Простые дроби. Как решать дроби. Решение дробей

Часть единицы или несколько ее частей называют простой или обыкновенной дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей - числителем. Дробь записывается в виде:

В данном случае а - числитель, b - знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель больше знаменателя, то дробь больше 1, тогда дробь называется неправильной.

Если числитель и знаменатель дроби равны, то дробь равна.

1. Если числитель можно разделить на знаменатель, то эта дробь равна частному от деления:

В случае если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом, например:

Тогда 9 - неполное частное (целая часть смешанного числа),
1 - остаток (числитель дробной части),
5 - знаменатель.

Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части.

Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

Действия с дробями

Расширение дроби. Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю. Рассмотрим, например, следующие дроби:

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того чтобы сложить дроби, необходимо сложить их числители, а для того чтобы вычесть дроби, надо вычесть их числители. Полученная сумма или разность будет числителем результата, а знаменатель останется прежним. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел сначала необходимо преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется к виду смешанного числа.

Умножение дробей . Для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

Деление дробей . Для того чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь.

Десятичная дробь - это результат деления единицы на десять, сто, тысячу и т.д. частей. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая - число сотых, третья - число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

Например:

Свойства десятичных дробей

Свойства:

  • Десятичная дробь не меняется, если справа добавить нули: 4,5 = 4,5000.
  • Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0,0560000 = 0,056.
  • Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции вправо: 4,5 45 (дробь возросла в 10 раз).
  • Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции влево: 4,5 0,45 (дробь уменьшилась в 10 раз).

Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом: 0,321321321321…=0,(321)

Действия с десятичными дробями

Сложение и вычитание десятичных дробей выполняются так же, как и сложение и вычитание целых чисел, необходимо только записать соответствующие десятичные знаки один под другим.
Например:

Умножение десятичных дробей проводится в несколько этапов:

  • Перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку.
  • Применяется правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

Например :

Сумма чисел десятичных знаков в сомножителях равна: 2+1=3. Теперь необходимо с конца получившегося числа отсчитать 3 знака и поставить десятичную точку: 0,675.

Деление десятичных дробей. Деление десятичной дроби на целое число: если делимое меньше делителя, тогда нужно записать ноль в целой части частного и поставить после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединить к его целой части следующую цифру дробной части и опять сравнить полученную целую часть делимого с делителем. Если новое число опять меньше делителя, надо повторить операцию. Этот процесс повторяется до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

Деление одной десятичной дроби на другую: сначала переносятся десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом, и выполняются действия, описанные выше.

Для того чтобы обратить десятичную дробь в обыкновенную, необходимо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять k-ую степень десяти (k - количество десятичных знаков). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается.
Например:

Для того чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

Процент - это сотая часть единицы, например: 5% означает 0,05. Отношение - это частное от деления одного числа на другое. Пропорция - это равенство двух отношений.

Например:

Основное свойство пропорции: произведение крайних членов пропорции равно произведению ее средних членов, то есть 5х30=6х25. Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным (коэффициент пропорциональности).

Таким образом, выявлены следующие арифметические действия.
Например:

Множество рациональных чисел включает в себя положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее: число называется рациональным, если оно может быть представлено в виде обыкновенной несократимой дроби вида:, где a и b целые числа.

Для отрицательного числа абсолютная величина (модуль) - это положительное число, получаемое от перемены его знака с «-» на «+»; для положительного числа и нуля - само это число. Для обозначения модуля числа используются две прямые черты, внутри которых записывается это число, например: |–5|=5.

Свойства абсолютной величины

Пусть дан модуль числа , для которого справедливы свойства:

Одночлен - это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы: 3 х a х b. Коэффициентом чаще всего называют лишь числовой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Степень одночлена - это сумма показателей степеней всех его букв. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду: 3 х a х b + 6 х a = 3 х a х (b + 2). Эта операция называется приведением подобных членов или вынесением за скобки.

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Существуют следующие формулы сокращенного умножения:

Методы разложения на множители:

Алгебраическая дробь - это выражение вида , где A и B могут быть числом, одночленом, многочленом.

