Угольная промышленность: проблемы и перспективы. Современные проблемы науки и образования

Хопёрский заповедник расположен в Воронежской области. В заповеднике особо охраняемым обитателем является занесённая в Красную книгу РФ русская выхухоль. Выхухоль – типичный обитатель речных пойм. Самый крупный и ценный из грызунов в заповеднике речной бобр. В Новохопёрском районе, в непосредственной близости от заповедника, скоро начнётся разработка медно-никелевых месторождений: добыча и первичное обогащение никелевых руд. На обогатительной фабрике будет использоваться технология, при которой понадобится много воды: на 1 т породы – 9 т воды. Экологи обеспокоены тем, что горно-обогатительное производство окажет негативное влияние на среду обитания охраняемых в заповеднике животных, в том числе выхухоли и бобра.

14 Каковы возможные негативные последствия добычи медно-никелевых руд в Новохопёрском районе для реки Хопёр – среды обитания охраняемых животных? Укажите два последствия.

В ответе названы любые два из перечисленных последствий: при

Примеры ответов :

Выхухоль и бобры обитают в реке. Когда начнётся добыча

руды, вода загрязнится, и животные не смогут в ней жить.

Для обогащения нужно много воды, её будут брать из реки,

и она обмелеет.

Речные воды могут быть загрязнены, уровень воды в реке

упадёт, и исчезнет привычное для животных место

обитания.

Загрязнение воды, рыба погибнет

В ответе названо только одно из перечисленных последствий: при

добыче руд может произойти загрязнение вод реки Хопёр, падение

уровня воды в реке, уменьшение поголовья рыбы.

Примеры ответов :

Будут брать много воды для производства, река обмелеет.

Вода реки станет более грязной.

Из реки уйдет рыба, которой, возможно, питается

выхухоль

Критерии оценивания заданий с развёрнутым ответом

В ответе ничего не говорится ни о загрязнении вод реки Хопер, ни

о падении уровня воды в реке, ни об уменьшении поголовья рыбы.

Примеры ответов :

Добыча медно-никелевых руд отрицательно скажется на

реках Воронежской области.

Будут нарушены ландшафты

Максимальный балл

Ознакомьтесь с картой, показанной на рисунке.

ГИА, 2013 г.

ГЕОГРАФИЯ

20 Школьники выбирают место для игры в футбол. Оцените, какой из участков, обозначенных на карте цифрами 1, 2 и 3, больше всего подходит для этого. Для обоснования своего ответа приведите два довода.

Ответ запишите на отдельном листе или бланке, указав сначала номер задания.

(допускаются иные формулировки ответа, не искажающие его смысла)

В ответе говорится о том, что больше всего подходит участок 1, и

приведено два обоснования , из которых очевидно, что учащийся

поверхности.

Примеры ответов :

Участок 1

лучше всех остальных, потому что там

горизонтальная поверхность и луг.

На участке 2 местность заболочена, а участок 3 на склоне,

поэтому участок 1 самый лучший.

Должен быть участок с горизонтальной поверхностью, а

3 наклонный. Участок 2 болотистый. Ответ:

участок 1

В ответе говорится о том, что больше всего подходит участок 1 ,и

приведено одно обоснование , из которого очевидно, что учащийся

умеет определять крутизну склонов по расстоянию между

поверхности.

В ответе говорится о том, что больше всего подходит участок 2

или 3 ,и приведеноодно обоснование , из которого очевидно, что

учащийся умеет определять крутизну склонов по расстоянию

характер поверхности.

Примеры ответов :

Участок 1, потому что там луговая растительность.

Участок 1, потому что там горизонтальная поверхность.

Участок 3, потому что там луг.

Участок 2, потому что там плоский рельеф

© 2013 Федеральная служба по надзору в сфере образования и науки РФ

Критерии оценивания заданий с развёрнутым ответом

В ответе назван участок 1 без обоснования или с неверным

обоснованием.

В ответе назван любой участок и приводится обоснование, из

которого не следует, что учащийся умеет определять крутизну

склонов по расстоянию между горизонталями или читать условные

знаки, обозначающие характер поверхности.

Примеры ответов :

Я думаю, это участок 1, потому что он лучше.

Участок 3 лучше.

Максимальный балл

В октябре 2011 г. в Краснодарском крае была введена в эксплуатацию первая очередь современного рисоперерабатывающего комплекса, включающая рисовый завод, фасовочное производство, складской терминал, административный корпус и весь комплекс инженерных сооружений. Мощность завода – 40–45 тыс. т риса-сырца в год.

23 Какая особенность сельского хозяйства Краснодарского края способствовала выбору на его территории места для строительства рисоперерабатывающего комплекса?

Ответ запишите на отдельном листе или бланке, указав сначала номер задания.

(допускаются иные формулировки ответа, не искажающие его смысла)

В ответе говорится о развитии рисосеяния в Краснодарском крае.

Примеры ответов :

Краснодарский край – один из немногих регионов России, где

производят рис. Его удобно перерабатывать на месте сбора

Одно из направлений сельского хозяйства края –

рисоводство. Близость к полям, где выращивают рис, и

обусловила размещение здесь

рисоперерабатывающего

комплекса

В ответе ничего

не говорится о

развитии рисосеяния в

Краснодарском крае.

Пример ответа :

Здесь благоприятные природные условия

Максимальный балл

В процессе добычи и переработки полезных ископаемых человек влияет на большой геологический круговорот. Во-первых, человек переводит залежи полезных ископаемых в другие формы химических соединений. Например, человек постепенно исчерпывает горючие полезные ископаемые (нефть, уголь, газ, торф) и переводит их в конечном итоге в углекислый газ и карбонаты. Во-вторых, человек распределяет по поверхности земли, рассеивая, как правило, бывшие геологические аккумуляции.

В настоящее время на каждого жителя Земли ежегодно добывается около 20 т сырьевых ресурсов, из которых несколько процентов переходит в конечный продукт, а остальная масса превращается в отходы. Отмечаются значительные потери полезных компонентов (до 50 – 60 %) при добыче полезных ископаемых, обогащении и переработке.

При подземной добыче потери угля составляют 30 – 40%, при открытой добыче – 10%. При добыче железных руд открытым способом потери составляют 3–5%, при подземной добыче вольфрамо-молибденовых руд потери достигают 10–12 %, при открытой – 3–5%. При разработке ртутных и золоторудных месторождений потери могут достигать 30%.

Большинство месторождений полезных ископаемых являются комплексными и содержат несколько компонентов, извлечение которых экономически выгодно. В месторождениях нефти попутными компонентами являются газ, сера, йод, бром, бор, в газовых месторождениях – сера, азот, гелий. Наибольшей комплексностью характеризуются руды цветных металлов. Месторождения калийных солей содержат обычно сильвин, карналлит и галит. Наиболее интенсивной дальнейшей переработке подвергается сильвин. Потери сильвина составляют 25–40%, потери карналлита – 70–80%, галита – 90%.

