Молекулярная формула серной кислоты. Серная кислота_9879. Химические свойства Серной кислоты

Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

Промышленное производство серной кислоты (контактный способ):

1) 4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2) 2SO 2 + O 2 V 2 O 5 → 2SO 3

3) nSO 3 + H 2 SO 4 → H 2 SO 4 ·nSO 3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое «. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO 2 , O 2 , пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V 2 O 5 (пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С (т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3

Химические свойства серной кислоты:

H 2 SO 4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

1) В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:
H 2 SO 4 = H + + HSO 4 — ;
HSO 4 — = H + + SO 4 2- .
Суммарное уравнение:
H 2 SO 4 = 2H + + SO 4 2- .

2) Взаимодействие серной кислоты с металлами :
Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:
Zn 0 + H 2 +1 SO 4 (разб) → Zn +2 SO 4 + H 2

3) Взаимодействие серной кислоты с основными оксидами:
CuO + H 2 SO 4 → CuSO 4 + H 2 O

4) Взаимодействие серной кислоты с гидроксидами:
H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O
H 2 SO 4 + Cu(OH) 2 → CuSO 4 + 2H 2 O

5) Обменные реакции с солями:
BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl
Образование белого осадка BaSO 4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).

Особые свойства концентрированной H 2 SO 4:

1) Концентрированная серная кислота является сильным окислителем ; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S +4 O 2 , S 0 или H 2 S -2 в зависимости от активности металла. Без нагревания не реагирует с Fe, Al, Cr – пассивация. При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления , чем в случае с разбавленным раствором кислоты: Fe 0 Fe 3+ , Cr 0 Cr 3+ , Mn 0 Mn 4+ ,Sn 0 Sn 4+

Активный металл

8 Al + 15 H 2 SO 4(конц.) →4Al 2 (SO 4) 3 + 12H 2 O + 3H 2 S
4│2Al 0 – 6e — → 2Al 3+ — окисление
3│ S 6+ + 8e → S 2– восстановление

4Mg+ 5H 2 SO 4 → 4MgSO 4 + H 2 S­ + 4H 2 O

Металл средней активности

2Cr + 4 H 2 SO 4(конц.) → Cr 2 (SO 4) 3 + 4 H 2 O + S
1│ 2Cr 0 – 6e →2Cr 3+ — окисление
1│ S 6+ + 6e → S 0 – восстановление

Металл малоактивный

2Bi + 6H 2 SO 4(конц.) → Bi 2 (SO 4) 3 + 6H 2 O + 3SO 2
1│ 2Bi 0 – 6e → 2Bi 3+ – окисление
3│ S 6+ + 2e →S 4+ — восстановление

2Ag + 2H 2 SO 4 →Ag 2 SO 4 + SO 2 ­ + 2H 2 O

2) Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S +4 O 2:

С + 2H 2 SO 4 (конц) → CO 2 ­ + 2SO 2 ­ + 2H 2 O

S+ 2H 2 SO 4 (конц) → 3SO 2 ­ + 2H 2 O

2P+ 5H 2 SO 4 (конц)→5SO 2 ­ + 2H 3 PO 4 + 2H 2 O

3) Окисление сложных веществ:
Серная кислота окисляет HI и НВг до свободных галогенов:
2 КВr + 2Н 2 SO 4 = К 2 SО 4 + SO 2 + Вr 2 + 2Н 2 О
2 КI + 2Н 2 SО 4 = К 2 SO 4 + SO 2 + I 2 + 2Н 2 О
Концентрированная серная кислота не может окислить хлорид-ионы до свободного хлора, что дает возможность получать НСl по реакции обмена:
NаСl + Н 2 SO 4 (конц.) = NаНSO 4 + НСl

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:
С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:
C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .

Серная кислота (H2SО4) – это одна из самых едких кислот и опасных реагентов, известных человеку, особенно в концентрированном виде. Химически чистая серная кислота представляет собой тяжелую токсичную жидкость маслянистой консистенции, не имеющую запаха и цвета. Получают ее методом окисления сернистого газа (SO2) контактным способом.

При температуре + 10,5 °C, серная кислота превращается в застывшую стекловидную кристаллическую массу, жадно, подобно губке, поглощающую влагу из окружающей среды. В промышленности и химии серная кислота является одним из основных химических соединений и занимает лидирующие позиции по объему производства в тоннах. Именно поэтому серную кислоту называют «кровью химии». С помощью серной кислоты получают удобрения, лекарственные препараты, другие кислоты, большой , удобрений и много другое.

Основные физические и химические свойства серной кислоты

  1. Серная кислота в чистом виде (формула H2SO4), при концентрации 100% представляет собой бесцветную густую жидкость. Самое важное свойство H2SO4 заключается в высокой гигроскопичности – это способность отнимать из воздуха воду. Данный процесс сопровождается масштабным выделением тепла.
  2. H2SO4 – это сильная кислота.
  3. Серная кислота называется моногидратом – в ней на 1 моль SO3 приходится 1 моль Н2О (воды). Из-за ее внушительных гигроскопических свойств ее используют для извлечения влаги из газов.
  4. Температура кипения – 330 °С. При этом происходит разложение кислоты на SO3 и воду. Плотность – 1,84. Температура плавления – 10,3 °С/.
  5. Концентрированная серная кислота представляет собой мощный окислитель. Чтобы запустить окислительно-восстановительную реакцию кислоту требуется нагреть. Итог реакции – SO2. S+2H2SO4=3SO2+2H2O
  6. В зависимости от концентрации серная кислота по-разному вступает в реакцию с металлами. В разбавленном состоянии серная кислота способна окислять все металлы, которые стоят в ряду напряжений до водорода. Исключение составляют как самые стойкие к окислению. Разбавленная серная кислота взаимодействует с солями, основаниями, амфотерными и основными оксидами. Серная кислота концентрированная способна окислять все металлы, стоящие в ряду напряжений, причем серебро тоже.
  7. Серная кислота образует два вида солей: кислые (это гидросульфаты) и средние (сульфаты)
  8. H2SO4 вступает в активную реакцию с органическими веществами и неметаллами, причем некоторые из них она способна превратить в уголь.
  9. Серный ангидрит отлично растворяется в H2SО4, и при этом образуется олеум – раствор SО3 в серной кислоте. Внешне это выглядит так: дымящаяся серная кислота, выделяющая серный ангидрит.
  10. Серная кислота в водных растворах является сильной двухосновной, и при добавлении ее к воде выделяется огромное количество теплоты. Когда готовят разбавленные растворы H2SО4 из концентрированных, необходимо небольшой струйкой добавлять более тяжелую кислоту к воде, а не наоборот. Это делается во избежание вскипания воды и разбрызгивания кислоты.