Если два выражения (числовые и буквенные) соединены знаком «=», то говорят, что они образуют равенство. Любое верное равенство, справедливое при всех допустимых числовых значениях входящих в него букв, называется тождеством.

Уравнение - это буквенное равенство, которое справедливо при определенных значениях входящих в него букв. Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в тождество, - корнями уравнения.

Решить уравнение - значит найти все его корни. Два или несколько уравнений называются равносильными, если они имеют одни и те же корни.

  • ноль являлся корнем уравнения;
  • уравнение имело только конечное число корней.

Основные типы алгебраических уравнений:

У линейного уравнения ax + b = 0:

  • если a х 0, имеется единственный корень x = -b/a;
  • если a = 0, b ≠ 0, нет корней;
  • если a = 0, b = 0, корнем является любое действительное число.

Уравнение xn = a, n N:

  • если n - нечетное число, имеет при любом а действительный корень, равный a/n;
  • если n - четное число, то при a 0, то имеет два корня.

Основные тождественные преобразования: замена одного выражения другим, тождественно равным ему; перенос членов уравнения из одной стороны в другую с обратными знаками; умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля.

Линейным уравнением с одним неизвестным называется уравнение вида: ax+b=0, где a и b - известные числа, а x - неизвестная величина.

Системы двух линейных уравнений с двумя неизвестными имеют вид:

Где a, b, c, d, e, f - заданные числа; x, y - неизвестные.

Числа a, b, c, d - коэффициенты при неизвестных; e, f - свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами: метод подстановки: из одного уравнения выражаем одно из неизвестных через коэффициенты и другое неизвестное, а затем подставляем во второе уравнение, решая последнее уравнение, находим сначала одно неизвестное, затем подставляем найденное значение в первое уравнение и находим второе неизвестное; метод сложения или вычитания одного уравнения из другого.

Операции с корнями:

Арифметическим корнем n-й степени из неотрицательного чис-ла a называется неотрицательное число, n-я степень которого рав-на a. Алгебраическим корнем n-й степени из данного числа называ-ется множество всех корней из этого числа.

Иррациональные числа в отличие от рациональных не могут быть представлены в виде обыкновенной несократимой дроби вида m/n, где m и n - целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: отношение длины диагонали квадрата к длине его стороны равно.

Квадратное уравнение есть алгебраическое уравнение второй степени ax2+bx+c=0, где a, b, c - заданные числовые или буквенные коэффициенты, x - неизвестное. Если разделить все члены этого уравнения на а, в результате получим x2+px+q=0 - приведенное уравнение p=b/a, q=c/a. Его корни находятся по формуле:

Если b2-4ac>0, тогда имеются два различных корня, b2- 4ac=0, тогда имеются два равных корня; b2-4ac Уравнения, содержащие модули

Основные типы уравнений, содержащие модули:
1) |f(x)| = |g(x)|;
2) |f(x)| = g(x);
3) f1(x)|g1(x)| + f2(x)|g2(x)| + … + fn(x)|gn(x)| =0, n N, где f(x), g(x), fk(x), gk(x) - заданные функции.

Дроби

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Дроби в старших классах не сильно досаждают. До поры до времени. Пока не столкнётесь со степенями с рациональными показателями да логарифмами. А вот там…. Давишь, давишь калькулятор, а он все полное табло каких-то циферок кажет. Приходится головой думать, как в третьем классе.

Давайте уже разберёмся с дробями, наконец! Ну сколько можно в них путаться!? Тем более, это всё просто и логично. Итак, какие бывают дроби?

Виды дробей. Преобразования.

Дроби бывают трёх видов.

1. Обыкновенные дроби , например:

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Здесь мы часто будем таким написанием пользоваться. Верхнее число называется числителем , нижнее - знаменателем. Если вы постоянно путаете эти названия (бывает...), скажите себе с выражением фразу: "Ззззз апомни! Ззззз наменатель - вниззззз у!" Глядишь, всё и ззззапомнится.)

Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо чёрточки вполне можно поставить знак деления - две точки.

Когда деление возможно нацело, это надо делать. Так, вместо дроби "32/8" гораздо приятнее написать число "4". Т.е. 32 просто поделить на 8.

32/8 = 32: 8 = 4

Я уж и не говорю про дробь "4/1". Которая тоже просто "4". А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например:

Именно в таком виде нужно будет записывать ответы на задания "В".

3. Смешанные числа , например:

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задачке и зависните... На пустом месте. Но мы-то вспомним эту процедуру! Чуть ниже.

Наиболее универсальны обыкновенные дроби . С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями !

Основное свойство дроби.

Итак, поехали! Для начала я вас удивлю. Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

Понятно, что писать можно дальше, до посинения. Синусы и логарифмы пусть вас не смущают, с ними дальше разберёмся. Главное понять, что все эти разнообразные выражения есть одна и та же дробь . 2/3.

А оно нам надо, все эти превращения? Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей . Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходится сокращать не дробь типа 5/10, а дробное выражение со всякими буковками.

Как правильно и быстро сокращать дроби, не делая лишней работы, можно прочитать в особом Разделе 555 .

Нормальный ученик не заморачивается делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение:

Тут и думать нечего, зачеркиваем букву "а" сверху и двойку снизу! Получаем:

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на "а". Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть "а" в выражении

и получить снова

Что будет категорически неверно. Потому что здесь весь числитель на "а" уже не делится ! Эту дробь сократить нельзя. Кстати, такое сокращение – это, гм… серьезный вызов преподавателю. Такого не прощают! Запомнили? При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается, короче. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и наоборот без калькулятора ! Это важно на ЕГЭ, верно?

Как переводить дроби из одного вида в другой.

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это ноль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обычную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Типа 0,3. Это три десятых, т.е. 3/10.

А если целых - не ноль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Элементарно, Ватсон! Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную .

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете на ЕГЭ!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в ответе на задание раздела "В" получилось 1/2? Что в ответ писать будем? Там десятичные требуются...

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель (это нам надо) на 5. Но, тогда и числитель надо умножить тоже на 5. Это уже математика требует! Получим 1/2 = 1х5/2х5 = 5/10 = 0,5. Вот и всё.

Однако, знаменатели всякие попадаются. Попадётся, например дробь 3/16. Попробуй, сообрази тут, на что 16 умножить, чтоб 100 получилось, или 1000... Не получается? Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, на бумажке, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и на бумажке, мы получим 0,3333333... Это значит, что 1/3 в точную десятичную дробь не переводится . Так же, как и 1/7, 5/6 и так далее. Много их, непереводимых. Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную !

Кстати, это полезная информация для самопроверки. В разделе "В" в ответ надо десятичную дробь записывать. А у вас получилось, например, 4/3. Эта дробь не переводится в десятичную. Это означает, что где-то вы ошиблись по дороге! Вернитесь, проверьте решение.

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их всяко нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать шестиклассника и спросить у него. Но не всегда шестиклассник окажется под руками... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задачке вы с ужасом увидели число:

Спокойно, без паники соображаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Ясненько? Тогда закрепите успех! Переведите в обыкновенные дроби. У вас должно получится 10/7, 7/2, 23/10 и 21/4.

Обратная операция - перевод неправильной дроби в смешанное число - в старших классах редко требуется. Ну если уж... И если Вы - не в старших классах - можете заглянуть в особый Раздел 555 . Там же, кстати, и про неправильные дроби узнаете.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Отвечаю. Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать . Ну а если написано, что-нибудь типа 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам !

Если в задании сплошь десятичные дроби, но гм... злые какие-то, перейдите к обыкновенным, попробуйте! Глядишь, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби?

0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. О, ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги этого урока.

1. Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Теперь можно потренироваться. Для начала переведите эти десятичные дроби в обыкновенные:

3,8; 0,75; 0,15; 1,4; 0,725; 0,012

Должны получиться вот такие ответы (в беспорядке!):

На этом и завершим. В этом уроке мы освежили в памяти ключевые моменты по дробям. Бывает, правда, что освежать особо нечего...) Если уж кто совсем крепко забыл, или ещё не освоил... Тем можно пройти в особый Раздел 555 . Там все основы подробненько расписаны. Многие вдруг всё понимать начинают. И решают дроби с лёту).

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Числителем, а то, на которое делят - знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • - калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Для с дроби . То же самое проделайте для знаменателей. При делении одной дроби на другую запишите одну дробь, а затем умножьте её числитель на знаменатель второй. При этом знаменатель первой дроби умножается соответственно на числитель второй. При этом происходит своеобразный переворот второй дроби (делителя). Итоговая дробь будет из результатов умножения числителей и знаменателей обеих дробей. Несложно научиться дроби , записанные в условии в виде «четырёхэтажной» дроби . Если разделяет две дроби , перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Числитель и знаменатель дроби. Виды дробей. Продолжаем рассматривать дроби. Сначала небольшая оговорка – мы, рассматривая дроби и соответствующие примеры с ними, пока будем работать только с числовым её представлением. Бывают ещё и дробные буквенные выражения (с числами и без них). Впрочем, все «принципы» и правила также распространяются и на них, но о таких выражениях поговорим в будущем отдельно. Рекомендую посетить и изучать (вспоминать) тему дробей шаг за шагом.

Самое главное понять, запомнить и осознать, что ДРОБЬ – это ЧИСЛО!!!

Обыкновенная дробь – это число вида:

Число расположенное «сверху» (в данном случае m) называется числителем, число расположенное снизу (число n) называется знаменателем. У тех, кто только коснулся темы частенько возникает путаница – что как называется.

Вот вам приёмчик, как навсегда запомнить – где числитель, а где знаменатель. Данный приём связан со словесно-образной ассоциацией. Представьте себе банку с мутной водой. Известно, что по мере отстоя воды чистая вода остаётся сверху, а муть (грязь) оседает, запоминаем:

ЧИССС тая вода ВВЕРХУ (ЧИССС литель сверху)

ГряЗЗЗННН ая вода ВНИЗУ (ЗННН аменатель внизу)

Так что, как только возникнет необходимость вспомнить, где числитель, а где знаменатель, то сразу зрительно представили банку с отстоянной водой, в которой сверху ЧИСтая вода, а снизу гряЗНая вода. Есть и другие приёмы для запоминания, если они вам помогут, то хорошо.

Примеры обыкновенных дробей:

Что означает горизонтальная черточка между числами? Это не что иное, как знак деления. Получается, что дробь можно рассматривать как бы как пример с действием делением. Просто записано это действие вот в таком виде. То есть, верхнее число (числитель) делится на нижнее (знаменатель):

Кроме того, есть ещё форма записи – дробь может записываться и так (через косую черту):

1/9, 5/8, 45/64, 25/9, 15/13, 45/64 и так далее…

Можем записать вышеуказанные нами дроби так:

Результат деления, как известно это число.

Уяснили – ДРОБЬ ЭТО ЧИСЛО!!!

Как вы уже заметили, у обыкновенной дроби числитель может быть меньше знаменателя, может быть больше знаменателя и может быть равен ему. Тут присутствует множество важных моментов, которые понятны интуитивно, без каких-либо теоретических изысков. Например:

1. Дроби 1 и 3 можно записать как 0,5 и 0,01. Забежим немного вперёд – это десятичные дроби, о них поговорим чуть ниже.

2. Дроби 4 и 6 в результате дают целое число 45:9=5, 11:1 = 11.

3. Дробь 5 в результате даёт единицу 155:155 = 1.

Какие выводы напрашиваются сами собой? Следующие:

1. Числитель при делении на знаменатель может дать конечное число. Может и не получится, разделите столбиком 7 на 13 или 17 на 11 — никак! Делить можно бесконечно, но об этом также поговорим чуть ниже.

