Специфика работы головного мозга. Как работает головной мозг? Что мозг и он работает

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

Лекцию «Мифы и реалии мозга человека: нейроинтерфейсы, искусственный интеллект, киборги и симбиоты», в которой рассказал про работу мозга и поделился мыслями о будущем взаимодействия человека и машин.

Кадр из кинофильма «Джонни Мнемоник»

Вокруг мозга и интеллекта много мифов, которые в перспективе могут стать устойчивым знанием. Наша работа сосредоточена на том, чтобы развеять эти мифы , - Александр Каплан

Из чего состоит человеческий мозг?

Это 86 миллиардов нервных клеток. Для понимания их работы важнее изучить не сами клетки, а их контакты друг с другом - каждая нервная клетка мозга (нейрон) имеет 10-15 тысяч контактов с другими клетками. Это миллион миллиардов операциональных единиц. Наш мозг управляет 640 мышцами и 360 суставами.

Например, 1 шаг - это работа 300 мышц, а поцелуй - 34.

Наш мозг особо не изменился по сравнению с кроманьонцами. Наш мозг уникален тем, что он не меняет свою структуру под внешние условия, а изменяет окружающую среду под себя.

86 миллиардов - это много или мало?

86 миллиардов нейронов - это очень много. У таких сравнительно умных животных, как обезьяна и дельфин - по 6-8 миллиардов нервных клеток. Настоящий рекордсмен - это слон; в его мозгу 250 млрд нейронов.

Почему слон не пишет музыку и не летает в космос, если у него так много нервных клеток? Дело в том, что у слона почти все нейроны размещены в мозжечке . Слон - очень крупное животное, ему нужно координировать огромное количество мышц, чтобы двигаться. Мозжечок как раз отвечает за координацию движений.

Как учёные считают количество нервных клеток?

Откуда мы знаем про то, сколько нервных клеток в мозге живых организмов? Все эти подсчёты сделала Сюзанна Херкулано-Хузел , профессор нейроанатомии из Рио-де-Жанейро (Бразилия). Результаты своего исследования она опубликовала в 2009 году.

Сюзанна брала мёртвый мозг и взбивала его в блендере, пока не получала что-то вроде смузи. Ядра клеток довольно прочные, поэтому они не пострадали от механического воздействия лезвий. Измерив количество нервных клеток на единицу объёма мозгового смузи, Сюзанна смогла посчитать примерное количество нейронов в мозгу человека, слона или дельфина.

Джонс - наркозависимый бывший военный дельфин из фильма «Джонни Мнемоник». Развитый интеллект этого дельфина позволял животному взламывать системы безопасности противника.

Как мы видим то, что мы видим?

Наши глаза - настоящее природное чудо. Свет фокусируется и попадает на дно глазного яблока, на котором располагаются примерно 120 миллионов светочувствительных «колбочек ». Нервные клетки возбуждаются и отправляют по нервному каналу электрический разряд, попадающий в заднюю часть мозга. Но эти разряды не несут в себе никаких изображений, как в компьютере. После того, как отдел мозга получает электрический разряд от «колбочек», происходит реконструкция изображения.

На основании прошлого опыта. Здесь есть опасность, что мы можем обмануться в том, насколько соответствуют наши внутренние психические образы реальным.

Что такое красный цвет? Откуда мы вообще знаем, что красный - это красный, а зелёный - это зелёный? Цвет является результатом общественного договора. Большинство людей считают так.

Наша внутренняя психическая модель образа зависит от общественного мнения.

На протяжении всей жизни мы выстраиваем модель окружающего нас мира. Эта модель невероятно сложна. В ней мы учитываем даже физические законы, иначе мы бы не могли предсказать самим себе, как полетит мяч, например. Мы подгоняем реальность под нашу индивидуальную модель мира, и картина мира в мозгу достраивается постоянно.

Кадр из кинофильма «Матрица». Мир «Матрицы» является нейроинтерактивной моделью Земли конца XX века. Можно сказать, что принципы моделирования окружающего мира мозгом человека перешли и в Матрицу.

Наш мозг испытывает потребность в достраивании этой модели. Это желание побуждает нас изучать мир вокруг. Наша ментальная модель напрямую зависит от опыта.

Какой у нас объём памяти?

Трейлер к видеоигре Deus Ex: Mankind Divided показывает будущее, в котором люди массово пользуются различными улучшениями для тела. Такими, как многофункциональные протезы конечностей, имплантаты и многое другое.

Любая концепция раскрывается через ряд принципов (от лат. principium - основание), в том числе и концепция взаимосвязи мозга и психики. В работах А.Р. Лурия, Е.Д. Хомской, О.С. Адрианова, Л.С. Цветковой, Н.П. Бехтеревой и др. суммируются основные принципы строения и работы мозга. Благодаря этим исследователям, в мозговой организации можно выявить как общие принципы строения и функционирования, характерные для всех макросистем, так и динамически изменяющиеся индивидуальные особенности этих систем.