В настоящее время наблюдается постоянное и довольно существенное снижение содержания металлов в добываемых рудах. Так, в течение последних 2–3-х десятилетий содержание в рудах свинца, цинка, меди снижалось ежегодно на 2–2,3 %, молибдена почти на 3%, а содержание сурьмы только за последние 10 лет уменьшилось почти в 2 раза. Содержание железа в добываемых рудах снижается в среднем на 1% (абсолютный) в год. Очевидно, что уже через 20–25 лет для получения того же количества цветных и черных металлов потребуется более, чем в 2 раза увеличить количество добытой и переработанной руды.

Добыча полезных ископаемых влияет на все сферы Земли. Влияние добычи полезных ископаемых на литосферу проявляется в следующем:

1. Создание антропогенных форм мезорельефа: карьеров, отвалов (высотой до 100-150 м), терриконов (высотой до 300 м) и т.д. На территории Донбасса расположено более 2000 отвалов пустой породы высотой около 50–80 м. В результате открытой добычи полезных ископаемых образуются карьеры глубиной более 500 м.

2. Активизация геологических процессов (карст, оползни, осыпи, оседание и сдвижение горных пород). При подземной добыче полезных ископаемых образуются мульды проседания и провалы. В Кузбассе цепь провалов (до 30 м глубиной) тянется на протяжении более 50 км.

3. Изменение физических полей, особенно в районах вечной мерзлоты.

4. Механическое нарушение почв и их химическое загрязнение. В среднем по угольной промышленности России добыча 1 млн. т топлива означает отвод и нарушение 8 га земельной площади, при открытом способе –20–30 га. Во всем мире суммарная площадь нарушенных горными работами земель превышает 6 млн. га. К этим землям следует присовокупить сельскохозяйственные и лесные угодья, на которые горнопромышленное производство оказывает негативное воздействие. В радиусе 35 – 40 км от действующего карьера урожайность сельскохозяйственных культур снижается на 30 % по сравнению со средним уровнем.

Добыча полезных ископаемых воздействует на состояние атмосферы:

1. Происходит загрязнение атмосферы воздуха выбросами СН4, серы, оксидов углерода из горных выработок, в результате горения отвалов и терриконов (выделение оксидов N, C, S), газовых и нефтяных пожаров.

2. Возрастает запыленность атмосферы в результате горения отвалов и терриконов, при взрывах в карьерах, что влияет на количество солнечной радиации и температуру, количество осадков.

Более 70% терриконов Кузбасса и 85% отвалов Донбасса относятся к горящим. На расстоянии до нескольких километров от них в воздухе значительно повышены концентрации SO2, CO2, CO.

В 80-е гг. в Рурском и Верхнесилезском бассейнах на каждые 100 км2 площади ежедневно выпадало 2–5 кг пыли, интенсивность солнечного сияния в Германии уменьшилась на 20 %, в Польше на 50%. Почва на прилегающих к карьерам и шахтам полях оказывается погребенной под слоем пыли толщиной до 0,5 м и на долгие годы теряет свое плодородие.

Влияние добычи полезных ископаемых на гидросферу проявляется в истощении водоносных горизонтов и в ухудшении качества подземных и поверхностных вод; в снижении расходов малых рек, чрезмерном осушении болот. Побочное изменение водного режима в результате добычи полезных ископаемых проявляются иногда на площади, почти в 10 раз превышающей территорию, нарушенную добычей.

При добыче угля на шахтах Ростовской области на каждую тонну добываемого угля приходится откачивать свыше 20 м3 пластовой воды, при добыче железных руд на карьерах Курской магнитной аномалии - до 8 м3

Приближается подписание соглашений о разделе рынка сырья(нефте-газового) Украины между международными нефтяными компаниями – Shell и Сhevron.

На западе и на востоке страны расположены перспективные для разработки нетрадиционного газа участки, а запасы только Юзовского участка газа оцениваются в несколько триллионов кубометров газа. В 2012 году были проведены тендеры на разработку этих участков, их выиграли известные транснациональные корпорации

В прошлом году Донецкий и Харьковский облсоветы одобрили проект добычи сланцевого газа на своих территориях. Речь идет о разработке Юзовского месторождения.
Судьбоносные заседания даже посетил новоиспеченный министр экологии Олег Проскуряков, который не уставал заявлять о блестящих перспективах добычи сланцевого газа.

«В случае успеха поисковых работ на…

Мы неоднократно уже упоминали о том, какие разрушительные последствия может нести в себе добыча сланцевого газа для окружающей среды Европы и Украины в частности. Мировая общественность и экологи 19 июля резко раскритиковали правительства США и Украины за укрывательство информации относительно планов разработки сланцевого газа в Украине.

Президент МБО «Экология-право-человек» (ЭПЧ), профессор Джон Бонайн заявил: – «Хотя уже больше года проводится оценка влияния на окружающую среду, планов относительно применения метода гидравлических разрывов, ни одно из двух правительств не обнародовало настоящий документ для общественности».

Напомним, что агентство США по вопросам международного развития, оплатило услуги консультантов, которые исследовали потенциальные экологические проблемы, касающиеся добычи сланцевого газа методом гидравлических разрывов в Днепровско-Донецком и Карпатском бассейнах. Итоговый документ был завершен в мае, но детали его окутаны тайной и находятся «за семью…

Как известно что одной из 2-х базовых технологий для добычи сланцевого газа является технология гидравлического разрыва пласта (Hydraulic fracturing). Гидравлический разрыв пласта - это процесс, который предполагает введение смеси воды, песка и химических веществ в газоносные породы под чрезвычайно высоким давлением (500-1500 атм.). Давление приводит к образованию крошечных трещин, которые позволяют газу вырваться. .Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин после снижения давления в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Радиус трещин может достигать нескольких десятков метров.

Процесс разрыва в большой степени зависит от физических свойств жидкости и, в частности от ее вязкости. Чтобы давление разрыва было наименьшим, нужно, чтобы она была фильтрующейся.
Повышение вязкости так же, как и уменьшение фильтруемости жидкостей, применяемых…

Введение

Сланцевый газ (shale gas) - это вид топлива, альтернативный природному газу. Добывается из месторождений с низкой насыщенностью углеводородами, расположенных в сланцевых осадочных породах земной коры.

Одни считают сланцевый газ могильщиком нефтегазового сектора российской экономики, а другие - грандиозной аферой планетарного масштаба.

По своим физическим свойствам очищенный сланцевый газ принципиально ничем не отличается от традиционного природного газа. Однако технология его добычи и очистки подразумевает гораздо большие по сравнению с традиционным газом затраты.

Сланцевые газ и нефть - это, грубо говоря, недоделанные нефть и газ. При помощи «гидроразрыва» человек может извлечь топливо из земли до того, как оно соберётся в нормальные месторождения. Такие газ и нефть содержат огромное количество примесей, которые не только повышают стоимость добычи, но и усложняют процесс обработки. То есть сжимать и сжижать сланцевый газ дороже, чем добытый традиционными методами. Сланцевые породы могут содержать от 30% до 70% метана. Кроме того, сланцевая нефть отличается повышенной взрывоопасностью.

