Полное электрическое сопротивление формула. Сопротивление

На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной. С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества.

Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением ) проводника:

R - сопротивление.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом - это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом - в 3 раза меньше и т. д.

На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм):

1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле

R = ρl/S (12.1)

где ρ - удельное сопротивление вещества , из которого изготовлен проводник.

Удельное сопротивление вещества - это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы (12.1) следует, что

Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м 2 , а единицей длины 1 м, то единицей удельного сопротивления в СИ будет

1 Ом · м 2 /м, или 1 Ом · м.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм 2). В этом случае более удобной единицей удельного сопротивления является Ом·мм 2 /м. Так как 1 мм 2 = 0,000001 м 2 , то

1 Ом · мм 2 /м = 0,000001 Ом · м.

У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3.

Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм 2 /м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм 2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом.

Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества.

Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов.

1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6. Имеются два проводника. У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой - из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7. Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников.

Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа, можно показать, что сила тока (I ), протекающего через резистор, прямо пропорциональна напряжению (U ) на его концах: I — U . Отношение напряжения к силе тока U/I - есть величина постоянная .

Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой R .

(R) – это физическая величина, равную отношению напряжения (U ) на концах проводника к силе тока (I ) в нём. R = U/I . Единица измерения сопротивления – Ом (1 Ом ).

Один Ом - сопротивление такого проводника, в котором сила тока равна 1А при напряжении на его концах 1В: 1 Ом = 1 В / 1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки , совершающие беспорядочное движение. Соответственно, скорость направленного движения зарядов уменьшается.

Удельное электрическое сопротивление

R ) прямо пропорционально длине проводника (l ), обратно пропорционально площади его поперечного сечения (S ) и зависит от материала проводника. Эта зависимость выражается формулой: R = p*l/S

р - это величина, характеризующая материал, из которого сделан проводник. Она называется удельным сопротивлением проводника , её значение равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицей удельного сопротивления проводника служит: [р] = 1 0м 1 м 2 / 1 м . Часто площадь поперечного сечения измеряют в мм 2 , поэтому в справочниках значения удельного сопротивления проводника приводятся как в Ом м так и в Ом мм 2 / м .

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом .

Среди прочих показателей, характеризующих электрическую цепь, проводник, стоит выделить электрическое сопротивление. Оно определяет способность атомов материала препятствовать направленному прохождению электронов. Помощь в определении данной величины может оказать как специализированный прибор – омметр, так и математические расчеты на основании знаний о взаимосвязях между величинами и физическими свойствами материала. Измерение показателя производится в Омах (Ом), обозначением служит символ R.

Закон Ома – математический подход при определении сопротивления

Соотношение, установленное Георгом Омом, определяет взаимосвязь между напряжением, силой тока, сопротивлением, основанную на математическом взаимоотношении понятий. Справедливость линейной взаимосвязи – R = U/I (отношение напряжения к силе тока) – отмечается не во всех случаях.
Единица измерения [R] = B/A = Ом. 1 Ом – сопротивление материала, по которому идет ток в 1 ампер при напряжении в 1 вольт.

Эмпирическая формула расчета сопротивления

Объективные данные о проводимости материала следуют из его физических характеристик, определяющих как его собственно свойства, так и реакции на внешние влияния. Исходя из этого проводимость зависит от:

  • Размера.
  • Геометрии.
  • Температуры.

Атомы проводящего материала сталкиваются с направленными электронами, препятствуя их дальнейшему продвижению. При высокой концентрации последних атомы не способны им противостоять и проводимость оказывается высокой. Большие значения сопротивления характерны для диэлектриков, которые отличаются практически нулевой проводимостью.

Одной из определяющих характеристик каждого проводника является его удельное сопротивление – ρ. Оно определяет зависимость сопротивления от материала проводника и воздействий извне. Это фиксированная (в пределах одного материала) величина, которая представляет данные проводника следующих размеров – длина 1 м (ℓ), площадь сечения 1 кв.м. Поэтому взаимосвязь между данными величинами выражается соотношением: R = ρ* ℓ/S:

  • Проводимость материала падает по мере увеличения его длины.
  • Увеличение площади сечения проводника влечет за собой снижение его сопротивления. Такая закономерность обусловлена уменьшением плотности электронов, а, следовательно, и контакт частиц материала с ними становится более редким.
  • Рост температуры материала стимулирует рост сопротивления, в то время как падение температуры влечет за собой его снижение.

Расчет площади сечения целесообразно производить согласно формуле S = πd 2 / 4. В определении длины поможет рулетка.