А.Р. Лурия выделяет следующие принципы эволюции и строения мозга как органа психики:

  • - принцип эволюционного развития, заключающийся в том, что на различных этапах эволюции отношения организма со средой и его поведение регулировались различными аппаратами нервной системы и, следовательно, мозг человека представляет собой продукт длительного эволюционного развития;
  • - принцип сохранности древних структур, предполагающий, что прежние аппараты мозга сохраняются, уступая ведущее место новым образованиям и приобретая новую роль. Они все больше становятся аппаратами, обеспечивающими фон поведения;
  • - принцип вертикального строения функциональных систем мозга, означающий, что каждая форма поведения обеспечивается совместной работой разных уровней нервного аппарата, связанных между собой как восходящими, так и нисходящими связями, превращающими мозг в саморегулирующуюся систему;
  • - принцип иерархического взаимодействия разных систем мозга, согласно которому возбуждение, возникающее в периферических органах чувств, сначала приходит в первичные (проекционные) зоны, затем распространяется на вторичные зоны коры, которые играют интегрирующую роль, объединяя соматотопические проекции возникших на периферии возбуждений в сложные функциональные системы. Данный принцип, по сути, обеспечивает интегративную деятельность мозга;
  • - принцип соматотопической организации первичных зон мозговой коры, по которому каждому участку тела соответствуют строго определенные пункты коры больших полушарий (точка в точку).
  • - принцип функциональной организации коры отражающий взаимосвязь роли функции и ее проекции в коре больших полушарий мозга: чем большее значение имеет та или иная функциональная система, тем большую площадь занимает ее проекция в первичных отделах коры головного мозга. Иллюстрацией данного принципа являются известные схемы Пенфилда; мозг психика нейроанатомический
  • - принцип прогрессивной кортиколизации, суть которого в том, что чем выше на эволюционной лестнице стоит животное, тем в большей степени его поведение регулируется корой и тем больше возрастает дифференцированный характер этих регуляций.

Кроме того, А.Р. Лурия указывал, на то, что, и формирование психической деятельности человека идет от простых к более сложным, опосредованным формам.

О.С. Адрианов, дополняя и развивая науку о мозге, сформулировал два принципа:

  • - принцип многоуровневого взаимодействия вертикально организованных путей проведения возбуждения, что дает возможности для различных типов переработки афферентных сигналов;
  • - принцип иерархического соподчинения различных систем мозга, благодаря которому уменьшается число степеней свободы каждой системы и становится возможным управление одного уровня иерархии другим.

Е.Д. Хомская, опираясь на современные представления об основных принципах организации мозга как субстрата психики, обосновывает два основных принципа теории локализации высших психических функций:

  • - принцип системной локализации функций (каждая психическая функция опирается на сложные взаимосвязанные структурно-функциональные системы мозга);
  • - принцип динамической локализации функций (каждая психическая функция имеет динамическую, изменчивую мозговую организацию, различную у разных людей и в разные возрасты их жизни).

Выделенные выше главные принципы структурно-функциональной организации мозга сформулированы на основе анализа нейроанатомических данных.

Уже более 100 лет учёные бьются над вопросом: как работает мозг человека? Открытий сделано очень много, но тайн и загадок от этого меньше не стало. Серое вещество, покоящееся в черепной коробке, представляет собой уникальнейшее образование. При небольших размерах и массе, относительно человеческого тела, оно потребляет 20% всего кислорода, который поступает в лёгкие.

Мозговое вещество полностью формируется в возрасте 7 лет. При этом ему требуется гораздо больше энергии, чем в зрелые годы. Оно абсолютно нечувствительно к боли, так как не имеет соответствующих рецепторов. Благодаря серому веществу, люди осязают, ощущают, видят, говорят, слышат. Но самое главное, человек способен думать, выражать эмоции и принимать решения.

Сколько нейронов в человеческом мозге?

Нейрон - это специфическая нервная клетка, имеющая отростки. Эти отростки соприкасаются с отростками других нейронов. В результате получается огромная сеть, через которую передаются различные сигналы. А вот каналы или нервные пути, по которым идут сигналы, называются синапсами. Вся эта сложная система в совокупности и представляет собой мозг человека. Сколько же в нём содержится нейронов?

Уже давно существует число 100 млрд. Якобы, именно оно и обозначает общее количество нейронов. Но каждый понимает, что данная величина приблизительная. Да и действительно, как посчитать все микроскопические клетки, не упустив ни одной? Задача просто невыполнимая.