Концентрированная и разбавленная серные кислоты

К концентрированным растворам серной кислоты относятся растворы от 40%, способные растворять серебро или палладий.

К разбавленной серной кислоте относятся растворы, концентрация которых составляет менее 40%. Это не такие активные растворы, но они способны вступать в реакцию с латунью и медью.

Получение серной кислоты

Производство серной кислоты в промышленных масштабах было запущено в XV веке, но в то время ее называли “купоросное масло». Если раньше человечество потребляло всего лишь несколько десятков литров серной кислоты, то в современном мире исчисление идет на миллионы тонн в год.

Производство серной кислоты осуществляется промышленным способом, и их существует три:

  1. Контактный способ.
  2. Нитрозный способ
  3. Другие методы

Поговорим подробно о каждом из них.

Контактный способ производства

Контактный способ производства – самый распространенный, и он выполняет следующие задачи:

  • Получается продукт, удовлетворяющий потребности максимального количества потребителей.
  • Во время производства сокращается вред для окружающей среды.

При контактном способе в качестве сырья используются такие вещества:

  • пирит (серный колчедан);
  • сера;
  • оксид ванадия (это вещество вызывает роль катализатора);
  • сероводород;
  • сульфиды различных металлов.

Перед запуском процесса производства сырье предварительно подготавливают. Для начала в специальных дробильных установках колчедан подвергается измельчению, что позволяет, благодаря увеличению площади соприкосновения активных веществ, ускорить реакцию. Пирит подвергается очищению: его опускают в большие емкости с водой, в ходе чего пустая порода и всевозможные примеси всплывают на поверхность. В конце процесса их убирают.

Производственную часть разделяют на несколько стадий:

  1. После дробления колчедан очищают и отправляют в печь – там при температуре до 800 °C происходит его обжиг. По принципу противотока в камеру снизу идет подача воздуха, и это обеспечивает нахождение пирита в подвешенном состоянии. На сегодняшний день, на этот процесс тратится несколько секунд, а вот раньше на обжиг уходило несколько часов. В процессе обжига появляются отходы в виде оксида железа, которые удаляются, и в дальнейшем передаются на предприятия металлургической промышленности. При обжиге выделяются водные пары, газы O2 и SO2. Когда завершится очистка от паров воды и мельчайших примесей, получается чистый оксид серы и кислород.
  2. На второй стадии под давлением происходит экзотермическая реакция с использованием ванадиевого катализатора. Запуск реакции начинается при достижении температуры 420 °C, но ее могут повысить до 550 °C с целью увеличения эффективности. В процессе реакции идет каталитическое окисление и SO2 становится SO3.
  3. Суть третьей стадии производства такова: поглощение SO3 в поглотительной башне, в ходе чего образуется олеум H2SO4. В таком виде H2SO4 разливается в специальные емкости (она не вступает в реакция со сталью) и готова ко встрече с конечным потребителем.

В ходе производства, как мы уже говорили выше, образуется много тепловой энергии, которая используется в отопительных целях. Многие предприятия по производству серной кислоты устанавливают паровые турбины, которые использую выбрасываемый пар для вырабатывая дополнительной электроэнергии.

Нитрозный способ получения серной кислоты

Несмотря на преимущества контактного способа производства, при котором получается более концентрированная и чистая серная кислота и олеум, достаточно много H2SO4 получают нитрозным способом. В частности, на суперфосфатных заводах.

Для производства H2SO4 исходным веществом, как в контактном, так и в нитрозном способе выступает сернистый газ. Его получают специально для этих целей посредством сжигания серы или обжигом сернистых металлов.

Переработка сернистого газа в сернистую кислоту заключается в окислении двуокиси серы и присоединении воды. Формула выглядит так:
SO2 + 1|2 O2 + H2O = H2SO4

Но двуокись серы с кислородом не вступает в непосредственную реакцию, поэтому при нитрозном методе окисление сернистого газа осуществляют при помощи окислов азота. Высшие окислы азота (речь идет о двуокиси азота NO2, трехокиси азота NO3) при данном процессе восстанавливаются до окиси азота NO, которая впоследствии опять окисляется кислородом до высших окислов.

Получение серной кислоты нитрозным способом в техническом плане оформлено в виде двух способов:

  • Камерного.
  • Башенного.

Нитрозный способ имеет ряд достоинств и недостатков.

Недостатки нитрозного способа:

  • Получается 75%-ная серная кислота.
  • Качество продукции низкое.
  • Неполный возврат оксидов азота (добавление HNO3). Их выбросы вредны.
  • В кислоте присутствуют железо, оксиды азота и прочие примеси.

Достоинства нитрозного способа:

  • Себестоимость процесса более низкая.
  • Возможность переработки SO2 на все 100%.
  • Простота аппаратурного оформления.

Основные российские заводы по производству серной кислоты

Годовое производство H2SO4 в нашей стране ведет исчисление шестизначными цифрами – это порядка 10 миллионов тонн. Ведущими производителями серной кислоты в России являются компании, являющиеся, помимо этого, ее основными потребителями. Речь идет о компаниях, сферой деятельности которых является выпуск минеральных удобрений. К примеру, «Балаковские минудобрения», «Аммофос».

