны корни потоньше, причём вся система корней, распластанных по поверхности, как простирается далеко от центра, так и заполняет собой почти всё пространство внутри образованного ей круга. Основные виды:

  1. Подоциты – это клетки гигантского размера с телами, находящимися в полости капсулы и одновременно – приподнятыми над уровнем капиллярной стенки благодаря опоре на свои корневидные отростки-цитотрабекулы.
  2. Цитотрабекула – это уровень первичного ветвления «ножки»-отростка (в примере с пнём – основные корни).Но есть ещё и вторичное ветвление – уровень цитоподий.
  3. Цитоподии (или педикулы) – это вторичные отростки с ритмично выдержанным расстоянием отхождений от цитотрабекулы («основного корня»). Благодаря одинаковости этих расстояний достигается равномерность распределения цитоподий на участках капиллярной поверхности по обе стороны от цитотрабекулы.

Выросты-цитоподии одной цитотрабекулы, заходя в промежутки между аналогичными образованиями соседней клетки, образуют фигуру, рельефом и рисунком очень напоминающую застёжку-«молнию», между отдельными «зубцами» которой остаются лишь узкие параллельные щели линейной формы, именуемые щелями фильтрации (щелевыми диафрагмами).

Благодаря такому строению подоцитов вся наружная поверхность капилляров, обращённая в полость капсулы, оказывается сплошь укрытой переплетениями цитоподий, чьи застёжки-«молнии» не позволяют продавить стенку капилляра внутрь полости капсулы, противодействуя силе кровяного давления внутри капилляра.

Почечные канальцы

Начавшись колбообразным утолщением (капсулой Шумлянского-Боумена в структуре нефрона), первичные мочеотводящие пути далее имеют характер трубочек диаметра, меняющегося на их протяжении, к тому же, на отдельных участках они приобретают характерно извитую форму.

Протяжённость же их такова, что одни их отрезки находятся в корковом, другие – в мозговом слое .
На пути жидкости от крови к первичной и вторичной моче она проходит по почечным канальцам, состоящим из:

  • проксимального извитого канальца;
  • петли Генле, имеющей нисходящее и восходящее колена;
  • дистального извитого канальца.

Проксимальный участок почечного канальца отличается максимальной длиной и диаметром, выполнен он высокоцилиндрическим эпителием со «щёточной каймой» из микроворсинок, обеспечивающей высокую функцию резорбции благодаря увеличению площади всасывающей поверхности.

Той же цели служит и наличие интердигитаций – пальцевидных вдавливаний мембран соседствующих клеток друг в друга. Активная резорбция веществ в просвет канальца является весьма энергоёмким процессом, поэтому в цитоплазме клеток канальца содержится много митохондрий.

В капилляры, оплетающие поверхность проксимального извитого канальца, производится
реабсорбция:

  • ионов натрия, калия, хлора, магния, кальция, водорода, карбонат-ионов;
  • глюкозы;
  • аминокислот;
  • некоторых белков;
  • мочевины;
  • воды.

Так из первичного фильтрата – первичной мочи, образовавшейся в боуменовской капсуле, образуется жидкость промежуточного состава, следующая к петле Генле (с характерным изгибом шпилечной формы в мозговом почечном слое), в которой выделяют нисходящее колено малого диаметра и восходящее колено – большого диаметра.

Диаметр почечного канальца в этих отделах зависит от высоты эпителия, на разных участках петли выполняющего разные функции: в тонком отделе он плоский, обеспечивающий эффективность пассивного транспорта воды, в толстом – более высокий кубический, обеспечивающий активность реабсорбции в гемокапилляры электролитов (преимущественно натрия) и пассивно следующей за ними воды.

В дистальном извитом канальце образуется моча окончательного (вторичного) состава, создающегося при факультативной реабсорбции (обратном всасывании) воды и электролитов из состава крови капилляров, оплетающих этот участок почечного канальца, завершающего свою историю впадением в собирательную трубочку.

Типы нефронов

Поскольку почечные тельца большей части нефронов расположены в корковом слое паренхимы почки (во внешней коре), а их петли Генле небольшой длины проходят во внешнем мозговом почечном веществе наряду с большей частью кровеносных сосудов почки, их принято называть корковыми, или интракортикальными.

Прочая их доля (около 15%), с петлёй Генле большей длины, глубоко погружающейся в мозговое вещество (вплоть до достижения верхушек почечных пирамид), размещается в юкстамедуллярной коре – пограничной зоне между мозговым и корковым слоем, что позволяет именовать их юкстамедуллярными.

Менее 1% нефронов, размещающихся неглубоко в подкапсульном слое почки, называются субкапсулярными, или суперфициальными.

Ультрафильтрация мочи

Способность «ножек» подоцитов к сокращению с одновременным утолщением позволяет ещё более сузить щели фильтрации, что делает процесс очистки крови, протекающей по капилляру в составе клубочка, ещё более избирательным в плане диаметра фильтруемых молекул.

Таким образом, наличие «ножек» у подоцитов увеличивает площадь их соприкосновения с капиллярной стенкой, в то время как степень их сокращения регулирует ширину щелей фильтрации.

Помимо роли чисто механического препятствия щелевые диафрагмы содержат на своих поверхностях белки, имеющие отрицательный электрический заряд, ограничивающий пропускание также отрицательно заряженных молекул белков и других химических соединений.

Такое воздействие на состав и свойства крови, осуществляемое комбинацией физических и электрохимических процессов, позволяет сделать возможной ультрафильтрацию плазмы крови, приводящую к образованию мочи вначале первичного, а в ходе последующей реабсорбции – и вторичного состава.

Строение нефронов (независимо от их локализации в паренхиме почки), призванное выполнять функцию сохранения стабильности внутренней среды организма, позволяет им выполнять свою задачу, невзирая на время суток, смену времён года и иных внешних условий, в продолжение всей жизни человека.