Моделирование с использованием булевых операций. Моделирование при помощи булева объединения. Эквивалентность или логическая равнозначность

Булевы операции применяются к трехмерным объектам для управления их формой. С помощью булевых операций легко можно вырезать в объекте отверстие, получить деталь сложной формы и многое другое. Кроме того, булевы операции применяют, чтобы упростить геометрию объекта посредством удаления невидимых поверхностей.

Булевы операции всегда применяются к двум объектам. Первый объект (который выделен) называется операндом А. Второй объект (который следует указать) – операнд Б. Тип булевой операции и взаимное расположение объектов определяют конечный результат. Объекты, к которым планируется применить булевы операции, должны иметь общую область, то есть соприкасаться друг с другом.

Существует четыре основных типа булевых операций:

Union (Сложение) – операция предназначена для объединения двух исходных объектов, при этом общая область двух объектов удаляется (рис. 4.16, а );

Intersection (Пересечение) – булев объект состоит только из общей области исходных объектов (рис. 4.16, б );

Рис. 4.16. Булевы операции Union (Сложение) и Intersection (Пересечение) с участием двух объектов – бутылки и сферы

Subtraction (А – В) (Вычитание (А –Б)) и Subtraction (В – А) (Вычитание (Б –А)) – один исходный объект вырезает отверстие из другого исходного объекта (рис. 4.17);

Рис. 4.17. Булева операция Subtraction (А – В) и Subtraction (В – А) (Вычитание) с участием двух объектов – бутылки и сферы

Cut (Разрезание) – операция предназначена для разрезания одного объекта другим (рис. 4.18).

Рис. 4.18. Булева операция Cut (Разрезание) с участием двух объектов – бутылки и плоскости

Для применения булевых операций нужно сделать следующее.

1. Создать два исходных объекта и убедиться, что они пересекаются.

2. Выделить один из объектов (выделенный объект автоматически получает имя – объект А).

3. Создать составной объект Boolean (Булев) одним из следующих способов:

Выбрать команду меню Create → Compound → Boolean (Создать → Составные → Булев);

На вкладке Create (Создание) командной панели активизировать категорию создания трехмерных объектов Geometry (Геометрия), раскрыть список подкатегорий (там, где написано Standard Primitives (Стандартные примитивы)), выбрать строку Compound Objects (Составные объекты) и в свитке Object Type (Тип объекта) нажать кнопку с названием операции – Boolean (Булев). В свитке Parameters (Параметры) в области Operands (Операнды) появится имя операнда А.

4. Установить переключатель Operation (Операция) в положение, соответствующее нужной операции.

5. В свитке Pick Boolean (Выбрать булев объект) нажать кнопку Pick Operand B (Выбрать операнд Б), после чего в любом окне проекции щелкнуть на втором исходном объекте.



Если после применения операции понадобится изменить параметры операндов (например, изменить радиус сферы), следует на командной панели переключиться на вкладку Modify (Редактирование), в стеке модификаторов щелкнуть на плюсике слева от названия объекта Boolean (Булев). В появившемся списке перейти на единственный уровень редактирования – Operands (Операнды), затем в свитке Parameters (Параметры) в списке Operands (Операнды) щелкнуть на соответствующей строке. В стеке модификаторов под строкой Boolean (Булевы) появится строка-идентификатор соответствующего операнда. Щелчок на этой строке отобразит параметры операнда (рис. 4.19).

Рис. 4.19. Управление параметрами операндов осуществляется в стеке модификаторов

По умолчанию при выполнении булевой операции исходный объект Б удаляется. Однако если вы хотите, чтобы он оставался в сцене в том виде, в котором он присутствовал до булевой операции, необходимо до ее выполнения изменить положение переключателя в свитке Pick Boolean (Выбрать булев объект). Этот переключатель имеет четыре положения:

Move (Перемещение) – после выполнения булевой операции объект Б удаляется. По умолчанию используется именно это положение;

Copy (Независимая копия объекта) – булева операция выполняется с копией объекта Б, а сам объект остается в сцене;

Instance (Привязка) – булева операция производится с зависимой копией объекта Б. При этом исходный объект остается в сцене, а изменение параметров одного из объектов (исходного или булевого) влечет за собой изменение параметров другого;

Reference (Подчинение) – создается копия объекта Б, которая частично зависит от исходного объекта.