В Крыму в Армянске работает крупнейший производитель диоксида титана на территории Восточной Европы «Крымский титан». Вдобавок, завод занимается производством серной кислоты, минеральных удобрений, железного купороса и т.д.

Серную кислоту различных видов производят многие заводы. К примеру, аккумуляторную серную кислоту производят: Карабашмедь, ФКП Бийский олеумный завод,Святогор, Славия, Северхимпром и т.д.

Олеум производят ОХК Щекиноазот, ФКП Бийский олеумный завод, Уральская Горно-Металлургическая Компания, ПО Киришинефтеоргсинтез и т.д.

Серную кислоту особой чистоты производят ОХК Щекиноазот, Компонент-Реактив.

Отработанную серную кислоту можно купить на заводах ЗСС, ГалоПолимер Кирово-Чепецк.

Производителями технической серной кислоты являются Промсинтез, Хипром, Святогор, Апатит, Карабашмедь, Славия, Лукойл-Пермнефтеоргсинтез, Челябинский цинковый завод, Электроцинк и т.д.

По причине, что колчедан является основным сырьем при производстве H2SO4, а это отход обогатительных предприятий, его поставщиками выступают Норильская и Талнахская обогатительные фабрики.

Лидерские мировые позиции по производству H2SO4 занимают США и Китай, на которые приходятся 30 млн. тонн и 60 млн. тонн соответственно.

Сфера применения серной кислоты

В мире ежегодно потребляется порядка 200 миллионов тонн H2SO4, из которой производится широкий спектр продукции. Серная кислота по праву держит пальму первенства среди других кислот по масштабам использования в промышленных целях.

Как вы уже знаете, серная кислота является одним из важнейших продуктов химической промышленности, поэтому область применения серной кислоты довольно широкая. Основные направления использования H2SО4 таковы:

  • Серную кислоту в колоссальных объемах используют для производства минеральных удобрений, и на это уходит около 40% всего тоннажа. По этой причине производящие H2SO4 заводы строят рядом с предприятиями, выпускающими удобрения. Это сульфат аммония, суперфосфат и т.д. При их производстве серная кислота берется в чистом виде (100% концентрация). Чтобы произвести тонну аммофоса или суперфосфата понадобится 600 литров H2SO4. Именно эти удобрения в большинстве случаев применяются в сельском хозяйстве.
  • H2SО4 используется для производства взрывчатых веществ.
  • Очистка нефтепродуктов. Для получения керосина, бензина минеральных масел требуется очистка углеводородов, которая происходит с применением серной кислоты. В процессе переработки нефти на очистку углеводородов данная индустрия «забирает» целых 30% мирового тоннажа H2SO4. Вдобавок, серной кислотой увеличивают октановое число топлива и при добыче нефти обрабатывают скважины.
  • В металлургической промышленности. Серная кислота в металлургии используется для очистки от окалины и ржавчины проволоки, листового металла, а также для восстановления алюминия при производстве цветных металлов. Перед тем как покрывать металлические поверхности медью, хромом или никелем, поверхность протравливается серной кислотой.
  • При производстве лекарственных препаратов.
  • При производстве красок.
  • В химической промышленности. H2SO4 используется при производстве моющих средств, этилового средства, инсектицидов и т.д., и без нее эти процессы невозможны.
  • Для получения других известных кислот, органических и неорганических соединений, используемых в промышленных целях.

Соли серной кислоты и их применение

Самые важные соли серной кислоты:

  • Глауберова соль Na2SO4 · 10H2O (кристаллический сульфат натрия). Сфера ее применения достаточно емкая: производство стекла, соды, в ветеринарии и медицине.
  • Сульфат бария BaSO4 используется в производстве резины, бумаги, белой минеральной краски. Вдобавок, он незаменим в медицине при рентгеноскопии желудка. Из него делают «бариевую кашу» для проведения данной процедуры.
  • Сульфат кальция CaSO4. В природе его можно встретить в виде гипса CaSO4 · 2H2O и ангидрита CaSO4. Гипс CaSO4 · 2H2O и сульфат кальция применяют в медицине и строительстве. С гипсом при нагревании до температуры 150 - 170 °C происходит частичная дегидратизация, вследствие которой получается жженый гипс, известный нам как алебастр. Замешивая алебастр с водой до консистенции жидкого теста, масса быстро затвердевает и превращается в подобие камня. Именно это свойство алебастра активно используется в строительных работах: из него делают слепки и отливочные формы. В штукатурных работах алебастр незаменим в качестве вяжущего материала. Пациентам травматологических отделений накладывают специальные фиксирующие твердые повязки – они делаются на основе алебастра.
  • Железный купорос FeSO4 · 7H2O используют для приготовления чернил, пропитки дерева, а также в сельскохозяйственной деятельности для уничтожения вредителей.
  • Квасцы KCr(SO4)2 · 12H2O , KAl(SO4)2 · 12H2O и др. используют в производстве красок и кожевенной промышленности (дублении кожи).
  • Медный купорос CuSO4 · 5H2O многие из вас знают не понаслышке. Это активный помощник в сельском хозяйстве при борьбе с болезнями растений и вредителями – водным раствором CuSO4 · 5H2O протравливают зерно и опрыскивают растения. Также его применяют для приготовления некоторых минеральных красок. А в быту его используют для выведения плесени со стен.
  • Сульфат алюминия – его используют в целлюлозно-бумажной промышленности.

Серная кислота в разбавленном виде применяется в качестве электролита в свинцовых аккумуляторах. Вдобавок, она используется для производства моющих средств и удобрений. Но в большинстве случаев она идет в виде олеума – это раствор SO3 в H2SO4 (можно встретить и другие формулы олеума).