Однако нейробиологи из Дании сумели сделать это. Они взяли 4 мозга умерших людей и провели с ними изотропную фрактализацию. Выражаясь простым языком, разжижили мозги и превратили их в гомогенную эмульсию или "мозговой суп". После этого были изучены образцы "супа" и подсчитано количество нейронов в них. Далее математическим путём рассчитали общее количество нервных клеток во всех 4-х исследуемых образцах мозга.

В результате этого выяснилось, что серое вещество содержит в себе примерно 86 млрд. нейронов. Ни один из 4-х образцов не набрал 100 млрд. клеток. Конечно, неискушённому человеку может показаться, что разница в 14 млрд. абсолютно непринципиальная. Но именно из такого числа нейронов состоит серое вещество бабуина. А у гориллы насчитывается 28 млрд. нейронов. Так что числа 100 и 86 представляют собой довольно существенное различие.

Размеры мозга и умственные способности

Иногда в литературе проскальзывает мысль, что чем больше у человека объём серого вещества, тем, соответственно, больше и ума. Данное утверждение довольно сомнительное, но всё познаётся в сравнении. Если, к примеру, взять мозговое вещество дельфина и муравьеда, то здесь сразу видно, что у дельфина объём больше, а ума больше и подавно. Но не стоит торопиться с выводами.

Давайте посмотрим на корову и обезьяну. Кто умнее? Конечно, обезьяна. Но мозги коровы по своим размерам значительно превосходят мозги приматов. Можно сравнить человека и кита. Средний вес серого вещества человека составляет 1,2 кг, а у огромного млекопитающего этот показатель равен 6,8 кг. Однако интеллектуальные возможности людей на несколько порядков выше. Отсюда можно сделать вывод, что размеры мозга никак не связаны с умственными способностями.

Зависит ли количество нейронов от объёма мозга?

Данный вопрос совсем не простой, как может показаться на первый взгляд. Размеры мыслительного органа у разных животных сильно различаются. При этом до недавних пор превалировало мнение, что плотность нервных клеток (отношение количества к массе) является величиной постоянной, независимо от видов и классов живых существ.

Однако в настоящее время доказано, что это вовсе не так. В наши дни достоверно известно, что у разных млекопитающих абсолютно разные правила расчёта нейронов. То есть в 1 грамме мозговой ткани может быть совершенно разное количество клеток.

В мозгах тех же приматов количество нейронов увеличивается пропорционально объёму серого вещества. А вот у грызунов пропорциональности никакой нет. У этих животных с увеличением объёма мозговой ткани количество нервных клеток уменьшается. Что же касается насекомоядных, то тут наблюдается комбинация - грызуны + приматы. Серое вещество увеличивается быстрее по-сравнению с количеством нейронов. А вот для мозжечка характерна линейная скорость роста, как и у приматов.

Вывод здесь следующий: именно мозги приматов устроены наиболее эффективно, так как максимально используют весь доступный объём. Если количество нейронов у приматов увеличить в 10 раз, то это приведёт к 11-кратному увеличению объёма мозгового вещества. А у грызунов объём увеличится в 35 раз. Если представить грызуна, у которого насчитывается 86 млрд. нейронов, то тогда вес его серого вещества будет составлять 35 кг.

Мысли и мозг человека

Работа мозга человека напрямую связана с мыслительной деятельностью. И вот тут наблюдается самое интересное. Биологическая масса, из которой и состоит серое вещество, не может вырабатывать мысли. Да, в ней наблюдается огромное количество химических и электрических процессов. Но они никак не связаны с мыслительной деятельностью, а тем более с чувствами и переживаниями. То, что делает человека "венцом природы", лежит вовсе не под черепной коробкой. А где же тогда?

Существует мнение, что кора головного мозга является всего лишь передающим устройством. Откуда-то извне к ней идут сигналы. Они воспринимаются нейронами, и таким образом зарождаются мысли. А может быть, всем руководит молекула ДНК . Именно она и генерирует определённые мыслеобразы, а человеку кажется, что думает именно он и думает при этом головой.

В любом случае, можно лишь догадываться и фантазировать. Сам же процесс мыслеобразования представляет собой тайну за семью печатями. Познать её не дано никому. Остаётся лишь принять данную информацию как должное. В то же время напрашивается логический вывод: если мысли рождаются не у нас в голове, то, стало быть, они не наши, а тогда и слушать их не стоит? Они чужаки и частенько провоцируют людей на неправильные поступки.

Таким образом, вопрос - как работает мозг человека? - остаётся без ответа. Мы лишь знаем, что в нём существует огромное количество нейронов, связанных синапсами. Нейроны объединены в группы, каждая из которых выполняет определённые функции. Это осязание, обоняние, слух, зрение, координация и многое-многое другое. Но вот что порождает мысли и чувства - тут ответа нет. А ведь это самое главное в жизнедеятельности людей. Всё остальное – обычные химические процессы, которые может познать любой человек при должном усердии и трудолюбии.

Дмитрий Шестаков