Конъюнкция или логическое умножение (в теории множеств – это пересечение)

Конъюнкция является сложным логическим выражением, которое истинно в том и только том случае, когда оба простых выражения являются истинными. Такая ситуация возможно лишь в единственном случае, во всех остальных случаях конъюнкция ложна.

Обозначение: &, $\wedge$, $\cdot$.

Таблица истинности для конъюнкции

Рисунок 1.

Свойства конъюнкции:

  1. Если хотя бы одно из подвыражений конъюнкции ложно на некотором наборе значений переменных, то и вся конъюнкция будет ложной для этого набора значений.
  2. Если все выражения конъюнкции истинны на некотором наборе значений переменных, то и вся конъюнкция тоже будет истинна.
  3. Значение всей конъюнкции сложного выражения не зависит от порядка записи подвыражений, к которым она применяется (как в математике умножение).

Дизъюнкция или логическое сложение (в теории множеств это объединение)

Дизъюнкция является сложным логическим выражением, которое истинно практически всегда, за исключением, когда все выражения ложны.

Обозначение: +, $\vee$.

Таблица истинности для дизъюнкции

Рисунок 2.

Свойства дизъюнкции:

  1. Если хотя бы одно из подвыражений дизъюнкции истинно на некотором наборе значений переменных, то и вся дизъюнкция принимает истинное значение для данного набора подвыражений.
  2. Если все выражения из некоторого списка дизъюнкции ложны на некотором наборе значений переменных, то и вся дизъюнкция этих выражений тоже ложна.
  3. Значение всей дизъюнкции не зависит от порядка записи подвыражений (как в математике – сложение).

Отрицание, логическое отрицание или инверсия (в теории множеств это отрицание)

Отрицание - означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО и в итоге получаем, что если исходное выражение истинно, то отрицание исходного – будет ложно и наоборот, если исходное выражение ложно, то его отрицание будет истинно.

Обозначения: не $A$, $\bar{A}$, $¬A$.

Таблица истинности для инверсии

Рисунок 3.

Свойства отрицания:

«Двойное отрицание» $¬¬A$ является следствием суждения $A$, то есть имеет место тавтология в формальной логике и равно самому значению в булевой логике.

Импликация или логическое следование

Импликация - это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть, данная логическая операция связывает два простых логических выражения, из которых первое является условием ($A$), а второе ($A$) является следствием условия ($A$).

Обозначения: $\to$, $\Rightarrow$.

Таблица истинности для импликации

Рисунок 4.

Свойства импликации:

  1. $A \to B = ¬A \vee B$.
  2. Импликация $A \to B$ ложна, если $A=1$ и $B=0$.
  3. Если $A=0$, то импликация $A \to B$ истинна при любом значении $B$, (из лжи может следовать истинна).

Эквивалентность или логическая равнозначность

Эквивалентность - это сложное логическое выражение, которое истинно на равных значениях переменных $A$ и $B$.

Обозначения: $\leftrightarrow$, $\Leftrightarrow$, $\equiv$.

Таблица истинности для эквивалентности

Рисунок 5.

Свойства эквивалентности:

  1. Эквивалентность истинна на равных наборах значений переменных $A$ и $B$.
  2. КНФ $A \equiv B = (\bar{A} \vee B) \cdot (A \cdot \bar{B})$
  3. ДНФ $A \equiv B = \bar{A} \cdot \bar{B} \vee A \cdot B$

Строгая дизъюнкция или сложение по модулю 2 (в теории множеств это объединение двух множеств без их пересечения)

Строгая дизъюнкция истинна, если значения аргументов не равны.

Для электроники это означает, что реализация схем возможна с использованием одного типового элемента (правда это дорогостоящий элемент).