Удивительный факт! Олеум химически активнее, чем концентрированная серная кислота, но, несмотря на это, он не вступает в реакцию со сталью! Именно по этой причине его проще транспортировать, чем саму серную кислоту.

Сфера использования «королевы кислот» поистине масштабна, и сложно рассказать обо всех способах ее применения в промышленности. Также она применяется в качестве эмульгатора в пищевой промышленности, для очистки воды, при синтезе взрывчатых веществ и множество других целей.

История появления серной кислоты

Кто из нас хоть раз не слышал о медном купоросе? Так вот, его изучением занимались еще в древности, и в некоторых работах начала новой эры ученые обсуждали происхождение купоросов и их свойства. Купоросы изучали греческий врач Диоскорид, римский исследователь природы Плиний Старший, и в своих трудах они писали о проводимых опытах. В медицинских целях различные вещества-купоросы применял древний лекарь Ибн Сина. Как использовались купоросы в металлургии, говорилось в работах алхимиков Древней Греции Зосимы из Панополиса.

Первейшим способом получения серной кислоты является процесс нагревания алюмокалиевых квасцов, и об этом есть информация в алхимической литературе XIII века. В то время состав квасцов и суть процесса была не известна алхимикам, но уже в XV веке химическим синтезом серной кислоты стали заниматься целенаправленно. Процесс был таковым: алхимики обрабатывали смесь серы и сульфида сурьмы (III) Sb2S3 при нагревании с азотной кислотой.

В средневековые времена в Европе серную кислоту называли «купоросным маслом», но потом название изменилось на купоросную кислоту.

В XVII веке Иоганн Глаубер в результате горения калийной селитры и самородной серы в присутствии водных паров получил серную кислоту. В результате окисления серы селитрой получался оксид серы, вступавший в реакцию с парами воды, и в итоге получалась жидкость маслянистой консистенции. Это было купоросное масло, и это название серной кислоты существует и поныне.

Фармацевт из Лондона Уорд Джошуа в тридцатые годы XVIII века применял данную реакцию для промышленного производства серной кислоты, но в средневековье ее потребление ограничивалось несколькими десятками килограммов. Сфера использования была узкой: для алхимических опытов, очистки драгоценных металлов и в аптекарском деле. Концентрированная серная кислота в небольших объемах использовалась в производстве особых спичек, которые содержали бертолетову соль.

На Руси только лишь в XVII веке появилась купоросная кислота.

В Англии в Бирмингеме Джон Робак в 1746 году адаптировал указанный выше способ получения серной кислоты и запустил производство. При этом он использовал прочные крупные освинцованные камеры, которые были дешевле стеклянных емкостей.

В промышленности этот способ держал позиции почти 200 лет, и в камерах получали 65%-ую серную кислоту.

Через время английский Гловер и французский химик Гей-Люссак усовершенствовали сам процесс, и серная кислота стала получаться с концентрацией 78%. Но для производства, к примеру, красителей такая кислота не подходила.

В начале 19 века были открыты новые способы окисления сернистого газа в серный ангидрид.

Первоначально это делали с применением окислов азота, а потом использовали в качестве катализатора платину. Два этих метода окисления сернистого газа усовершенствовались и дальше. Окисление сернистого газа на платиновых и других катализаторах стало называться контактным способом. А окисление этого газа окислами азота получило название нитрозного способа получения серной кислоты.

Британский торговец уксусной кислотой Перегрин Филипс только лишь в 1831 году запатентовал экономичный процесс для производства оксида серы (VI) и концентрированной серной кислоты, и именно он на сегодняшний день знаком миру как контактный способ ее получения.

Производство суперфосфата началось в 1864 году.

В восьмидесятые годы девятнадцатого века в Европе производство серной кислоты достигло 1 миллиона тонн. Главными производителями стали Германия и Англия, выпускающие 72% от всего объема серной кислоты в мире.

Перевозка серной кислоты является трудоемким и ответственным мероприятием.

Серная кислота относится к классу опасных химических веществ, и при контакте с кожными покровами вызывает мощнейшие ожоги. Вдобавок, она может стать причиной химического отравления человека. Если при транспортировке не будут соблюдены определенные правила, то серная кислота по причине своей взрывоопасности может причинить немало вреда, как людям, так и окружающей среде.

Серной кислоте присвоен 8 класс опасности и перевозку должны осуществлять специально обученные и подготовленные профессионалы. Важное условие доставки серной кислоты – соблюдение специально разработанных Правил перевозки опасных грузов.

Перевозка автомобильным транспортом осуществляется согласно следующим правилам:

  1. Под перевозку изготавливают специальные емкости из особого стального сплава, не вступающего в реакцию с серной кислотой или титана. Такие емкости не окисляются. Опасную серную кислоту перевозят в специальных сернокислотных химических цистернах. Они отличаются по конструкции и при перевозке подбираются в зависимости от вида серной кислоты.
  2. При перевозке дымящейся кислоты берутся специализированные изотермические цистерны-термосы, в которых для сохранения химических свойств кислоты поддерживается необходимый температурный режим.
  3. Если перевозится обычная кислота, то выбирается сернокислотная цистерна.
  4. Перевозка серной кислоты автотранспортом, таких видов как дымящаяся, безводная, концентрированная, для аккумуляторов, гловерная осуществляется в специальной таре: цистернах, бочках, контейнерах.
  5. Перевозкой опасного груза могут заниматься исключительно водители, у которых на руках есть свидетельство АДР.
  6. Время в пути не имеет ограничений, так как при перевозке нужно строго придерживаться допустимой скорости.
  7. При перевозке строится специальный маршрут, который должен пролегать, минуя места большого скопления людей и производственные объекты.
  8. Транспорт должен иметь специальную маркировку и знаки опасности.

Опасные свойства серной кислоты для человека

Серная кислота представляет повышенную опасность для человеческого организма. Ее токсическое действие наступает не только при непосредственном контакте с кожей, но при вдыхании ее паров, когда происходит выделение сернистого газа. Опасное воздействие распространяется на:

  • Дыхательную систему;
  • Кожные покровы;
  • Слизистые оболочки.

