На что влияет удельная теплоемкость. Удельная теплоёмкость: расчет количества теплоты

Как вы думаете, что быстрее нагревается на плите: литр воды в кастрюльке или же сама кастрюлька массой 1 килограмм? Масса тел одинакова, можно предположить, что нагревание будет происходить с одинаковой скоростью.

А не тут-то было! Можете проделать эксперимент - поставьте пустую кастрюльку на огонь на несколько секунд, только не спалите, и запомните, до какой температуры она нагрелась. А потом налейте в кастрюлю воды ровно такого же веса, как и вес кастрюли. По идее, вода должна нагреться до такой же температуры, что и пустая кастрюля за вдвое большее время, так как в данном случае нагреваются они обе - и вода, и кастрюля.

Однако, даже если вы выждете втрое большее время, то убедитесь, что вода нагрелась все равно меньше. Воде потребуется почти в десять раз большее время, чтобы нагреться до такой же температуры, что и кастрюля того же веса. Почему это происходит? Что мешает воде нагреваться? Почему мы должны тратить лишний газ на подогрев воды при приготовлении пищи? Потому что существует физическая величина, называемая удельной теплоемкостью вещества.

Удельная теплоемкость вещества

Эта величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду. Как ни странно звучит, но это факт.

Расчет количества теплоты

Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты:

Q = c*m*(t2 - t1),

где Q - это количество теплоты,
c - удельная теплоемкость,
m - масса тела,
t2 и t1 - соответственно, конечная и начальная температуры тела.

Формула удельной теплоемкости: c = Q / m*(t2 - t1)

Также из этой формулы можно выразить:

  • m = Q / c*(t2-t1) - массу тела
  • t1 = t2 - (Q / c*m) - начальную температуру тела
  • t2 = t1 + (Q / c*m) - конечную температуру тела
  • Δt = t2 - t1 = (Q / c*m) - разницу температур (дельта t)

А что насчет удельной теплоемкости газов? Тут все запутанней. С твердыми веществами и жидкостями дело обстоит намного проще. Их удельная теплоемкость - величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.

При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение - постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

Количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH …

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ - физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см.). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость - savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

См. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость - удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа - — Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти - — Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Книги

  • Физические и геологические основы изучения движения вод в глубоких горизонтах , Трушкин В.В.. В целом книга посвящена закону авторегулирования температуры воды с вмещающим телом, открытому автором в 1991 г. В начале книги проведен обзор состояния изученностипроблемы движения глубоких…

Приборы и принадлежности, используемые в работе:

2. Разновесы.

3. Термометр.

4. Калориметр.

6. Калориметрическое тело.

7. Плитка бытовая.

Цель работы:

Научиться опытным путем определять удельную теплоемкость вещества.

I. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ.

Теплопроводность - передача теплоты от более нагретых частей тела к менее нагретым в следствии столкновений быстрых молекул с медленными, в результате этого быстрые молекулы передают часть своей энергии медленным.

Изменение внутренней энергии какого- либо тела прямо пропорционально его массе и изменению температуры тела.

DU = cmDT (1)
Q = cmDT (2)

Величина с, характеризующая зависимость изменения внутренней энергии тела при нагревании или охлаждении от рода вещества и внешних условий называется удельной теплоемкостью тела.

(4)

Величина C, характеризующая зависимость тела поглощать теплоту при нагревании и равная отношению количества теплоты сообщенной телу, к приращению его температуры, называется теплоемкостью тела .

C = c × m. (5)
(6)
Q = CDT (7)

Молярной теплоемкостью C m , называют количество теплоты, которое необходимо для нагревания одного моля вещества на 1 Кельвин

C m = сM. (8)
C m = (9)

Удельная теплоемкость зависит от характера процесса, при котором происходит его нагревание.

Уравнение теплового баланса.

При теплообмене суммы количеств теплоты, отданных всеми телами, у которых внутренняя энергия уменьшается, равна сумме количеств теплоты, полученных всеми телами, у которых внутренняя энергия увеличивается.

SQ отд = SQ получ (10)

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных и отданных количеств теплоты равна 0.

SQ отд + SQ получ = 0.

Пример:

В теплообмене участвуют тело, калориметр, жидкость. Тело отдает теплоту, калориметр и жидкость принимают.

Q т = Q к + Q ж

Q т = c т m т (T 2 – Q)

Q к = c к m к (Q – T 1)

Q ж = c ж m ж (Q – T 1)

Где Q(тау) – общая конечная температура.

с т m т (T 2 -Q) = с к m к (Q- T 1) + с ж m ж (Q- T 1)

с т = ((Q - Т 1)*(с к m к + с ж m ж)) / m т (Т 2 - Q)

Т = 273 0 + t 0 С

2. ХОД РАБОТЫ.

ВСЕ ВЗВЕШИВАНИЯ ПРОВОДИТЬ С ТОЧНОСТЬЮ ДО 0,1 г.