Порядок выполнения логических операций в сложном логическом выражении

  1. Инверсия(отрицание);
  2. Конъюнкция (логическое умножение);
  3. Дизъюнкция и строгая дизъюнкция (логическое сложение);
  4. Импликация (следствие);
  5. Эквивалентность (тождество).

Для того чтобы изменить указанный порядок выполнения логических операций, необходимо использовать скобки.

Общие свойства

Для набора из $n$ логических переменных существует ровно $2^n$ различных значений. Таблица истинности для логического выражения от $n$ переменных содержит $n+1$ столбец и $2^n$ строк.

Цель работы : Изучение основных приемов размножения объектов с помощью функции «массив»; изучение технологии создания объектов с помощью булевых операций.

Булевы операции

Булевы операции (часто их называют логическими) пришли в 3D графику из математики, точнее, из булевой алгебры (названной в честь ее создателя - Джорджа Буля) и основаны на понятиях объединения, пересечения и исключения. В 3D Studio Max существует три основных булевых операции, результаты применения которых показаны на рисунке 1:
  1. Объединение (соединение объектов в один).
  2. Пересечение (в булевый объект входят только общие части исходных объектов).
  3. Исключение (вырезание).
Рисунок 1. Результаты применения булевых операций.
Объединение . Результирующий объект, полученный объединением двух объектов, содержит все точки двух исходных объектов-операндов, за исключением дубликатов общих точек.

Пересечение . Объект, полученный в результате операции пересечения, содержит только те точки, которые являются общими для двух исходных объектов.

Вычитание . Объект, который получается в результате выполнения этой логической операции, содержит только точки первого объекта за исключением тех точек, которые являются общими для двух объектов. Операция логического вычитания одного объекта из другого является некоммутативной. Другими словами, разность А - В – это не то же самое, что разность В - А .

Использование булевых операций

Булевы операции в 3D Studio Max можно выполнять только над двумя объектами. Эти объекты должны пересекаться, т.е. содержать общие точки. Булевы операции позволяют создавать составные объекты, выполняя операции объединения, вычитания и пересечения частей двух объектов. К булевым операциям можно получить доступ следующим образом (рис. 2).
Рисунок 1. Получение доступа к булевым операциям.

Вначале требуется выделить объект, который будет участвовать в операции первым, т.е. будет объектом А в одном из окон проекций. Затем необходимо щелкнуть на вкладке Create (Создать) панели команд и на кнопке Geometry (Геометрия). В раскрывающемся списке под этой кнопкой выберите режим Compound Objects (Составные объекты). В ветви Object Type (Тип объекта) щелкните на кнопке Boolean (Булевы операции). В панели команд появится свиток с операциями, которые можно выполнять применительно к объектам. Булевы операции упоминают в сочетании с еще одним термином – операндом. Операнд – это переменная, присвоенная выбранным объектам во время выполнения операции. Операнд во многом подобен переменным, используемым в алгебре при составлении уравнений. Например, переменные А и В можно использовать для представления двух объектов, к которым будет применена булева операция.

  • Union (Объединение). Эта функция объединяет два объекта в один и удаляет перекрывающиеся или накладывающиеся области.
  • Intersection (Пересечение). Эта функция создает объект, который содержит только перекрывающиеся области обоих объектов.
  • Substraction (Вычитание [А-В]) и Substraction (Вычитание [В-А]). Эта операция позволяет удалить один из объектов и любые перекрывающиеся области объектов. При операции данного типа выбор А-В приводит к вычитанию объекта В из объекта А, а В-А – к вычитанию объекта А из В.
  • (Добавлена в старших версиях программы) Cut (Разрез). Эта функция рассекает операнд А операндом В. Она работает аналогично модификатору Slice (Сечение), который позволяет рассечь каркас. Обратите внимание на наличие четырех вариантов вырезания: Refine (Уточнение), Split (Расщепление), Remove Inside (Удаление внутри), Remove Outside (Удаление снаружи).
  • Операция Refine добавит в операнд А новые вершины и ребра в местах его пересечения с операндом В. Операция Split рассечет объект на два куска. Операции Remove Inside и Remove Outside удалят из операнда А все грани, которые находятся, соответственно, внутри и снаружи операнда В.
Создание булевых объектов