Взаимосвязь c мощностью (P)

Исходя из формулы закона Ома, U = I*R и P = I*U. Следовательно, P = I 2 *R и P = U 2 /R.
Зная величину силы тока и мощность, сопротивление можно определить как: R = P/I 2 .
Зная величину напряжения и мощности, сопротивление легко вычислить по формуле: R = U 2 /P.

Сопротивление материала и величины других сопутствующих характеристик могут быть получены с применением специальных измерительных приборов или на основании установленных математических закономерностей.

Электрический ток (I ) - это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики - движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах.

Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает. Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира.

Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Электрическое поле - это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы "одноименные заряды отталкиваются, а разноименные притягиваются" можно представить электрическое поле как нечто это воздействие передающее. Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика - напряженность электрического поля .

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ .

  • E - напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 - разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них - хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС) , которая обозначается так: ε .

Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение (U ).

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2 , а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε .

Это не совсем корректно, но на практике вполне достаточно.

Сопротивление (R ) - название говорит само за себя - физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома . Этот закон рассматривется на отдельной странице этого раздела. Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ , определяемого как сопротивление 1 метра проводника/сечение . Чем меньше удельное сопротивление, тем меньше потери тока в проводнике. Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S .

Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление.

Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

Ток - Ампер (А)
Напряжение - Вольт (В)
Сопротивление - Ом (Ом) .

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Проведем простейший эксперимент. К автомобильному аккумулятору с помощью двух коротких проводов подключим лампочку из фары машины. Лампочка светится, и довольно ярко. А теперь ту же лампу подключим гораздо более длинными соединителями. Свет явно стал слабее. В чем дело? В сопротивлении проводов.

Что такое электрическое сопротивление

Существуют разные формулировки описания этого явления. Воспользуемся одной из них:

«Электрическое сопротивление – физическая величина, которое характеризует свойство проводника противодействовать протеканию электротока».

В нашем эксперименте провода, подводящие напряжение от аккумулятора к лампочке, оказывают электросопротивление току, протекающему через замкнутую цепь. От источника напряжения – аккумулятора, через провода – проводники, к нагрузке – лампе.

Физическая сущность явления

При подключении нагрузки к источнику напряжения соединителями, возникает замкнутая цепь, в которой появляется электрическое поле, вызывающее направленное движение электронов металла проводов от отрицательного полюса аккумулятора к положительному. Электроны доставляют электроэнергию от источника к нагрузке, и вызывают свечение спирали лампы. На пути своего движения электроны ударяются об ионы кристаллической решетки проводника, теряют часть энергии, которая идет на нагрев материала соединителей.

Еще одно определение: «Причиной появления электросопротивления является результат взаимодействия потока электронов с молекулами (ионами) из которых состоит проводник».

Важное замечание! Хотя электроны движутся от минуса источника напряжения к плюсу, направление электрического тока исторически считается противоположным — от плюса к минусу.

Ток может протекать не только в твердых материалах, металлах, но и в жидких веществах, растворах солей, кислот, щелочей. Там основным переносчиком энергии являются ионы положительного и отрицательного заряда. Например, в автомобильных аккумуляторах ток проходит через водный раствор серной кислоты.

Измерение сопротивления проводников

За единицу электросопротивления в системе СИ принят 1 Ом. Если воспользоваться законом Ома для участка электрической цепи:

I = U / R,

  • I – ток, протекающий в цепи;
  • U – напряжение;
  • R – электросопротивление.

преобразуя формулу R = U / I, можно сказать, что 1 Ом равен отношению напряжения в 1 Вольт к току в 1 Ампер.

R в данной формуле величина постоянная и не зависит от величин напряжения и тока.

Для более крупных значений применяются единицы:

  • 1 кОм = 1 000 Ом;
  • 1 МОм = 1 000 000 Ом;
  • 1 ГОм = 1 000 000 000 Ом.

От чего зависит электросопротивление проводника

В первую очередь оно зависит от материала, из которого сделан соединитель. Разные металлы по-разному препятствуют прохождению электрического тока. Известно, что серебро, медь, алюминий хорошо проводят электроток, а сталь значительно хуже.

Существует понятие удельного электросопротивления материала, которое обозначили греческой буквой р (ро). Эта характеристика зависит только от внутренних свойств вещества, из которого изготовлен проводник. Но его полное сопротивление будет зависть еще и от длины и площади сечения. Вот формула, которая связывает все эти величины:

R = р * L /S,

  • р – удельное сопротивление материала;
  • L — длина;
  • S – площадь поперечного сечения.