Выгодность разработки месторождений характеризуется показателем EROEI, который показывает, сколько энергии надо затратить, чтобы получить единицу топлива. На заре нефтяной эры в начале 20 века EROEI для нефти составлял 100:1. Это означало, что для добычи ста баррелей нефти надо было сжечь один баррель. К настоящему времени показатель EROEI опустился до значения 18:1.

По всему миру происходит освоение все менее выгодных месторождений. Раньше, если нефть не била фонтаном, то такое месторождение никому было не интересно, сейчас все чаще приходится извлекать нефть на поверхность при помощи насосов.


1. История


Первая коммерческая газовая скважина в сланцевых пластах была пробурена в США в 1821 году Уильямом Хартом (англ. William Hart) во Фредонии, Нью-Йорк, который считается в США «отцом природного газа». Инициаторами масштабного производства сланцевого газа в США являются Джордж Митчелл и Том Уорд

Масштабное промышленное производство сланцевого газа было начато компанией Devon Energy в США в начале 2000-х, которая на месторождении Барнетт (англ.) русск. в Техасе в 2002 году впервые применила комбинацию горизонтального бурения и многостадийного гидроразрыва пласта. Благодаря резкому росту его добычи, названному в СМИ «газовой революцией, в 2009 году США стали мировым лидером добычи газа (745,3 млрд куб. м), причём более 40% приходилось на нетрадиционные источники (метан угольных пластов и сланцевый газ).

В первом полугодии 2010 года крупнейшие мировые топливные компании потратили $21 млрд на активы, которые связаны с добычей сланцевого газа. На тот момент некоторые комментаторы высказывали мнение, что ажиотаж вокруг сланцевого газа, именуемый сланцевой революцией, - результат рекламной кампании, вдохновлённой рядом энергетических компаний, вложивших значительные средства в проекты по добыче сланцевого газа и нуждающихся в притоке дополнительных сумм. Как бы то ни было, после появления сланцевого газа на мировом рынке цены на газ стали падать.

К началу 2012 года цены на природный газ в США упали до уровня значительно ниже себестоимости добычи сланцевого газа, в результате чего крупнейший игрок на рынке сланцевого газа - компания Chesapeake Energy - объявила о сокращении производства на 8%, а капитальных вложений в бурение - на 70%. В первом полугодии 2012 года газ в США, где наблюдалось его перепроизводство, стоил дешевле, чем в России, которая обладает крупнейшими в мире разведанными запасами газа. Низкие цены вынудили ведущие газодобывающие компании сократить добычу, после чего цены на газ пошли вверх. К середине 2012 года ряд крупных компаний, стали испытывать финансовые трудности, а Chesapeake Energy оказалась на грани банкротства.


2. Проблемы с добычей сланцевого газа 70-80-х годов и факторы роста промышленности, разработки месторождений в США 90-х годов


Нефтегазовая отрасль считается одной из самых капиталоемких. Высокая конкуренция вынуждает активных игроков на рынке вкладывать огромные суммы в исследовательскую работу, а крупные инвестиционные компании - содержать штат аналитиков, специализирующихся на прогнозах, связанных с нефтью и газом. Казалось бы, все здесь так хорошо изучено, что у нас почти нет шансов прозевать хоть что-то мало-мальски значительное. Тем не менее, никто из аналитиков не сумел предсказать резкий рост добычи сланцевого газа в Америке - настоящий экономико-технологический феномен, который в 2009-м году вывел США в лидеры по объемам добываемого газа, кардинально изменил политику газоснабжения США, превратил внутренний рынок газа из дефицитного в самодостаточный и может самым серьезным образом повлиять на расстановку сил в мировой энергетике.

Интересно, что феномен промышленной добычи сланцевого газа лишь с очень большой натяжкой можно назвать технологической революцией или научным прорывом: ученые знают о залежах газа в сланцах с начала XIX века, первая коммерческая скважина в сланцевых пластах была пробурена в США в 1821 году, задолго до первого в мире нефтяного бурения, а применяющиеся сегодня технологии обкатываются специалистами уже несколько десятилетий. Однако до недавнего времени промышленная разработка гигантских запасов сланцевого газа считалась экономически нецелесообразной.

Главное отличие и главная сложность при добыче сланцевого газа - это низкая проницаемость газосодержащих сланцевых пластов (измельченного песка, превратившегося в окаменевшую глину): углеводород практически не просачивается сквозь плотную и очень твердую породу, поэтому дебет традиционной вертикальной скважины оказывается очень небольшим и разработка месторождения становится экономически невыгодной.

В 70-е годы прошлого века геологоразведка выявила на территории США четыре огромные сланцевые структуры, содержащие громадные запасы газа (Barnett, Haynesville, Fayetteville и Marcellus), но промышленная добыча была признана нерентабельной, а изыскания в области создания соответствующих технологий прервались после падения ценна нефть в 80-х.

Природный газ в пластовых условиях (условиях залегания в земных недрах) находится в газообразном состоянии - в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворенном состоянии в нефти или воде

К идее извлечения газа из сланцевых пластов в США вернулись только в 90-х годах на фоне роста потребления газа и растущих цен на энергоносители. Вместо многочисленных малорентабельных вертикальных скважин исследователи применили так называемое горизонтальное бурение: на подходе к газоносному пласту бур отклоняется от вертикали на 90 градусов и проходит сотни метров вдоль пласта, увеличивая зону контакта с породой. Чаще всего искривление ствола скважины достигается применением гибкой бурильной колонны или специальных компоновок, обеспечивающих отклоняющую силу на долоте и асимметричное разрушение забоя.

Для повышения продуктивности скважины используется технология множественных гидроразрывов пласта: в горизонтальную скважину под большим (до 70 МПа, то есть примерно 700 атмосфер) давлением закачивается смесь воды, песка и специальных химических реактивов, которая разрывает пласт, разрушает плотную породу и перегородки газовых карманов и объединяет запасы газа. Давление воды вызывает появление трещин, а песчинки, которые загоняет в эти трещины поток жидкости, мешают последующему «схлопыванию» породы и делают сланцевый пласт проницаемым для газа.

Промышленная разработка сланцевого газа в США стала рентабельной благодаря нескольким дополнительным факторам. Первый - это наличие сверхсовременного оборудования, материалов с высочайшей износостойкостью и технологий, позволяющих очень точно позиционировать стволы и трещины гидроразрывов. Такие технологии стали доступны даже мелким и средним газодобывающим компаниям после инновационного бума, связанного с ростом цен на энергоносители и повышению спроса (и, следовательно, цен) на оборудование для нефтегазовой промышленности.

Второй фактор - относительная малонаселенность территорий, прилегающих к месторождениям сланцевого газа: добытчики могут бурить многочисленные скважины на громадных участках без непрерывных согласований с властями близлежащих населенных пунктов.