Объекты типа Boolean (Булевы) создаются за счет применения к оболочкам двух трехмерных тел операций булевой алгебры. Оболочки исходных тел, участвующих в булевой операции – операнды (operands ), обязательно должны пересекаться. Из двух объектов, участвующих в булевой операции, один должен быть выделен до ее начала (операнд А), а другой (операнд В) указывается в ходе операции. После выделения одного из объектов, необходимо выбрать переключатель той операции, которую нужно выполнить. После того, как эти элементы выбраны, следует выбрать переключатель одного из типов копирования:

  • Move (Переместить) – в этом случае в логической операции участвует сам объект. Он пропадет после выполнения операции.
  • Сору (Копия) – в операции участвует копия второго объекта. Сам объект остается при этом без изменения.
  • Reference (Ссылка) – в операции принимает участие ссылка на второй объект.
  • Instance (Экземпляр) – в операции принимает участие экземпляр второго объекта.
Затем потребуется щелкнуть на кнопке Pick Operand В (Выбрать операнд В) и, как только она будет выделена, в окне проекции необходимо выбрать второй объект, применительно к которому нужно выполнить булеву операцию. Приступая к созданию булевых объектов, следует помнить, что иногда они нестабильны и в определенных ситуациях могут приводить к нежелательным результатам. Поэтому, прежде чем применять булевы операции, рекомендуем создать резервную копию текущего проекта, чтобы в случае повреждения объектов их можно было восстановить. В процессе работы с булевыми функциями обнаруживается, что иногда булевы объекты ведут себя крайне нестабильно в случае применения нескольких булевых операций в отношении одних и тех же объектов. Один из возможных методов разрешения этой проблемы – преобразование объекта в редактируемый каркас перед выполнением каждой булевой операции. Это может уменьшить вероятность получения нежелательных результатов.

БУЛЕВА ОПЕРАЦИЯ

Булева операция предназначена для создания нового тела на основе двух или нескольких уже существующих тел. В результате выполнения операции создается новое тело, являющееся комбинацией исходных тел. Существуют три способа комбинирования исходных тел: сложение, вычитание и пересечение. Результатом операции “сложение” будет тело, включающее в себя часть, которая есть только у первого тела, часть, которая есть только у второго тела, и часть, которая является общей для обоих тел. Результатом операции “вычитание” будет тело, которое является вычитанием второго тела из первого, и будет состоять из части, которая есть только у первого тела. Результатом операции “пересечение” будет тело, которое является пересечением двух тел, и будет состоять только из части, которая является общей для обоих тел.

Задание булевой операции

Для задания булевой операции используется команда “3B:Создать Булеву операцию” . Вызов команды:

После вызова команды становится возможным выбор одной из двух опций:

Выбрать несколько операций.

Каждая опция, определяет способ создания булевой операции. Существует два способа

- создание булевой операции на основе двух тел (опция )

- создание булевой операции на основе нескольких тел (опция )

При вызове команды всегда активизирована опция “Выбрать первое тело”.

Существует еще один способ вызова команды: Подведите курсор к одной из операций модели и

нажмите , в появившемся меню выберите пункт “Создать”. Появится список возможных команд, которые можно вызвать при выборе операции. Выберите пункт “Создать булеву операцию”, при этом выбранное тело будет являться первым выбранным элементом команды.

Трёхмерное моделирование

В этом случае можно создать операцию только на основе двух тел.

Создание булевой операции на основе двух тел

При выполнении булевой операции на основе двух тел, необходимо выполнить следующие действия:

1. Выбрать первое тело.

2. Выбрать второе тело.

3. Выбрать тип операции (сложение, вычитание, пересечение).

4. Завершить ввод.

Выбор первого тела осуществляется с помощью опции

Выбрать первое тело.

После выбора первого тела становятся доступны следующие опции

Выбрать второе тело.

Отменить выбор второго операнда булевой операции.