2. Дробь в результате может дать целое число. Следовательно и любое целое число мы можем представить в виде дроби, вернее бесконечного ряда дробей, посмотрите, все эти дроби равны 2:

Ещё! Любое целое число мы всегда можем записать в виде дроби – само это число в числителе, единица в знаменателе:

3. Единицу мы всегда можем представить в виде дроби с любым знаменателем:

*Указанные моменты крайне важны для работы с дробями при вычислениях и преобразованиях.

Виды дробей.

А теперь о теоретическом разделении обыкновенных дробей. Их разделяют на правильные и неправильные .

Дробь у которой числитель меньше знаменателя называется правильной. Примеры:

Дробь у которой числитель больше знаменателя или равен ему называется неправильной. Примеры:

Смешанная дробь (смешанное число).

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дробной его части. Примеры:

Смешанную дробь всегда можно представить в виде неправильной дроби и наоборот. Идём далее!

Десятичные дроби.

Выше мы их уже затронули, это примеры (1) и (3), теперь подробнее. Вот примеры десятичных дробей: 0,3 0,89 0,001 5,345.

Дробь, знаменатель которой есть степень числа 10, например 10, 100, 1000 и так далее, называется десятичной. Записать первые три указанные дроби в виде обыкновенных дробей несложно:

Четвёртая является смешанной дробью (смешанным числом):

Десятичная дробь имеет следующую форму записи — с начала целая часть, затем разделитель целой и дробной части точка или запятая и затем дробная часть, количество цифр дробной части строго определяется размерностью дробной части: если это десятые доли, дробная часть записывается одной цифрой; если тысячные - тремя; десятитысячные - четырьмя и т. д.

Данные дроби бывают конечными и бесконечными.

Примеры конечных десятичных дробей: 0,234; 0,87; 34,00005; 5,765.

Примеры бесконечных. Например число Пи это бесконечная десятичная дробь, ещё – 0,333333333333…... 0,16666666666…. и прочие. Также результат извлечения корня из чисел 3, 5, 7 и т.д. будет являться бесконечной дробью.

Дробная часть может быть цикличная (в ней присутствует цикл), два примера выше именно такие, ещё примеры:

0,123123123123…... цикл 123

0,781781781718…... цикл 781

0,0250102501…. цикл 02501

Записать их можно как 0,(123) 0,(781) 0,(02501).

Число Пи не является цикличной дробью как и, например, корень из трёх.

Ниже в примерах, будут звучать такие слова как «переворачиваем» дробь – это означает что числитель и знаменатель меняем местами. На самом деле у такой дроби есть название – обратная дробь. Примеры взаимно-обратных дробей:

Небольшой итог! Дроби бывают:

Обыкновенные (правильные и неправильные).

Десятичные (конечные и бесконечные).

Смешанные (смешанные числа).

На этом всё!

С уважением, Александр.

С дробями мы сталкиваемся в жизни гораздо раньше, чем начинается их изучение в школе. Если разрезать целое яблоко пополам, то мы получим часть фрукта - ½. Разрежем ещё раз - будет ¼. Это и есть дроби. И все, казалось бы, просто. Для взрослого человека. Для ребенка же (а данную тему начинают изучать в конце младшей школы) абстрактные математические понятия ещё пугающе непонятны, и преподаватель должен доступно объяснить, что такое правильная дробь и неправильная, обыкновенная и десятичная, какие операции можно с ними совершать и, главное, для чего всё это нужно.

Какие бывают дроби

Знакомство с новой темой в школе начинается с обыкновенных дробей. Их легко узнать по горизонтальной черте, разделяющей два числа - сверху и снизу. Верхнее называется числителем, нижнее - знаменателем. Существует и строчный вариант написания неправильных и правильных обыкновенных дробей - через косую черту, например: ½, 4/9, 384/183. Такой вариант используется, когда высота строки ограничена и нет возможности применить «двухэтажную» форму записи. Почему? Да потому что она удобнее. Чуть позже мы в этом убедимся.