Третий, самый важный фактор - открытый доступ к развитой газопроводной системе США. Этот доступ регламентируется законодательством, и даже мелкие и средние компании, добывшие газ, на прозрачных условиях могут получить доступ к трубе и довести газ до конечного потребителя по разумной цене.


3. Технология добычи сланцевого газа и влияние на экологию


Добыча сланцевого газа предполагает горизонтальное бурение и гидроразрыв пласта. Горизонтальная скважина прокладывается через слой газоносного сланца. Затем внутрь скважины под давлением закачиваются десятки тысяч кубометров воды, песка и химикатов. В результате разрыва пласта газ по трещинам поступает в скважину и далее на поверхность.

Данная технология наносит колоссальный вред окружающей среде. Независимые экологи подсчитали, что специальный буровой раствор содержит 596 наименований химикатов: ингибиторы коррозии, загустители, кислоты, биоциды, ингибиторы для контроля сланца, гелеобразователи. Для каждого бурения нужно до 26 тыс. кубометров раствора. Назначение некоторых химикатов:

соляная кислота помогает растворять минералы;

этиленгликоль борется с появлением отложений на стенках труб;

изопропиловый спирт используется для увеличения вязкости жидкости;

глютаральдегид борется с коррозией;

легкие фракции нефти используются для минимизации трения;

гуаровая камедь увеличивает вязкость раствора;

пероксодисульфат аммония препятствует распаду гуаровой камеди;

формамид препятствует коррозии;

борная кислота поддерживает вязкость жидкости при высоких температурах;

лимонная кислота используется для предотвращения осаждения металла

хлорид калия препятствует прохождению химических реакций между грунтом и жидкостью;

карбонат натрия или калия используется для поддержания баланса кислот.

Десятки тонн раствора из сотен наименований химикатов смешиваются с грунтовыми водами и вызывают широчайший спектр непрогнозируемых негативных последствий. При этом разные нефтяные компании используют различные составы раствора. Опасность представляет не только раствор сам по себе, но и соединения, которые поднимаются из-под земли в результате гидроразрыва. В местах добычи наблюдается мор животных, птиц, рыбы, кипящие ручьи с метаном. Домашние животные болеют, теряют шерсть, умирают. Ядовитые продукты попадают в питьевую воду и воздух. У американцев, которым не посчастливилось жить поблизости от буровых вышек, наблюдаются головные боли, потери сознания, нейропатии, астма, отравления, раковые заболевания и многие другие болезни.

Отравленная питьевая вода становится непригодной для питья и может иметь цвет от обычного до черного. В США появилась новая забава поджигать питьевую воду, текущую из-под крана.

Это скорее исключение, чем правило. Большинству в такой ситуации реально страшно. Природный газ не имеет запаха. Тот запах, который мы чувствуем, издают одоранты, специально подмешиваемые для выявления утечек. Перспектива создать искру в доме, полном метана, заставляет перекрыть водопровод наглухо в такой ситуации. Бурение новых скважин для воды становится опасным. Можно нарваться на метан, который ищет выход на поверхность после гидроразрыва. Например, так произошло с этим фермером, который решил сделать себе новый колодец вместо отравленного. Фонтан метана бил три дня. По подсчетам специалистов в атмосферу ушло 84 тысячи кубометров газа.

Американские нефтегазовые компании применяют к местному населению следующую примерную схему действий.

Первый шаг: «Независимые» экологи делают экспертизу, согласно которой с питьевой водой все в порядке. На этом все заканчивается, если пострадавшие не подают в суд.

Второй шаг: Суд может обязать нефтяную компанию пожизненно снабжать жителей привозной питьевой водой, либо поставить очистное оборудование. Как показывает практика, очистное оборудование не всегда спасает. Например, этиленгликоль проходит сквозь фильтры.

Третий шаг: Нефтяные компании выплачивают компенсации пострадавшим. Размеры компенсаций измеряются десятками тысяч долларов.

Четвёртый шаг: С получившими компенсацию пострадавшими обязательно подписывается договор о конфиденциальности, чтобы правда не выплыла наружу.

Не весь ядовитый раствор смешивается с грунтовыми водами. Примерно, половина «утилизируется» нефтяными компаниями. Химикаты сливают в котлованы, а для увеличения скорости испарения включают фонтаны.


4. Запасы сланцевого газа по миру


Важный вопрос: не угрожает ли массовая промышленная добыча сланцевого газа в США экономической безопасности России? Да, ажиотаж вокруг сланцевого газа изменил соотношение сил на газовом рынке, но, в основном, это касается спотовых, то есть биржевых, сиюминутных цен на газ. Основные игроки на этом рынке - производители и поставщики сжиженного газа, в то время как крупные российские производители тяготеют к рынку долгосрочных контрактов, который в ближайшее время не должен потерять стабильность.

По оценке информационно-консалтинговой компании IHS CERA, к 2018 году мировая добыча сланцевого газа может составить 180 млрд. кубометров в год.

Пока налаженная и надежная система так называемого «трубопроводного ценообразования», по которой работает Газпром (гигантские резервы традиционного газа - транспортная система - крупный потребитель) для Западной Европы предпочтительнее, чем рискованная и недешевая разработка собственных месторождений сланцевого газа. Но именно себестоимость добычи сланцевого газа в Европе (его запасы оцениваются в 12-15 триллионов кубометров) и будет определять европейские цены на газ в ближайшие 10-15 лет

5. Проблемы при добыче сланцевых нефти и газа


Добыча сланцевых нефти и газа сталкивается с рядом проблем, которые в самом ближайшем будущем могут начать оказывать на эту отрасль существенное влияние.

Во-первых, добыча рентабельна только при том условии, что добывается одновременно и газ, и нефть. То есть добыча только сланцевого газа - слишком дорогое удовольствие. Легче добывать его из океана по японской технологии.

Во-вторых, если учесть стоимость газа на внутренних рынках США, можно заключить, что добыча сланцевых ископаемых находится на дотациях. При этом надо помнить, что в других странах, добыча сланцевого газа будет ещё менее рентабельна, чем в США.

В-третьих, уж слишком часто мелькает на фоне всей истерии про сланцевый газ имя Дика Чейни, бывшего вице-президент США. Дик Чейни стоял у истоков всех американских войн первого десятилетия XXI века на Ближнем Востоке, которые и привели к росту цен на энергоносители. Это наводит некоторых экспертов на мысль о том, что эти два процесса были тесно взаимосвязаны.

В-четвертых, добыча сланцевого газа и нефти может вызвать очень серьезные экологические проблемы в регионе добычи. Влияние может оказываться не только на грунтовые воды, но и на сейсмическую активность. Немалое число стран и даже штатов США ввели мораторий на добычу сланцевых нефти и газа на своей территории. В апреле 2014 года американская семья из Техаса выиграла первое в истории США дело о негативных последствиях добычи сланцевого газа методом гидроразрыва пласта. Семья получит 2,92 миллиона долларов от нефтяной компании Aruba Petroleum в качестве компенсации за загрязнение их участка (включая скважину с водою, которая сделалась непригодной для питья) и нанесение вреда здоровью. В октябре 2014 года выяснилось, что подземные воды по всей Калифорнии заражены в результате попадания в них миллиардов литров опасных для человека отходов при добыче сланцевого газа (из письма, которое официальные лица штата отправили в агентство по охране окружающей среды США).