Интоксикацию организма может усилить мышьяк, который часто входит в состав серной кислоты.

Важно! Как вы знаете, при соприкосновении кислоты с кожей происходят сильнейшие ожоги. Не меньшую опасность представляет и отравление парами серной кислоты. Безопасная доза содержания серной кислоты в воздухе равняется всего 0,3 мг на 1 квадратный метр.

Если на слизистые покровы или на кожу попадает серная кислота, появляется сильный ожог, плохо заживающий. Если по масштабу ожог внушительный, у пострадавшего развивается ожоговая болезнь, которая может привести даже к смертельному исходу, если своевременно не будет оказана квалифицированная медицинская помощь.

Важно! Для взрослого человека смертельная доза серной кислоты равняется всего 0,18 см на 1 литр.

Безусловно, «испытать на себе» токсическое действие кислоты в обычной жизни проблематично. Чаще всего отравление кислотой происходит из-за пренебрежения техникой безопасности на производстве при работе с раствором.

Может случиться массовое отравление парами серной кислоты вследствие технических неполадок на производстве или неосторожности, и происходит массивный выброс в атмосферу. Для предотвращения таких ситуаций работают специальные службы, задача которых контролировать функционирование производства, где используется опасная кислота.

Какие симптомы наблюдаются при интоксикации серной кислотой

Если кислота была принята внутрь:

  • Боль в области пищеварительных органов.
  • Тошнота и рвота.
  • Нарушение стула, как итог сильных кишечных расстройств.
  • Сильное выделение слюны.
  • Из-за токсического воздействия на почки, моча становится красноватой.
  • Отек гортани и горла. Возникают хрипы, осиплость. Это может привести к летальному исходу от удушья.
  • На деснах появляются бурые пятна.
  • Кожные покровы синеют.

При ожоге кожных покровов могут быть все осложнения, присущие для ожоговой болезни.

При отравлении парами наблюдается такая картина:

  • Ожог слизистой оболочки глаз.
  • Носовое кровотечение.
  • Ожог слизистых оболочек дыхательных путей. При этом пострадавший испытывает сильный болевой симптом.
  • Отек гортани с симптомами удушения (нехватка кислорода, кожа синеет).
  • Если отравление сильное, то может быть тошнота и рвота.

Важно знать! Отравление кислотой после приема внутрь намного опасней, чем интоксикация от вдыхания паров.

Первая помощь и терапевтические процедуры при поражении серной кислотой

Действуйте по следующей схеме при контакте с серной кислотой:

  • Первым делом вызовите скорую помощь. Если жидкость попала внутрь, то сделайте промывание желудка теплой водой. После этого мелкими глотками понадобится выпить 100 граммов подсолнечного или оливкового масла. Вдобавок, следует проглотить кусочек льда, выпить молоко или жженую магнезию. Это нужно сделать для снижения концентрации серной кислоты и облегчения состояния человека.
  • Если кислота попала в глаза, нужно промыть их проточной водой, а затем закапать раствором дикаина и новокаина.
  • При попадании кислоты на кожу, обожженное место нужно хорошо промыть под проточной водой и наложить повязку с содой. Промывать нужно около 10-15 минут.
  • При отравлении парами нужно выйти на свежий воздух, а также промыть по мере доступности пострадавшие слизистые водой.

В условиях стационара лечение будет зависеть от площади ожога и степени отравления. Обезболивание осуществляют только новокаином. Во избежание развития в области поражения инфекции, пациенту подбирают курс антибиотикотерапии.

При желудочном кровотечении вводится плазма или переливается кровь. Источник кровотечения могут устранять оперативным путем.

  1. Серная кислота в чистом 100%-ом виде встречается в природе. К примеру, в Италии на Сицилии в Мертвом море можно увидеть уникальное явление – серная кислота просачивается прямо из дна! А происходит вот что: пирит из земной коры служит в этом случае сырьем для ее образования. Это место еще называют Озером смерти, и к нему боятся подлетать даже насекомые!
  2. После больших извержений вулканов в земной атмосфере часто можно обнаружить капли серной кислоты, и в таких случаях «виновница» может принести негативные последствия для окружающей среды и стать причиной серьезных изменений климата.
  3. Серная кислота является активным поглотителем воды, поэтому ее используют в качестве осушителя газов. В былые времена, чтобы в помещениях не запотевали окна, эту кислоту наливали в баночки и ставили между стеклами оконных проемов.
  4. Именно серная кислота – основная причина выпадения кислотных дождей. Главная причина образования кислотного дождя – загрязнение воздуха диоксидом серы, и он при растворении в воде образует серную кислоту. В свою очередь двуокись серы выделяется при сжигании ископаемого топлива. В кислотных дождях, исследуемых за последние годы, возросло содержание азотной кислоты. Причина такого явления – снижение выбросов двуокиси серы. Несмотря на этот факт, основной причиной появления кислотных дождей так и остается серная кислота.

Мы предлагаем вам видеоподборку интересных опытов с серной кислотой.

Рассмотрим реакцию серной кислоты при ее заливании в сахар. На первых секундах попадания серной кислоты в колбу с сахаром происходит потемнение смеси. После нескольких секунд субстанция приобретает черный цвет. Далее происходит самое интересное. Масса начинает стремительно расти и вылазить за пределы колбы. На выходе получаем гордое вещество, похоже на пористый древесный уголь, превышающий первоначальный объем в 3-4 раза.

Автор видео предлагает сравнить реакцию кока-колы с соляной кислотой и серной кислотой. При смешивании Кока-колы с соляной кислотой никаких визуальных изменений не наблюдается, а вот при смешивании с серной кислотой Кока-кола начинает закипать.