Помимо обыкновенных, существуют также десятичные дроби. Различить их очень просто: если в одном случае используется горизонтальная или наклонная черта, то в другом - запятая, разделяющая последовательности цифр. Посмотрим пример: 2,9; 163,34; 1,953. Мы намеренно воспользовались точкой с запятой в качестве разделителя, чтобы разграничить числа. Первое из них будет читаться так: «две целых, девять десятых».

Новые понятия

Вернемся к обыкновенным дробям. Они бывают двух видов.

Определение правильной дроби звучит следующим образом: это такая дробь, числитель которой меньше знаменателя. Почему это важно? Сейчас увидим!

У вас есть несколько яблок, разделенных на половинки. Всего - 5 частей. Как вы скажете: у вас «два с половиной» или «пять вторых» яблока? Конечно, первый вариант звучит естественнее, и при разговоре с друзьями мы воспользуемся им. А вот если потребуется посчитать, сколько фруктов достанется каждому, если в компании пять человек, мы запишем число 5/2 и разделим его на 5 - с точки зрения математики это будет нагляднее.

Итак, для наименования правильных и неправильных дробей правило таково: если в дроби можно выделить целую часть (14/5, 2/1, 173/16, 3/3), то она является неправильной. Если этого сделать нельзя, как в случае с ½, 13/16, 9/10, она будет правильной.

Основное свойство дроби

Если числитель и знаменатель дроби одновременно умножить или разделить на одно и то же число, её величина не изменится. Представьте: торт порезали на 4 равные части и дали вам одну. Такой же торт порезали на восемь частей и дали вам две. Не всё ли равно? Ведь ¼ и 2/8 - это одно и то же!

Сокращение

Авторы задач и примеров в учебниках по математике зачастую стремятся запутать учеников, предлагая громоздкие в написании дроби, которые на самом деле можно сократить. Вот пример правильной дроби: 167/334, который, казалось бы, выглядит очень «страшно». Но на самом деле мы можем записать его как ½. Число 334 делится на 167 без остатка - проделав такую операцию, мы получим 2.

Смешанные числа

Неправильную дробь можно представить в форме смешанного числа. Это когда целая часть вынесена вперед и записана на уровне горизонтальной черты. Фактически выражение принимает вид суммы: 11/2 = 5 + ½; 13/6 = 2 + 1/6 и так далее.

Чтобы вынести целую часть, нужно разделить числитель на знаменатель. Остаток от деления записать сверху, над чертой, а целую часть - перед выражением. Таким образом, мы получаем две структурные части: целые единицы + правильную дробь.

Можно осуществить и обратную операцию - для этого нужно целую часть умножить на знаменатель и прибавить полученное значение к числителю. Ничего сложного.

Умножение и деление

Как ни странно, умножать дроби проще, чем складывать. Всего-то и требуется - продлить горизонтальную черту: (2/3) * (3/5) = 2*3 / 3*5 = 2/5.

С делением тоже всё просто: нужно перемножить дроби крест-накрест: (7/8) / (14/15) = 7*15 / 8*14 = 15/16.

Сложение дробей

Что делать, если требуется осуществить сложение или а в знаменателе у них разные числа? Поступить так же, как с умножением, не получится - здесь следует понимать определение правильной дроби и её сущность. Нужно привести слагаемые к общему знаменателю, то есть в нижней части обеих дробей должны оказаться одинаковые числа.

Чтобы это осуществить, следует воспользоваться основным свойством дроби: умножить обе части на одно и то же число. Например, 2/5 + 1/10 = (2*2)/(5*2) + 1/10 = 5/10 = ½.

Как же выбрать, к какому знаменателю приводить слагаемые? Это должно быть минимальное число, кратное обоим числам, стоящим в знаменателях дробей: для 1/3 и 1/9 это будет 9; для ½ и 1/7 - 14, потому что меньшего значения, делящегося без остатка на 2 и 7, не существует.

Использование

Для чего нужны неправильные дроби? Ведь гораздо удобнее сразу выделить целую часть, получить смешанное число - и дело с концом! Оказывается, если требуется выполнить умножение или деление двух дробей, выгоднее воспользоваться именно неправильными.