Булева операция

На приведенном примере показан чертеж детали, для которого были выполнены необходимые трехмерные построения и с помощью операций выталкивания и вращения созданы два тела. На рисунках показаны ситуации, возникающие при различных способах выполнения булевой операции. Приведенный выше рисунок (изображение справа) отражает результат операции сложение. Результат этой операции визуально ничем не отличается от исходного состояния, когда существовали два разнородных тела. Но выполнение булевой операции необходимо для того, чтобы построенный объект стал единым целым. Тогда можно рассчитывать различные характеристики этого тела: объем, площадь поверхности и т.д. Для исходных тел может использоваться различный материал, а результирующее тело имеет единый материал.

На нижнем рисунке слева показан результат операции вычитания, а справа – пересечения.

Следует отметить, что при первом выполнении команды булевой операции после запуска программы в автоменю автоматически устанавливается тип булевой операции “Сложение”. При повторном вызове команды создания булевой операции в нажатом состоянии будет кнопка, соответствующая типу булевой операции, выбранной при последнем вызове команды.

Создание копий исходных операций

Тела, выбранные для выполнения одной булевой операции, становятся недоступными для выполнения другой. Доступным становится тело, полученное в результате выполнения булевой операции. В определенных случаях требуется неоднократно использовать одно тело в различных операциях. Для предоставления такой возможности существует опция

Создать копию исходных операций.

При вызове данной опции появляется окно диалога, где требуется указать, копию какого из выбранных тел мы хотим создать.

Трёхмерное моделирование

Если была вызвана опция "Создать копию", то перед выполнением булевой операции производится выполнение специального действия. В результате этого действия создаются тела - копии исходных тел, которые в дальнейшем можно использовать. Поясним вышесказанное на примере. На рисунке показаны исходные 2D построения и две созданные булевы операции.

Вначале были созданы три тела: два параллелепипеда на основе прямоугольного профиля и цилиндр. Затем была выполнена булева операция вычитания из первого параллелепипеда цилиндра. В результате образовался параллелепипед с отверстием. Но такую же операцию необходимо выполнить и со вторым параллелепипедом. Для этого на этапе выполнения первой булевой операции использовали опцию "Создать копию" для второго тела (цилиндра). Поэтому после первой булевой операции по-прежнему осталось три тела: параллелепипед с отверстием, второй параллелепипед и копия цилиндра. Затем выполнили вторую булеву операцию между параллелепипедом и цилиндром.

Создание булевой операции на основе нескольких тел

После вызова команды в автоменю становится доступной опция

Выбрать несколько операций.

Данная опция устанавливает режим создания булевой операции на основе нескольких тел. А также делает доступной опцию

С помощью этой опции нужно поочередно выбрать несколько тел, которые будут принимать участие в булевой операции. Причем первое выбранное тело будет являться первым операндом булевой операции.

Например: если вы выбрали несколько тел, то система создаст несколько булевых операций, первой из них будет операция с первым и вторым телом. Последующие, в качестве первого операнда используют операцию, созданную на предыдущем шаге, и следующее тело, соответственно порядку их выбора.

Отменить выбор всех операций можно опцией

<К> Отменить выбор операций.

Булевы операции и математическая логика

Булевы операции очень близки (хотя и не тождественны) логическим связкам в классической логике . Бит можно рассматривать как логическое суждение - его значениями являются 1 «истина» и 0 «ложь». При такой интерпретации известные в логике связки конъюнкции , дизъюнкции , импликации , отрицания и другие имеют представление на языке битов. И наоборот, битовые операции легко описываются на языке исчисления высказываний .

Однако, связкам математической логики более соответствуют логические операции в т.ч. в программировании, нежели собственно битовые операции.

Булевы операции как основа цифровой техники

Булевы операции лежат в основе обработки цифровых сигналов . А именно, посредством них мы можем из одного или нескольких сигналов на входе получить новый сигнал, который в свою очередь может быть подан на вход одной или нескольким таким операциям. По сути, именно булевы операции в сочетании с запоминающими элементами (напр. триггерами) реализуют всё богатство возможностей современной цифровой техники.