В связи с возможным ущербом для окружающей среды добыча сланцевого газа запрещена во Франции и Болгарии. Добыча сланцевого сырья запрещена или приостановлена также в Германии, Нидерландах, ряде штатов США.

Рентабельность промышленной добычи сланцевого газа имеет ярко выраженную привязку к экономике того региона, где он добывается. Месторождения сланцевого газа обнаружены не только в Северной Америке, но и в Европе (в том числе и Восточной), Австралии, Индии, Китае. Однако промышленная разработка этих месторождений может оказаться затруднена из-за густонаселенности (Индия, Китай), отсутствия транспортной инфраструктуры (Австралия) и строгих норм экологической безопасности (Европа). Есть разведанные месторождения сланцев и в России, самым крупным из которых является Ленинградское - часть масштабного Прибалтийского бассейна, но себестоимость газовых разработок заметно превышает стоимость добычи «традиционного» газа.


6. Прогнозы


Пока еще рано судить о том, насколько большое влияние может оказать разработка сланцевых газа и нефти. По самым оптимистичным оценкам, она незначительно опустит цены на нефть и газ - до уровня нулевой рентабельности добычи сланцевого газа. По другим оценкам, держащаяся на дотациях разработка сланцевого газа скоро окончится совсем.

В 2014 году разразился скандал в Калифорнии - выяснилось, что запасы сланцевой нефти месторождения Монтерей были серьёзно переоценены, и что реальные запасы примерно в 25 раз ниже, чем предсказывалось ранее. Это привело к снижению общей оценки запасов нефти в США на 39%. Данный инцидент может вызвать массовую переоценку сланцевых запасов по всему миру.

В сентябре 2014 года японская компания Sumitomo была вынуждена полностью свернуть масштабный проект по добыче сланцевой нефти в Техасе, рекордные убытки составили 1,6 млрд долл. «Задача извлечения нефти и газа оказалась очень сложной», сообщают представители компании.

Залежи сланца, из которого можно добывать сланцевый газ, весьма велики и находятся в ряде стран: Австралия, Индия, Китай, Канада.

Китай планирует в 2015 году добыть 6,5 млрд кубометров сланцевого газа. Общий объём производства природного газа в стране вырастет на 6% с текущего уровня. К 2020 году Китай планирует выйти на уровень добычи в диапазоне от 60 млрд до 100 млрд кубометров сланцевого газа ежегодно.В 2010 году Украина выдала лицензии на разведку сланцевого газа для Exxon Mobil и Shell.

В мае 2012 года стали известны победители конкурса по разработке Юзовской (Донецкая область) и Олесской (Львовская) газовых площадей. Ими стали Shell и Chevron, соответственно. Ожидается, что промышленная добыча на этих участках начнётся в 2018-2019 годах. 25 октября 2012 Shell начала бурение первой поисковой скважины газа уплотнённых песчаников в Харьковской области. Соглашение между компанией Shell и «Надра Юзовская» о разделе продукции от добычи сланцевого газа на Юзовском участке в Харьковской и Донецкой областях было подписано 24 января 2013 года, в Давосе (Швейцария) при участии президента Украины.

Практически немедленно после этого в Харьковской и Донецкой областях начались акции и пикеты экологов, коммунистов и ряда других активистов, направленные против разработки сланцевого газа и, в частности, против предоставления такой возможности зарубежным компаниям. Ректор Приазовского технического университета, профессор Вячеслав Волошин, заведующий кафедрой охраны труда и окружающей среды, не разделяет их радикальных настроений, указывая, что добыча может быть произведена и без ущерба для окружающей среды, но необходимы дополнительные исследования предлагаемой технологии добычи.


Заключение

сланцевый газ месторождение экология

В этом реферате мы рассмотрели способы добычи, историю и влияние на экологию сланцевого газа. Сланцевый газ - это альтернативный вид топлива. Этот энергоресурс совмещает в себе качество ископаемого топлива и возобновляемого источника и встречается во всем мире, таким образом, практически любая энергозависимая страна может себя обеспечить данным энергоресурсом. Однако его добыча связана с большими экологическими проблемами и катастрофами. Лично я считаю, что добыча сланцевого газа - это слишком опасный метод добычи топлива на данный день. И пока, на нашем уровне технологического прогресса, человек неспособен сохранить баланс экосистемы добывая данный вид топлива столь радикальным методом.


Список использованных источников


1. Сланцевый газ [Электронный ресурс]. - Режим доступа: #"justify">. Сланцевый газ - революция не состоялась [Электронный ресурс]. - Режим доступа: #"justify">. Сланцевыйгаз [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Сланцевый_газ#cite_note-72

Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Е.И.Панфилов, проф., д.т.н., главный научный сотрудник ИПКОН РАН

Неуклонный рост численности населения на планете обуславливает увеличение потребления природных ресурсов, среди которых ведущая роль принадлежит минерально-сырьевым. Россия обладает значительными запасами полезных ископаемых, за счет добычи которых формируется более половины доходной части государственного бюджета. Планируемое ее сокращение за счет интенсивного инновационного развития других отраслей промышленности в ближайшие 10-15 лет не приведет к снижению масштабов и темпов освоения минерально-сырьевой базы страны. При этом добыча твердых полезных ископаемых сопровождается извлечением из недр миллионов тонн горной массы, размещаемой в виде вскрышных пород и отходов на поверхности Земли, что влечет за собой крайне негативные последствия не только для окружающей среды и человека, но и для самих недр.

Оценка воздействий на недра зачастую отождествляется или смешивается с последствиями этих воздействий на окружающую среду, включая инфраструктуру и человека, особенно при определении возникающих и наносимых им ущербов. В действительности, эти процессы имеют существенные различия, хотя и тесно взаимосвязаны. Например, опускание поверхности на калийном месторождении в Березняках, приведшее к значительному экологическому, экономическому и социальному ущербам региону и стране явилось следствием ущерба, нанесенного техногене-зом геологической среде, т.е. имеем дело с различными, по сути, явлениями. Поскольку они могут оказать, и уже оказывают, существенное влияние на всю нашу жизнедеятельность, возникает необходимость более углубленного и всестороннего изучения, определения и оценки происходящих процессов. В работе не рассматриваются воздействия на недра, обусловленные стихийными явлениями, катастрофами и другими негативными природными явлениями, причастность к которым человеческой деятельности не доказана.

Первое понятие касается последствий, возникающих в результате техногенных воздействий на геологическую среду, которую с некоторой долей условности допустимо отождествить с понятием «недра». Сами возникающие последствия обозначим термином «геологический ущерб», т.е. ущерб, наносимый геологической среде (ГС) деятельностью человека.