Площадь сечения S в практической электротехнике принято считать в кв.мм., тогда размерность р выражается, как Ом*кв.мм/метр.

Вывод: для уменьшения электросопротивления, а значит и потерь в электроцепи, материал должен иметь минимальное удельное сопротивление, а сам проводник быть, как можно короче и иметь достаточно большое поперечное сечение.

Показатели для твердотельных материалов

Материал Материал Удельное электросопротивление (Ом*кв.мм/м)
Серебро 0,016 Никелин (сплав) 0,4
Медь 0,017 Манганин (сплав) 0,43
Золото 0,024 Константан (сплав) 0,5
Алюминий 0,028 Ртуть 0,98
Вольфрам 0,055 Нихром (сплав) 1,1
Сталь 0,1 Фехраль(сплав) 1,3
Свинец 0,21 Графит 13

Из таблицы видно, что для изготовления соединителей, на которых будет теряться минимальное количество электроэнергии, лучше всего подойдут серебро, медь и алюминий, а вот из фехрали и нихрома изготовят термоэлектронагреватели (ТЭНы).

Следует отметить, что все эти значения справедливы для температуры 20 0 С. При повышении температуры удельное электросопротивление металлов растет, при понижении падает, исключение составляет Константан, его удельная характеристика меняется незначительно.

При сильном понижении температуры, близком к абсолютному нулю, сопротивление металлов может стать нулевым, наступает явление сверхпроводимости. Объясняется это тем, что ионы кристаллической решетки «замерзают», перестают колебаться, и не оказывают электронам помех в их движении.

Показатели для жидких проводников

Удельные электросопротивления растворов солей, кислот и щелочей зависят не только от их химического состава, но и от концентрации раствора. Зависимость от температуры обратная, чем у металлов. При нагреве удельное сопротивление падает, при охлаждении растет. Жидкость может замерзнуть при низких температурах и перестать проводить ток.

Наглядный пример – поведение автомобильных аккумуляторов в сильный мороз. Электролит — раствор серной кислоты, при значительных минусовых температурах (-20, -30С 0) увеличивает внутреннее электросопротивление аккумулятора, и полноценная отдача тока стартеру становится невозможной.

Электропроводимость

В некоторых случаях удобнее пользоваться понятием проводимости электротока. Это характеристика измеряется в Сименсах (См):

  • G – проводимость;
  • R – сопротивление,
  • а 1 См = 1/ Ом.

Пример из практики

Получив некоторые сведения об электросопротивлении, стоит провести несложный расчет, и выяснить, как влияют характеристики соединителей на параметры электрических цепей.

Вернемся к простейшей электрической схеме, состоящей из аккумулятора, лампочки и проводов:

  • Напряжение аккумулятора 12,5 В.
  • Лампа имеет мощность 21 Вт.
  • Соединители медные, длина 1 метр х 2 шт., сечение 1,5 кв.мм.

Найдем электросопротивление проводов: R = р* L/S. Подставляем наши данные: R = 0,017*2/1,5 = 0,023 Ом.

Найдем сопротивление лампы. Ее электрическая мощность 21 Вт, при подключении к источнику питания 12,5 В. ток в цепи будет равен:

I = P/U,

  • I – искомый ток;
  • P – мощность лампы;
  • U – напряжение источника.

Подставляем числа: I = 21/12,5 = 1,68 А.

Сопротивление лампы находим по закону Ома для участка цепи. Если I = U/R, то R = U/I. Или: R = 12,5/1,68 = 7,44 Ом.

В расчете мы пренебрегли сопротивлением проводов, оно более чем в 300 раз меньше электросопротивления нагрузки.

Найдем потери мощности на проводах и сравним ее с полезной мощностью нагрузки. Нам известен ток в цепи, известны параметры соединителей, найдем мощность, теряющуюся на проводах:

P = U*I,

заменяем в формуле напряжение согласно закону Ома: U = I*R, подставляем в формулу мощности:

P = I*R*I = I 2 *R.

После подстановки чисел: P = 1,68 2 *0,023 = 0,065 Вт.

Результат отличный, соединители отнимают у нагрузки всего 0,3% мощности.

Но если подключить лампу через длинные провода, (20 метров), да еще и тонкие, сечение 0,75 кв.мм., то картина изменится. Не повторяя здесь весь расчет, можно отметить, что при таких соединителях эффективная мощность лампы снизится почти на 11%, а потери энергии на проводниках составят уже 6%.

Запомним правило — для уменьшения потерь в электрических сетях необходимо снижать электросопротивление проводов, применять медь или алюминий, по возможности сокращать длину и увеличивать сечения проводников.

Что такое сопротивление: видео