Список битовых операций

И

«(Логическое) И» (and) - аналог конъюнкции в логике. Иногда называется логическим умножением.

Выдаёт 1 если оба входа равны 1, в противном случае 0. Если один из аргументов равен 1, то результат «И» равен другому. Если один из аргументов равен 0, то результат «И» равен 0 независимо от значения другого аргумента.

НЕ

«(Логическое) НЕ» (not), инвертирование - аналог отрицания в логике.

Данная унарная операция (с одним входом) заменяет 0 на 1 и наоборот. Реализующий её элемент называется инвертором .

ИЛИ

«(Логическое) ИЛИ» (or) - аналог дизъюнкции в логике.

Выдаёт 1 если и только если хотя бы один из входов равен 1. Операция, двойственная AND: при инвертировании выхода и всех входов (т.е. при замене 0 и 1 местами) «И» и «ИЛИ» взаимно превращается друг в друга.

Исключающее ИЛИ

«Исключающее ИЛИ» (xor), «сложение по модулю 2» - аналог исключающего ИЛИ в логике.

Если один из аргументов равен 0, то результат равен другому. Если один из аргументов равен 1, то результат равен отрицанию другого аргумента. Первое русское название операции обусловлено тем, что результат данной операции отличается от результата «ИЛИ» только в одном случае из 4 случаев входа - обоих 1 (случай одновременной истинности аргументов «исключается»). Ещё в русской грамматике значение данной логической связки передаётся союзом «либо».

Второе название - тем, что действительно является сложением в кольце вычетов по модулю 2, из чего следуют некоторые интересные свойства. Например, в отличие от вышеописанных «И» и «ИЛИ» данная операция является обратимой, или инволютивной: .

Операции от многих аргументов

Операции «И», «ИЛИ» и «исключающее ИЛИ» являются не только коммутативными, но и ассоциативными , и потому легко обобщаются на случай нескольких аргументов (входов).

Прочие бинарные операции

Стрелка Пирса является результатом инвертирования результата «ИЛИ» своих аргументов, выдаёт значение 1 только когда оба входа 0.

«И-НЕ» (nand), или «штрих Шеффера» .

Двойственная стрелке Пирса операция: является результатом инвертирования результата «И» своих аргументов, выдаёт значение 0 только когда оба входа 1. Известна простотой реализации в ТТЛ .

Импликация («если-то») - аналог импликации в логике.

Совпадает с «ИЛИ» с инвертированным первым аргументом, выдаёт значение 0 только когда первый вход 1 а второй - 0. Данная операция не является коммутативной , в отличие от всех вышеописанных бинарных операций. Её можно понимать как арифметическое (меньше или равно).

Эквиваленция . Выдаёт 1 если и только если оба аргумента равны между собой. Является результатом инвертирования результата «исключающего ИЛИ» своих аргументов. Она же и двойственна исключающему «ИЛИ» в вышеописанном смысле.

Сводная таблица истинности булевых операций

Название→
Аргументы
И (AND) НЕ (NOT) ИЛИ (OR) искл. ИЛИ(XOR) импликация стрелка
Пирса
штрих
Шеффера
x y ()
(x&y)
()
(~x)
()
(x|y)
()
(x^y)
()
((~x)|y)

((~x)&(~y))

(~(x&y))
0 0 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0 1
1 0 0 0 1 1 0 0 1
1 1 1 0 1 0 1 0 0

Операции над битовыми векторами

Обобщение операций на булеву алгебру

Вместо одиночных битов мы можем рассмотреть векторы из фиксированного количества битов (в программировании их называют регистрами), например, байты . В программировании регистры рассматривают как двоичное разложение целого числа: b = b 0 + 2b 1 + 2 2 b 2 + ... + 2 N − 1 b N − 1 , где N - количество битов в регистре.