Другое понятие включает совокупность последствий, обусловленных реакцией ГС (недр) на воздействия техногенеза, поэтому их можно назвать «геотехногенными последствиями». Если они имеют негативный характер, что, как правило, и происходит на практике, то их правомерно считать «геотехногенным ущербом». Его составными частями являются экологические, экономические, социальные и иные последствия, оказывающие отрицательное влияние на жизнедеятельность человека и среду его обитания, в т.ч. природную.

К наиболее востребованной сфере горнопромышленной деятельности относится разработка месторождений, главной целью которой является изъятие из недр полезной для общества части вещества недр - минеральных образований. В этом случае недрам наносится геологический ущерб (ГУ),
возникающий на различных стадиях и этапах разработки месторождений полезных ископаемых.

При этом возможные воздействия на ГС, используя основные положения системы ОВОС, можно подразделить на 4 группы по объективному классификационному признаку, отражающему характер (отличительное свойство, особенность) производимого воздействия на недра:

I группа. Отделение (изъятие) вещества недр, ведущее к уменьшению его количества.

II группа. Преобразование или нарушение геологической среды. Оно может проявляться в виде создания подземных полостей, карьеров, котлованов, выемок, траншей, углублений; перераспределения полей напряжений в горном массиве в зоне ведения горных разработок; нарушения циркулирующих в недрах водоносных, газовых, флюидных, энергетических и иных потоков; изменения горногеологических, структурных характеристик и свойств геологической среды, вмещающей минеральные образования; изменения ландшафта территории, занятой под геологическими и горными отводами, и т.д.

III группа. Загрязнение геологической среды (геомеханическое, гидрогеологическое, геохимическое, радиационное, геотермическое, геобактериологическое).

IVгруппа. Комплексное (синэнергетическое) воздействие на недра, проявляющееся при различном сочетании воздействий трех вышеприведенных групп.

В соответствии с существующей практикой эксплуатации месторождений полезных ископаемых возможные воздействия на ГС рассматриваем по трем основным стадиям:

1 стадия - Изучение геологической среды, в т.ч. их составной части - минеральных образований (месторождений полезных ископаемых).

2 стадия - Освоение (эксплуатация) месторождений полезных ископаемых.

3 стадия - Завершение освоения (разработки) месторождений полезных ископаемых - ликвидация (консервация) горнодобывающих объектов.

На стадии изучения недр, проводимых с целью обнаружения (поиска) минеральных образований, воздействия на геологическую среду, с некоторой долей условности, можно разделить по объективному признаку - степени физической целостности ГС - на две группы: воздействия без существенного нарушения целостности ГС (1-я группа) и воздействия с нарушением целостности и свойств ГС.

К 1-й группе воздействий можно отнести поисковые и сей-сморазведочные работы, которые практически не влияют на состояние горного массива.

2-я группа воздействий обусловлена геолого-разведочными работами (ГРР), осуществляемыми с помощью скважин, горных выработок и иных работ, ведущих к изменению физической целостности ГС. В этом случае возможны все 4 вышеуказанных вида воздействий на ГС - изъятие вещества недр (при проходке геологоразведочных выработок и в меньшей степени - при выбуривании скважин); нарушение геологической среды (при проходке горных выработок с использованием взрывчатых веществ); загрязнение (имеет место лишь в отдельных случаях - при бурении нефтяных, газовых и иных разведочных скважин, при пересечении подземных термальных, минерализованных вод) и комплексное воздействие (встречается редко - например, при пересечении геологоразведочной выработкой минерализованного водного, газоносного горизонтов, флюидных потоков).

Таким образом, можно констатировать, что на стадии изучения недр воздействия на ГС проявляются незначительно, главным образом при разведке и доразведке месторождений полезных ископаемых, производимых с использованием горных выработок и, частично, при бурении разведочных скважин на жидкие и газообразные углеводороды.

На стадии освоения разведанного месторождения полезного ископаемого определяющую роль в воздействиях на ГС играет применяемый способ (технология) его разработки, точнее метод (техническое средство) изъятия из геологической среды ее части - минерального образования, который принимается в качестве главного классификационного признака систематизации возможных воздействий.

В соответствии с этим признаком воздействия подразделяются на четыре группы:

1 группа - Механический способ. Характерен при добыче преимущественно твердых полезных ископаемых и осуществляется известными техническими средствами (угольные комбайны, драги, отбойные молотки, пилы, экскаваторы-мех-лопаты и драглайны, и т.д.).

2 группа - Взрывной способ. Наиболее типичен для разработки твердых полезных ископаемых в случае наличия пород, не поддающихся механическому воздействию.

3 группа - Гидродинамический способ, когда в качестве технического средства отделения полезного ископаемого от массива используются гидромониторы.

4 группа - Скважинная геотехнология в различных ее модификациях. Это основной способ извлечения из недр жидких, газообразных полезных ископаемых, их смесей. Он включает также методы подземного выщелачивания, получающие все более широкое применение.

В каждой из названных групп выделяются подгруппы, классы, виды, подвиды и другие более мелкие подразделения.

Анализируя указанные методы изъятия из ГС минеральных образований с позиции определения возможных воздействий, следует отметить, что помимо главной цели, ради которой они созданы и постоянно совершенствуются, т.е. добычи полезного ископаемого, этим способам присущи все другие виды воздействий, проявляющиеся в разных масштабах, мощности и интенсивности. Они имеют свои специфические особенности, в соответствии с которыми целесообразно осуществлять дифференциацию групп.

На завершающей стадии разработки месторождения, т.е. при ликвидации или консервации горнодобывающего пред-
приятия, когда процесс добычи (изъятия из недр) полезного ископаемого закончен, прямых, непосредственных воздействий на ГС не происходит, однако в этот период более активно и широко могут проявиться последствия предыдущих стадий освоения месторождения, причем, не сразу, а по истечении времени - порой значительному (месяцы, годы).

Количественное определение и оценка воздействий тех-ногенеза на геологическую среду, следовательно геологического ущерба, представляет весьма сложную, в большинстве случаев трудно и порой просто неразрешимую задачу. Одна из основных причин заключается в том, что до настоящего времени не выработано единого подхода к критериям оценки техногенных воздействий на ГС, точнее к критериям восприятия геологической средой наших воздействий.

Например, если из недр изъято минеральное образование, то его количество определить просто, однако установить в количественном выражении последствия такого изъятия очень трудно, т.к. достоверно представить, как поведет себя ГС иногда возможно, но в данный момент, на данном локальном участке, при достоверно установленных исходных показателях. Однако спрогнозировать реакцию ГС на длительный период и пространственно масштабно имеющимися методами и средствами практически невозможно.