Интересное взаимодействие можно наблюдать при попадании серной кислоты на туалетную бумагу. Туалетная бумага состоит из целлюлозы. При попадании кислоты молекулы целлюлозы мгновенно разрушайся с выделением свободного углерода. Подобное обугливание можно наблюдать при попадании кислоты на древесину.

В колбу с концентрированной кислотой добавляю маленький кусочек калия. На первой секунде происходит выделение дыма, после чего металл мгновенно вспыхивает, загорается и взрывается, разделаясь на кусочки.

В следующем опыте при попадании серной кислоты на спичку происходит ее вспыхивание. Во второй части опыта погружают алюминиевую фольгу с ацетоном и спичкой внутри. Происходит мгновенное нагревание фольги с выделением огромного количества дыма и полное ее растворение.

Интересный эффект наблюдается при добавлении пищевой соды в серную кислоту. Сода мгновенно окрашивается в желтый цвет. Реакция протекает с бурным кипением и увеличением объема.

Все вышеприведенные опыты мы категорически не советует проводить в домашних условиях. Серная кислота очень агрессивное и токсичное вещество. Подобные опыты необходимо проводить в специальных помещениях, которые оборудованы принудительной вентиляцией. Газы, выделяемые в реакциях с серной кислотой, очень токсичны и могут вызвать поражение дыхательных путей и отравление организма. Кроме того, подобные опыты проводятся в средствах индивидуальной защиты кожных покровов и органов дыхания. Берегите себя!

Цели урока: учащиеся должны знать строение, физические и химические свойства H 2 SO 4 ; уметь на основе знаний о скорости химических реакций и химическом равновесии обосновывать выбор условий течения реакций, лежащих в основе производства серной кислоты; определять на практике сульфат- и сульфид-ионы.

Основные понятия: сернистый ангидрид, серный ангидрид, комплексное использование сырья.

Ход урока

I. Организационный момент; проверка домашнего задания

II. Новый материал

1. Электронная и структурная формулы. Так как сера находится в 3-м периоде периодической системы, то правило октета не соблюдается и атом серы может приобрести до двенадцати электронов.

(Шесть электронов серы обозначены звездочкой.)

2. Получение. Серная кислота образуется при взаимодействии оксида серы (VI) с водой (SO 3 + Н 2 О H 2 SO 4). Описание производства серной кислоты приводится в § 16 (, с. 37 - 42).

3. Физические свойства. Серная кислота -- бесцветная, тяжелая (=1,84 г/см 3), нелетучая жидкость. При растворении ее в воде происходит очень сильное разогревание. Помните, что нельзя вливать воду в концентрированную серную кислоту (рис. 2)! Концентрированная серная кислота поглощает из воздуха водяные пары. В этом можно убедиться, если открытый сосуд с концентрированной серной кислотой уравновесить на весах: через некоторое время чашка с сосудом опустится.

Рис. 2.

4. Химические свойства. Разбавленная серная кислота обладает общими свойствами, характерными для кислот и специфическими (табл. 7).

Таблица 7

Химические свойства серной кислоты

Общие с другими кислотами

Специфические

1. Водный раствор изменяет окраску индикаторов.

1. Концентрированная серная кислота -- сильный окислитель: при нагревании она реагирует почти со всеми металлами (искл. Аu, Pt и нек. др.). В этих реакциях в зависимости от активности металла и условий выделяются SO2, H2S, S, например:

Cu+2H 2 SO 4 CuSO 4 +SO 2 +2H 2 O

2. Разбавленная серная кислота реагирует с металлами:

H 2 SO 4 +Zn ZnSO 4 +H 2

2H + + SO 4 2- +Zn 0 Zn 2+ + SO 4 2- +H 2 0

2H + + Zn 0 Zn 2+ + H 2 0

2. Концентрированная серная кислота энергично реагирует с водой с образованием гидратов:

H 2 SO 4 + nH 2 O H 2 SO 4 nН 2 О+ Q

Концентрированная серная кислота способна отщепить от органических веществ водород и кислород в виде воды, обугливая органические вещества

3. Реагирует с основными и амфотерными оксидами:

H 2 SO 4 + MgO MgSO 4 + H 2 O

2H + +SO 4 2- +MgOMg 2+ +SO 4 2- +H 2 O

2H + + MgO Mg 2+ + H 2 O

3. Характерной реакцией на серную кислоту и ее соли является взаимодействие с растворимыми солями бария:

Н 2 SО 4 + ВаСl 2 BaSO 4 +2HCl

2H + + SO 4 2- + Ba 2+ + 2Cl - BaSO 4 + 2Н + + 2Сl -

Ba 2+ + SO 4 2- BaSO 4

Выпадает белый осадок, который не растворяется ни в воде, ни в концентрированной азотной кислоте

4. Взаимодействует с основаниями:

H 2 SO 4 + 2KOH K 2 SO 4 + 2H 2 O

2H + + SO 4 2- + 2K + + 2OH -

2K + + SO 4 2- + 2H 2 O

2H + + 2OH - 2H 2 O

Если кислота взята в избытке, то образуется кислая соль:

H 2 SO 4 +NaOH NaHSO 4 +H 2 O

5. Реагирует с солями, вытесняя из них другие кислоты:

3H 2 SO 4 +Ca 3 (PO 4) 2 3CaSO 4 +2H 3 PO 4

Применение. Серную кислоту широко применяют (рис. 3), она является основным продуктам химической промышленности.

Рис. 3. Применение серной кислоты: 1 - получение красителей; 2 - минеральных удобрений; 3 - очистка нефтепродуктов; 4 - электролитическое получение меди; 5 - электролит в аккумуляторах; 6 - получение взрывчатых веществ; 7 - красителей; 8 - искусственного шелка; 9 -- глюкозы; 10 -- солей; 11 - кислот.