1. Определите взвешиванием массу внутреннего сосуда, калори­метра m 1 .

2. Налейте во внутренний сосуд калориметра воды, взвесьте внутренний стакан вместе с налитой жидкостью m к.

3. Определите массу налитой воды m = m к - m 1

4. Поместите внутренний сосуд калориметра во внешний и измерь­те начальную температуру воды Т 1 .

5. Выньте из кипящей воды испытуемое тело, быстро перенесите его в калориметр, определив Т 2 -начальную температуру тела, она равна температуре кипящей воды.


6. Перемешивая жидкость в калориметре, выждите, когда перестанет повышаться температура: измерьте окончательную (установившуюся) температуру Q.

7. Выньте из калориметра испытуемое тело, высушите его фильтро­вальной бумагой и взвешиванием на весах определите его массу m 3 .

8. Результаты всех измерений и вычислений занесите в таблицу. Вычисления производить до второго знака после запятой.

9. Составьте уравнение теплового баланса и найдите из него удельную теплоемкость вещества с .

10. По полученным результатам в приложении определить вещество.

11. Вычислите абсолютную и относительную погрешность полученного результата относительно табличного результата по формулам:

;

12. Вывод о проделанной работе.

ТАБЛИЦА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Вода является одним из самых удивительных веществ. Несмотря на широкое распространение и повсеместное использование, она - настоящая загадка природы. Являясь одним из соединений кислорода, вода, казалось бы, должна иметь совсем низкими такие характеристики, как и замерзания, теплота парообразования и т. п. Но этого не происходит. Одна лишь теплоемкость воды, вопреки всему, чрезвычайно высока.

Вода способна поглощать огромное количество тепла, сама при этом практически не нагреваясь - в этом ее физическая особенность. воды выше теплоемкости песка примерно в пять раз, и в десять раз - железа. Поэтому вода является природным охладителем. Ее свойство накапливать большое количество энергии позволяет сглаживать колебания температуры на поверхности Земли и регулировать тепловой режим в рамках всей планеты, причем происходит это независимо от времени года.

Это уникальное свойство воды позволяет использовать ее в качестве охлаждающего вещества в промышленности и в быту. К тому же вода является общедоступным и сравнительно дешевым сырьем.

Что же понимается под теплоемкостью? Как известно из курса термодинамики, передача тепла происходит всегда от горячего к холодному телу. При этом речь идет о переходе определенного количества тепла, а температура обоих тел, являясь характеристикой их состояния, показывает направление этого обмена. В процессе металлического тела с водой равной массы при одинаковых исходных температурах металл меняет свою температуру в несколько раз больше воды.

Если принять за постулат основное утверждение термодинамики - из двух тел (изолированных от прочих), при теплообмене одно отдает, а другое получает равное количество тепла, то становится ясно, что у металла и воды совершенно разная теплоемкость.

Таким образом, теплоемкость воды (как и любого вещества) - это показатель, характеризующий способность данного вещества отдавать (или получать) какое-то при остывании (нагреве) на единицу температуры.

Удельной теплоемкостью вещества считается количество тепла, требуемое для того, чтобы нагреть единицу этого вещества (1 килограмм) на 1 градус.

Количество тепла, выделяемое или поглощаемое телом, равно произведению величин удельной теплоемкости, массы и разности температур. Измеряется оно в калориях. Одна калория - именно то количество тепла, которого достаточно, чтобы нагреть 1 г воды на 1 градус. Для сравнения: удельная теплоемкость воздуха - 0.24 кал/г ∙°С, алюминия - 0.22, железа - 0.11, ртути - 0.03.

Теплоемкость воды не является константой. С ростом температуры от 0 до 40 градусов она незначительно снижается (от 1,0074 до 0,9980), тогда как у всех остальных веществ в процессе нагревания эта характеристика растет. Кроме того, она может понижаться с ростом давления (на глубине).

Как известно, вода имеет три агрегатных состояния - жидкое, твердое (лед) и газообразное (пар). При этом удельная теплоемкость льда примерно в 2 раза ниже, чем у воды. В этом - основное отличие воды от других веществ, величины удельной теплоемкости которых в твердом и расплавленном состоянии не меняются. В чем же тут секрет?

Дело в том, что лед имеет кристаллическую структуру, которая при нагревании разрушается не сразу. Вода содержит небольшие частицы льда, состоящие из нескольких молекул и именуемые ассоциатами. При нагревании воды часть расходуется на разрушение водородных связей в этих образованиях. Этим и объясняется необычайно высокая теплоемкость воды. Полностью связи между ее молекулами разрушаются только при переходе воды в пар.

Удельная теплоемкость при температуре 100° С почти не отличается от таковой у льда при 0° С. Это еще раз подтверждает правильность данного объяснения. Теплоемкость пара, как и теплоемкость льда, в настоящее время изучены гораздо лучше, чем воды, в отношении которой ученые до сих пор не пришли к единому мнению.