Задача становится еще более сложной, когда мы имеем дело с нарушением естественных процессов, происходящих в недрах, например, при пересечении горными выработками водоносных или флюидных потоков. Так, в результате проведенных с 1974 по 1987 годах ядерных взрывов в Лено-Тун-гусской и Хатангско-Вилюйской провинциях на глубинах от 100 до 1560 м в донных отложениях рек, в почве, растениях и в животных обнаружены плутоний, цезий, стронций (в дозах, превышающих нормативы в десятки и сотни раз (!)) .

Или в результате ликвидации шахт в Подмосковном угольном бассейне произошло обводнение и заболачивание некоторых территорий. Еще один пример. На планете по оценкам разных специалистов на сегодняшний день имело место порядка 70 землетрясений с силой более 5 баллов по шкале Рихтера, инициированных деятельностью человека в недрах. Приведенные примеры подтверждают наш тезис о том, что в настоящее время не только оценить, но и количественно определить геологический ущерб, т.е. ущерб, наносимый недрам человеческой деятельностью практически невозможно. Такое утверждение объясняется не столько сложностью выявления причинно-следственных взаимосвязей между тех-ногенезом и недрами, сколько наличием огромных воздействий на планету Земля окружающей ее космической среды. Однако, последствия геологического ущерба, имеющие негативный характер, т.е. «геотехногенный ущерб» предвидеть,
определить и оценить - вполне разрешимая задача.

При этом «геотехногенный ущерб» может быть подразделен на следующие классы:

I. Природно-экологический.

II. Экономический.

III. Социальный.

Природно-экологический ущерб


Условно данный класс можно разделить на три группы: Группа 1. Ущерб, обусловленный в сравнении с установленными граничными параметрами (нормативами) неполнотой изъятия (извлечения) полезного ископаемого из недр, приводящий к сокращению запасов месторождения (невоз-обновимого георесурса), к преждевременной (в сравнении с проектом) ликвидации, в лучшем случае, консервации горного производства, необходимости изыскания новых источников пополнения минерально-сырьевой базы со всеми другими негативными последствиями.

Деление группы на виды и т.д. возможно осуществить, используя классификационный признак - конкретный источник (причина) допущенного ущерба. В числе таких причин:

Представленная для лицензирования недостаточная полнота, достоверность и надежность горно-геологической информации о запасах полезных ископаемых, количественных и качественных характеристиках и свойствах участков недр и минеральных образований. Несвоевременное ее получение и предоставление, в т.ч. при пересчете запасов;

Отсутствие оперативного (экспрессного) и постоянного (на стационарных устройствах и установках) количественного и качественного учета и контроля извлекаемых (в т.ч. отправляемых на склады и в отвалы), а также оставляемых в недрах запасов основных и совместно с ними залегающих полезных ископаемых и содержащихся в них полезных компонентов;

Превышение (в сравнении с установленными нормативами) объема извлекаемых запасов полезных ископаемых из лучших по качеству или условиям эксплуатации выемочных участков и времени их выемки;

Нарушение установленных схем, порядка, операций и сроков разработки отдельных выемочных участков месторождений;

Необоснованное изменение технологий и технологических схем разработки месторождений и их участков, предусматривающее снижение показателей полноты и качества извлечения из недр основных и совместно с ними залегающих полезных ископаемых при добыче и попутных компонентов при первичной переработке (обогащении);

Нарушение установленных проектом или нормативно-правовыми актами схем, порядка и своевременности консервации и ликвидации горного предприятия и связанного с ним горного имущества;

Самовольная застройка площадей залегания полезных ископаемых и/или несоблюдение принятого порядка и сроков использования этих площадей в других целях;

Размещение и накопление промышленных и других отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого и промышленного водоснабжения;

Отсутствие узаконенных соглашений или несогласованность действий недропользователей, осуществляющих эксплуатацию месторождений на одних и тех же или сопряженных лицензионных участках недр.

Группа 2. Ущерб, наносимый окружающей природной среде, связанный с преобразованием (нарушением) части земной поверхности, горного или геологического отводов, ландшафта и находящихся на этой территории природных ресурсов, которые могут оказаться непригодными для использования, уничтоженными либо нарушенными. При выделении видов в группе целесообразно использовать в качестве основного признака - экосистемы, входящие в состав залицензированного участка недр. Группа 3. Ущерб окружающей природной среде и человеку, обусловленный загрязняющими веществами (ущерб загрязнения), образующимися при освоении и использовании полезных ископаемых и поступающими в атмосферу, водные объекты, почву, флору, фауну, т.е. воздействующих на био, фито и зооценоз. Выделение видов (подвидов) ущербов этой группы зависит от климатически-географических особенностей отдельных регионов и характера воздействий, образующихся при недропользовании. В общем случае можно воспользоваться критериями и показателями ОВОС (сейчас это IS019011).

Группа 4. Совокупный (синергетический) ущерб природной среде и человеку. Он представляет собой сочетание вышеприведенных трех групп, исходя из конкретных условий эксплуатации отдельно взятого месторождения или совокупности родственных по горногеологическим и технологическим условиям разработки участков месторождений.

В качестве возможного и конкретного методического подхода по комплексной оценке природно-экологического ущерба, как составной части геотехногенного, целесообразно использовать методологию, предложенную д.т.н. В.И. Па-пичевым . В ней автор рассматривает большинство видов природных ресурсов, которые могут подвергнуться техногенным воздействиям горного производства, исходя из степени прямого (непосредственно) и косвенного (опосредованного) изъятия природных ресурсов, и предлагает считать количественным показателем воздействия производства на каждый природный ресурс «... отклонения фактических значений количества ресурса от его исходных (естественных) значений, которые могут явиться результатом как непосредственного, так и опосредованного потребления ресурса».

Разработанная В.И. Папичевым методика позволяет рассчитать нагрузку на основные компоненты природной среды за тот или иной временной интервал воздействия, в т.ч. нагрузку на недра. В частности, предложено выражение для расчета нагрузки на основные компоненты природной среды :

Выполненными расчетами на конкретных примерах автор доказал возможность и целесообразность использования предложенной им методологии .

Экономический ущерб


Экономический ущерб складывается в основном из убытков и упущенной выгоды, в соответствии с которыми этот класс ущербов подразделяется на 2 группы: Группа 1. Убытки.

Видами убытков могут быть:
- дополнительные расходы, вызванные недостаточной или недостоверной горно-геологической информацией о лицензируемом месторождении или его части (свойствах, характеристиках и т.д.);

Сверхнормативные потери запасов полезных ископаемых, в т.ч. списанных или переведенных в категорию забалансовых (нерентабельных) запасов, сформировавшихся из-за нерациональной выборочной выемки лучших по качеству или условиям эксплуатации участков месторождений;

Утрата или повреждение горного имущества;

Непредвиденные расходы, связанные с необходимостью сохранения нарушенной горными работами геологической среды в состоянии, пригодном для дальнейшего использования;

Расходы средств и ресурсов, необходимых для устранения экологического ущерба во всех его проявлениях.

Группа 2. Упущенная выгода (недополученные доходы).