Серная кислота образует два ряда солей -- средние и кислые:

Na 2 SО 4 NaHSО 4

сульфат натрия гидросульфат натрия

(средняя соль) (кислая соль)

Соли серной кислоты широко используют, например, Na 2 SO 4 10H 2 O - кристаллогидрат сульфата натрия (глауберова соль) применяют в производстве соды, стекла, в медицине и ветеринарии. CaSO 4 2H 2 O - кристаллогидрат сульфата кальция (природный гипс) - применяют для получения полуводного гипса, необходимого в строительстве, а в медицине - для накладывания гипсовых повязок. CuSO 4 5H 2 O - кристаллогидрат сульфата меди (II) (медный купорос) - используют в борьбе с вредителями растений.

III. Закрепление нового материала

1. Зимой между рамами окон иногда помещают сосуд с концентрированной серной кислотой. С какой целью это делают, почему сосуд нельзя заполнять кислотой доверху?

2. Концентрированная серная кислота при нагревании реагирует с ртутью и серебром, подобно тому, как она реагирует с медью. Составьте уравнения этих реакций и укажите окислитель и восстановитель.

3. Как распознать сульфиды? Где они применяются?

4. Составьте уравнения реакций, которые практически осуществимы, используя приведенные схемы:

Hg + H 2 SO 4(конц)

MgCl 2 + H 2 SO 4(конц.)

Na 2 SO 3 + H 2 SO 4

Al(OH) 3 + H 2 SO 4

При составлении уравнений реакций укажите условия их осуществления. В тех случаях, где это требуется, составьте уравнения в ионном и сокращенном ионном виде.

5. Назовите окислитель в реакциях: а) разбавленной серной кислоты с металлами; б) концентрированной серной кислоты с металлами.

6. Что вы знаете о сернистой кислоте?

7. Почему концентрированная серная кислота является сильным окислителем? Каковы особые свойства концентрированной серной кислоты?

8. Как концентрированная серная кислота взаимодействует с металлами?

9. Где применяются серная кислота и ее соли?

1. Какой объем кислорода потребуется для сжигания: а) 3,4 кг сероводорода; б) 6500 м 3 сероводорода?

2. Какова масса раствора, содержащего 0,2 массовые доли серной кислоты, которая расходуется на реакцию с 4,5 г алюминия?

Лабораторные опыты

VI. Распознавание сульфат-ионов в растворе. В одну пробирку налейте 1--2 мл раствора сульфата натрия, в другую -- столько же сульфата цинка, а в третью -- разбавленного раствора серной кислоты. Во все пробирки поместите по грануле цинка, а затем добавьте несколько капель раствора хлорида бария или нитрата бария.

Задания. 1. Как можно отличить серную кислоту от ее солей? 2. Как отличить сульфаты от других солей? Составьте уравнения проделанных вами реакций в молекулярном, ионном и сокращенном ионном виде.

IV. Домашнее задание

Серная кислота

[править]

Материал из Википедии - свободной энциклопедии

Серная кислота
Общие
Систематическое наименование серная кислота
Химическая формула H 2 SO 4
Отн. молек. масса 98,082 а. е. м.
Молярная масса 98,082 г/моль
Физические свойства
Состояние (ст. усл.) жидкость
Плотность 1,8356 г/см³
Термические свойства
Температура плавления -10,38*С °C
Температура кипения 279,6*С °C
Температура воспламенения не воспламеняется °C
Удельная теплота плавления 10,73 Дж/кг
Химические свойства
pK a -3
Растворимость в воде смешивается г/100 мл
Оптические свойства
Показатель преломления 1.397
Структура
Дипольный момент 2.72 Д
Классификация
Рег. номер CAS 7664-93-9
Регистрационный номер EC 231-639-5
RTECS WS5600000
Токсикология
ЛД 50 510 мг/кг
Токсичность W

Се́рная кислота́ H 2 SO 4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO 3 . Если молярное отношение SO 3:H 2 O < 1, то это водный раствор серной кислоты, если > 1, - раствор SO 3 в серной кислоте (олеум).

Физические и физико-химические свойства

Очень сильная кислота, при 18 о С pK a (1) = −2,8, pK a (2) = 1,92 (К₂ 1,2 10 2); длины связей в молекуле S=O 0,143 нм, S-OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H 2 SO 4 и 1,7 % H 2 О с температурой кипения 338,8 о С). Серная кислота, отвечающая 100%-ному содержанию H 2 SO 4 , имеет состав (%): H 2 SO 4 99,5, HSO 4 − - 0,18, H 3 SO 4 + - 0,14, H 3 O + - 0,09, H 2 S 2 O 7 , - 0,04, HS 2 O 7 ⁻ - 0,05. Смешивается с водой и SO 3 , во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H + , HSO 4 − , и SO₄ 2− . Образует гидраты H 2 SO 4 ·n H 2 O, где n = 1, 2, 3, 4 и 6,5.

Олеум

Основная статья : Олеум

Растворы серного ангидрида SO 3 в серной кислоте называются олеумом, они образуют два соединения H 2 SO 4 ·SO 3 и H 2 SO 4 ·2SO 3 .

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H 2 SO 4 достигает минимума. С увеличением концентрации SO 3 в олеуме, общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO³ увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H₂SO₄·SO₃, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO₃ и 92 % H₂SO₄ и максимально при концентрации 84 и 99,8 % H₂SO₄ [источник не указан 61 день ] . Для олеума минимальное ρ при концентрации 10 % SO₃. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T 3/2 см²/с.

Химические свойства

Серная кислота - довольно сильный окислитель, особенно при нагревании и в концентрированном виде; окисляет HI и частично HBr до свободных галогенов, углерод до CO 2 , S - до SO 2 , окисляет многие металлы (Cu, Hg и др.). При этом серная кислота восстанавливается до SO 2 , а наиболее сильными восстановителями - до S и H 2 S. Концентрированная H 2 SO 4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Разбавленная H 2 SO 4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H 2 SO 4 нехарактерны. Серная кислота образует два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H 2 SO 5 и пероксодисерная H 2 S 2 O 8 кислоты.