Тем не менее, ничто не мешает рассматривать эти регистры именно как битовые векторы и проводить булевые операции покомпонентно (бит номер k значения есть результат операция от битов номер k аргументов). Кстати, математически говоря, булевы операции распространяются таким образом на произвольную булеву алгебру . Таким образом мы получаем операции побитового И, ИЛИ, НЕ, искл. ИЛИ и т. д. Как арифметические, данные операции не обладают хорошими свойствами за исключением побитового НЕ, которое для чисел в дополнительном коде совпадает с вычитанием из −1 (~x == -1-x). Однако, они очень полезны в программировании.

Битовые сдвиги

К битовым операциям также относят битовые сдвиги. При сдвиге значения битов копируются в соседние по направлению сдвига. Различают несколько видов сдвигов - логический , арифметический и циклический , в зависимости от обработки крайних битов.

Также различают сдвиг влево (в направлении от младшего бита к старшему) и вправо (в направлении от старшего бита к младшему).

Арифметический сдвиг (правый)

Циклический сдвиг

Циклический сдвиг через перенос

Логический сдвиг

При логическом сдвиге значение последнего бита по направлению сдвига теряется (копируясь в бит переноса), а первый приобретает нулевое значение.

Логические сдвиги влево и вправо используются для быстрого умножения и деления на 2, соответственно.

Арифметический сдвиг

Арифметический сдвиг аналогичен логическому, но значение слова считается знаковым числом представленному дополнительным кодом. Так при правом сдвиге старший бит сохраняет свое значение. Левый арифметический сдвиг идентичен логическому.

Циклический сдвиг

При циклическом сдвиге, значение последнего бита по направлению сдвига копируется в первый бит (и копируется в бит переноса).

Также различают циклический сдвиг через бит переноса - при нем первый бит по направлению сдвига получает значение из бита переноса, а значение последнего бита сдвигается в бит переноса.

2-адическая интерпретация

Целое число, записанное (в дополнительном коде) в бесконечный (в сторону положительных степеней двойки) двоичный регистр является естественным объектом для теории p-адических чисел при p = 2 . Множество целых 2-адических чисел (т.е. произвольных бесконечных битовых последовательностей) может быть рассмотрено как булева алгебра точно так же как и множество значений битового регистра конечной длины. Все вышеперечисленные битовые операции оказываются непрерывными отображениями . Хотя практическое программирование не располагает регистрами бесконечной длины, это не мешает использовать данный теоретический факт в криптографии для создания быстродействующих алгоритмов шифрования.

Практические применения

Физическая реализация битовых операций

Реализация битовых операций может в принципе быть любой: механической, электромеханической , гидравлической, пневматической, оптической и даже химической.

В пожароопасных и взрывоопасных условиях до сих пор применяют пневматические логические устройства (пневмоника).

Наиболее распространены электронные реализации битовых операций при помощи транзисторов , например резисторно-транзисторная логика (РТЛ), диодно-транзисторная логика (ДТЛ), эмиттерно-связанная логика (ЭСЛ), транзисторно-транзисторная логика (ТТЛ), N-МОП логика, КМОП логика и др..

В квантовых вычислениях из перечисленных булевых операций реализуются только НЕ и искл. ИЛИ (с некоторыми оговорками). Квантовых аналогов И, ИЛИ и т.д. не существует.

Схемы аппаратной логики

Результат операции ИЛИ-НЕ или ИЛИ ото всех битов двоичного регистра проверяет, равно ли значение регистра нулю; то же самое взятое от выхода искл. ИЛИ двух регистров проверяет равенство их значений между собой.

Битовые операции применяются в знакогенераторах и графических адаптерах ; особенно велика была их роль в адаптере графический ускоритель.

Использование в программировании

Благодаря реализации в арифметическом логическом устройстве (АЛУ) процессора многие их регистровые битовые операции аппаратно доступны в языках низкого уровня . В большинстве процессоров реализованы в качестве инструкции регистровый НЕ; регистровые двухаргументные И, ИЛИ, исключающее ИЛИ; проверка равенства нулю (см. выше); три типа битовых сдвигов, а также циклические битовые сдвиги.

Регистровая операция И используется для сброса конкретных битов по битовой маске, ИЛИ - для установки, исключающее ИЛИ - для инвертирования битов регистра по маске.