Упущенная выгода рассматриваются с 2-х позиций: государства, как собственника недр, и недропользователя, причем, как правило, эти позиции не совпадают, т.е. недополученная выгода государством может оцениваться как необоснованное обогащение недропользователей, что, например, имеет место при нерациональной выборочной выемке запасов, а также когда государство предоставило недропользователю недостаточно полную и качественную геологическую информацию о выставленном на тендер месторождении или его части. Следовательно, группа может быть представлена двумя видами ущерба: государства и недропользователя.

Социальный ущерб


Источники социального ущерба от недропользования при наличии государственных, частных и смешанных горнодобывающих компаний имеют различную природу происхождения. Сам ущерб определяется в основном четырьмя вышеприведенными классами техногенного ущерба, поэтому выделение в отдельный класс условное.

Основным признаком его дифференциации целесообразно считать состояние здоровья человека, учитывая моральную составляющую. Деление социального ущерба на группы, виды и более мелкие сегменты представляет достаточно сложную, многофакторную проблему, решение которой является предметом специального исследования. В первом приближении дифференциация класса «социальный ущерб» может быть выполнена на базе основных факторов, влияющих на физиолого-психическое состояние человека, его групп, общностей. Например, можно выделить группы, характеризующиеся: качеством окружающей природной среды (Кузбасс, Курская магнитная аномалия, Урал и другие горные провинции, районы и промышленные узлы), инфраструктурой, подразумевая под ней транспорт, связь (районы Крайнего Севера, Дальнего Востока, других малообжитых территорий), социально-бытовыми, национальными, культурными и иными условиями проживания, концентрацией населения, другими значимыми факторами.

Сложность выделения социального ущерба от недропользования объясняется тем обстоятельством, что не всегда и не везде горное производство является главным в местах проживания людей. Трудность оценок значительно возрастает в районах с развитой промышленностью, инфраструктурой, где добыча полезных ископаемых не играет ведущую роль в социально-экономическом развитии, либо когда социально-экономическое значение минерально-сырьевого комплекса сопоставимо с другими производствами, функционирующими на рассматриваемой территории или выделенной экосистеме. Поэтому установление и оценка социального ущерба от недропользования должны производиться отдельно в каждом конкретном случае на основе глубоких исследований. Это положение справедливо и для общей (суммарной) оценки возникающих ущербов, как по отдельным объектам горнодобывающей промышленности, так и по регионам и различным административным образованиям.

В качестве примера, иллюстрирующего конкретный подход к определению и оценке ущербов при недропользовании можно привести Республику Татарстан, Министерство экологии и природных ресурсов которой утвердило «Порядок расчета ущерба при правонарушениях в области недропользования в республике Татарстан» (Приказ от 9 апреля 2002 г. №322).

Согласно этому приказу общая сумма ущерба государству при нарушении законодательства в области недропользования складывается из следующих составляющих:

Ущерб, причиненный недрам невосполнимой потерей запасов полезных ископаемых;

Убыток бюджетов разных уровней вследствие невнесения налогов (платежей) за пользование недрами;

Ущерб, причиненный земельным и растительным ресурсам в результате уничтожения (деградации) почвенного слоя и растительности на участке самовольного пользования недрами на прилегающей территории;

Затраты на проведение работ по оценке размеров вреда недрам и вредного воздействия на окружающую природную среду (в том числе, исчислению убытков и оформлению соответствующих документов).

В вышеназванном документе приводится порядок определения ущерба при нарушении законодательства, дается оценка общей суммы ущерба с примерами расчета конкретной величины ущерба, причиненного недрам и бюджетам разных уровней, применительно к разработке общераспространенных полезных ископаемых. Так, например, ущерб, причиненный недрам (Ун) невосполнимой потерей запасов полезных ископаемых, определяется произведением количества добытого полезного ископаемого (V) на норматив стоимости полезного ископаемого (Nn), на стоимость единицы добытого полезного ископаемого (S) и на коэффициент достоверности запасов по категориям (D).

Нормативы стоимости полезного ископаемого, установленные в Республике Татарстан, представлены в таблице.

Основные положения используемого в республике методического подхода могут быть учтены при освоении других видов полезных ископаемых.

Суммарный геотехногенный ущерб оценивается в каждом конкретном случае по отдельным объектам, в нашем случае, месторождениям полезных ископаемых, изучаемым и осваиваемым как индивидуальными предпринимателями, так и юридическими лицами (их группой) в зависимости от зоны влияния разрабатываемого месторождения (его части) на окружающую среду, включая инфраструктуру и население. Определение зоны влияния представляет самостоятельную проблему исследований. При ее выполнении важно учитывать степень восприимчивости геологической и окружающей среды к возможным воздействиям.

Познание источников и причин геологических и геотехногенных ущербов позволяет изыскивать рациональные мероприятия по их предупреждению или ликвидации негативных последствий, исходя из тезиса о том, что любой геологический ущерб вызывает геотехногенный ущерб, т.е. техногенное воздействие на ГС порождает одновременно как геологический, так и геотехногенный ущербы. Из этого тезиса следует вывод о том, что прежде чем определять, оценивать и разрабатывать какие-либо мероприятия, направленные на устранение геотехногенного ущерба, следует изучить, выявить источники и принять меры к недопущению геологического ущерба.


При этом важно, чтобы осуществляемые или предполагаемые мероприятия носили системный характер, означающий:

Организацию специального государственного органа по контролю и надзору в сфере недропользования;

Взаимосвязанность и взаимообусловленность любых проектов, программ, нормативно-правовых актов, планов и решений;

Иерархическое ранжирование (по вертикали и горизонтали) по уровням их выполнения;

Логически выстроенное и последовательное исполнение намеченных мероприятий с введением персональной ответственности, прежде всего представителей государственных органов исполнительной власти за своевременную реализацию этих мероприятий;

Принятие единого узаконенного на уровне Федерации методического подхода к разработке и реализации методов, средств и мероприятий по контролю и надзору за рациональным недропользованием.

В значительной степени, хотя и в декларативной форме, возможные мероприятия по недопущению или минимизации указанных ущербов изложены в Федеральном законе «О недрах» (гл. 23) и более конкретно в «Правилах охраны недр» ПБ-07-601-03.М. Однако, реальное и результативное использование даже этих, далеко не идеальных нормативных документов, серьезно и заметно сдерживается действующим контрольно-надзорным аппаратом государственного управления, функции которого «растащены» по различным министерствам, службам и агентствам, связанным с функционированием минерально-промышленного комплекса страны.

Полагаем, что изложенные соображения, раскрывающие сущность техногенеза на недра при разработке месторождений полезных ископаемых, будут полезны специалистам, занимающимся проблемами рационального освоения георесурсов и сохранения недр.

ЛИТЕРАТУРА:

1. Панфилов Е.И. «Российское горное законодательство: состояние и пути его развития». М. Изд. ИПКОН РАН. 2004. c.35.

2. Папичев В.И. Методология комплексной оценки техногенного воздействия горного производства на окружающую среду (автореферат докторской диссертации). М. Изд. ИПКОН РАН. 2004. c.41.