Применение

Серную кислоту применяют:

  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
    • Для восстановления смол в фильтрах на производстве дисцилированной воды.

Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ - 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие

Серная кислота и олеум - очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко - ларингит, трахеит, бронхит и т. д. Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Исторические сведения

молекула серной кислоты по Дальтону

Серная кислота известна с древности. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO 4 7H 2 O и CuSO 4 5H 2 O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

В XV веке алхимики обнаружили, что серную кислоту можно получить, сжигая смесь серы и селитры, или из пирита - серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах. И только в середине 18 столетия, когда было установлено, что свинец не растворяется в серной кислоте, от стеклянной лабораторной посуды перешли к большим промышленным свинцовым камерам.

Имеет историческое название: купоросное масло. Изучение кислоты началось с древних времен, в своих трудах ее описывали: греческий врач Диоскорид, римский натуралист Плиний Старший, исламские алхимики Гебер, Рази и Ибн Сина, другие. В Шумерах существовал перечень купоросов, которые классифицировались по цвету вещества. В наше время слово «купорос» объединяет кристаллогидраты сульфатов двухвалентных металлов.

В 17 веке, германо-голландский химик Иоган Глаубер получил серную кислоту путем сжигания серы с (KNO3) в присутствии В 1736 году Джошуа Уорд (фармацевт из Лондона) этот метод использовал в производстве. Это время можно считать точкой отсчета, когда в уже крупных масштабах стала выпускаться серная кислота. Формула ее (H2SO4), как принято считать, была установлена шведским химиком Берцелиусом (1779—1848) немого позже.

Берцелиус при помощи буквенных символов (обозначают химические элементы) и нижних цифровых индексов (указывают на количество в молекуле атомов данного вида) установил, что в одной молекуле содержится 1 атом серы (S), 2 атома водорода (H) и 4 атома кислорода (O). С этого времени стал известен качественный и количественный состав молекулы, то есть на языке химии описана серная кислота.

Показывающая в графическом виде взаимное расположение в молекуле атомов и химических связей между ними (их принято обозначать линиями), информирует, что в центре молекулы находится атом серы, который связан двойными связями с двумя атомами кислорода. С другими двумя атомами кислорода, к каждому из которых прикреплен атом водорода, этот же атом серы соединен одинарными связями.

Свойства

Серная кислота — слегка желтоватая или бесцветная, вязкая жидкость, растворимая в воде при любых концентрациях. Она является сильной минеральной отличается высокой агрессивностью по отношению к металлам (концентрированная не взаимодействует с железом без нагревания, а пассивирует его), горным породам, тканям животных или другим материалам. Характеризуется высокой гигроскопичностью и ярко выраженными свойствами сильного окислителя. При температуре 10,4 оС кислота затвердевает. При нагревании до 300 оС почти 99 % кислота теряет серный ангидрид (SO3).

Свойства ее меняются в зависимости от концентрации ее водного раствора. Существуют общепринятые названия растворов кислоты. Разбавленной кислота считается до 10 %. Аккумуляторная — от 29 до 32 %. При концентрации менее 75 % (как установлено в ГОСТ 2184) ее называют башенной. Если концентрация 98 %, то это будет уже серная кислота концентрированная. Формула(химическая или структурная) во всех случаях остается неизменной.

При растворении в серной кислоте концентрированной серного ангидрида образуется олеум или дымящая серная кислота, формула ее может быть записана так: H2S2O7. Чистая кислота (H2S2O7) является твердым веществом с температурой плавления 36 оС. Реакции гидратации серной кислоты характеризуются выделением тепла в большом количестве.

Разбавленная кислота вступает в реакцию с металлами, реагируя с которыми, проявляет свойства сильного окислителя. При этом восстанавливается серная кислота, формула образованных веществ, содержащих восстановленный (до +4, 0 или -2) атом серы, может быть: SO2, S или H2S.

Реагирует с неметаллами, например, углеродом или серой:

2 H2SO4 + C → 2 SO2 + CO2 + 2 H2O

2 H2SO4 + S → 3 SO2 + 2 H2O

Вступает в реакцию с хлоридом натрия:

H2SO4 + NaCl → NaHSO4 + HCl

Для нее характерна реакция электрофильного замещения атома водорода, присоединенного к бензольному кольцу ароматического соединения, на группу —SO3H.

Получение

В 1831 году был запатентован контактный метод получения H2SO4, являющийся в настоящее время основным. Сегодня большая часть серной кислоты производится с использованием этого метода. В качестве сырья применяется сульфидная руда (чаще железный колчедан FeS2), который обжигают в специальных печах, при этом образуется обжиговый газ. Так как температура газа равняется 900 оС, то его охлаждают серной кислотой с концентрацией 70 %. Затем газ в циклоне и электрофильтре очищают от пыли, в промывных башнях кислотой с концентрацией 40 и 10 % от каталитических ядов (As2O5 и фтора), на мокрых электрофильтрах от аэрозоля кислоты. Далее обжиговый газ, содержащий 9 % сернистого ангидрида (SO2), осушают и подают в контактный аппарат. Пройдя через 3 слоя ванадиевого катализатора, SO2 окисляется в SO3. Для растворения образовавшегося серного ангидрида применяется концентрированная серная кислота. Формула раствора серного ангидрида (SO3) в безводной серной кислоте представляет собой H2S2O7. В таком виде олеум в стальных цистернах транспортируется к потребителю, где его разбавляют до нужной концентрации.

Применение

Благодаря различным химическим свойствами, H2SO4 имеет широкий спектр применения. В производстве самой кислоты, как электролит в свинцово-кислотных аккумуляторах, для изготовления различных чистящих средств, также является важным реагентом в химической промышленности. Она используется также в производстве: спиртов, пластмасс, красителей, резины, эфира, клеев, мыла и моющих средств, фармацевтической продукции, целлюлозы и бумаги, нефтепродуктов.