Возьмем следующий пример: (2 + 3/17) / (37 / 68).

Казалось бы, сократить и вовсе нечего. Но что, если записать результат сложения в первых скобках в виде неправильной дроби? Посмотрите: (37/17) / (37/68)

Теперь всё встает на свои места! Запишем пример таким образом, чтобы всё стало очевидно: (37*68) / (17*37).

Сократим 37 в числителе и знаменателе и, наконец, разделим верхнюю и нижнюю части на 17. Вы же помните основное правило для правильной и неправильной дроби? Мы можем умножать и делить их на любое число, если делаем это одновременно для числителя и знаменателя.

Итак, получаем ответ: 4. Пример выглядел сложным, а ответ содержит всего одну цифру. В математике так часто происходит. Главное - не бояться и следовать простым правилам.

Распространенные ошибки

При осуществлении учащийся может легко совершить одну из популярных ошибок. Обычно они происходят из-за невнимательности, а иногда - из-за того, что изученный материал ещё не отложился в голове как следует.

Нередко сумма чисел, стоящая в числителе, вызывает желание сократить отдельные её компоненты. Допустим, в примере: (13 + 2) / 13, написанном без скобок (с горизонтальной чертой), многие ученики по неопытности зачеркивают 13 сверху и снизу. Но так делать нельзя ни в коем случае, ведь это грубая ошибка! Если бы вместо сложения стоял знак умножения, мы получили бы в ответе число 2. Но при осуществлении сложения никакие операции с одним из слагаемых не позволительны, только со всей суммой целиком.

Ещё ребята часто ошибаются при делении дробей. Возьмем две правильные несократимые дроби и разделим друг на друга: (5/6) / (25/33). Ученик может перепутать и записать результирующее выражение как (5*25) / (6*33). Но так бы получилось при умножении, а в нашем случае всё будет несколько иначе: (5*33) / (6*25). Сокращаем то, что возможно, и в ответе увидим 11/10. Получившуюся неправильную дробь запишем как десятичную - 1,1.

Скобки

Помните, что в любых математических выражениях порядок действий определяется приоритетом знаков операций и наличием скобок. При прочих равных отсчёт очередности выполнения действий происходит слева направо. Это актуально и для дробей - выражение в числителе или знаменателе рассчитывается строго по этому правилу.

Ведь Это результат деления одного числа на другое. Если они не делятся нацело, получается дробь - вот и всё.

Как записать дробь на компьютере

Поскольку стандартные средства не всегда позволяют создать дробь, состоящую из двух «ярусов», ученики порой идут на различные ухищрения. Например, копируют числители и знаменатели в графический редактор «Пейнт» и склеивают их воедино, рисуя между ними горизонтальную линию. Конечно, есть более простой вариант, который, кстати, предоставляет и массу дополнительных возможностей, которые станут полезны вам в будущем.

Откройте «Майкрософт Ворд». Одна из панелей в верхней части экрана носит называние «Вставка» - нажмите её. Справа, в той стороне, где расположены значки закрытия и сворачивания окна, есть кнопка «Формула». Это именно то, что нам нужно!

Если вы воспользуетесь данной функцией, на экране появится прямоугольная область, в которой можно использовать любые математические знаки, отсутствующие на клавиатуре, а также писать дроби в классическом виде. То есть разделяя числитель и знаменатель горизонтальной чертой. Вы даже можете удивиться, что такую правильную дробь настолько легко записать.

Изучайте математику

Если вы учитесь в 5-6 классе, то уже скоро знание математики (в том числе - умение работать с дробями!) потребуется во многих школьных предметах. Практически в любой задаче по физике, при измерении массы веществ в химии, в геометрии и тригонометрии без дробей никак не обойтись. Уже скоро вы научитесь вычислять всё в уме, даже не записывая выражения на бумаге, но будут появляться всё более и более сложные примеры. Поэтому выучите, что такое правильная дробь и как с ней работать, не отставайте по учебной программе, своевременно делайте домашние задания, и тогда вы преуспеете.