Определение множества. Что такое множество

Математический анализ

Множество-это совокупность объектов любой природы. Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записываютx Х ( - принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( - содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:

§ А={1,2,3,5,7} - множество чисел

§ Х={x 1 ,x 2 ,...,x n } - множество некоторых элементов x 1 ,x 2 ,...,x n

§ N={1,2,...,n} - множество натуральных чисел

§ Z={0,±1,±2,...,±n} - множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой иδ - положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

2. Метод математической индукции (пример). Неравенство Бернулли.


3. Аксиоматика множества действительных чисел: операция сложения, операция умножения, отношение порядка.
4. Аксиоматика множества действительных чисел: аксиома Архимеда, аксиома Дедекинда.

АРХИМЕДА АКСИОМА

Аксиома, первоначально сформулированная для отрезков, заключающаяся в том, что, отложив достаточное число раз меньший из двух заданных отрезков, всегда можно получить отрезок, превосходящий больший из них. Аналогично А. а. формулируется для площадей, объемов, положительных чисел и т. д. Вообще, для данной величины имеет место А. а., если для любых двух значений этой величины таких, что , всегда можно найти целое число т, что ; на этом основан процесс последовательного деления в арифметике и геометрии (см. Евклида алгоритм ). Значение А. а. выяснилось с полной отчетливостью после того, как в 19 в. было обнаружено существование величин, по отношению к к-рым эта аксиома несправедлива,- т. н. неархимедовых величин

Дедекинда аксиома

одна из аксиом непрерывности (см. Непрерывности аксиомы). Д. а. гласит: если все точки прямой разбиты на два непустых класса, причём все точки первого класса расположены левее всех точек второго, то существует либо самая правая точка первого класса, либо самая левая точка второго


5. Модуль действительного числа и его свойства.

Абсолютной величиной (или модулем ) действительного числа х называется неотрицательное число , определяемое соотношением
Свойства модуля . 1. . 2. . 3. Неравенства и равносильны. 4. Модуль суммы двух действительных чисел меньше или равен сумме модулей этих чисел:

Это свойство справедливо для любого конечного числа слагаемых.

5. Модуль разности двух действительных чисел больше или равен разности модулей этих чисел:
. 6. Модуль произведения чисел равен произведению модулей этих чисел:
. Это свойство справедливо для любого конечного числа сомножителей. 7. Модуль частного двух чисел (если делитель отличен от нуля) равен частному модулей этих чисел:


6. Границы числовых множеств. Точные верхние и нижние границы числовых множеств.
7. Действительная функция действительного аргумента: элементарные функции их область определения и график, сложные и неэлементарные функции.
8. Способы задания функций, арифметические действия над функциями.
9. Простая классификация функций действительного аргумента.
10. Предел числовой последовательности и его геометрический смысл.
11. Свойства сходящихся последовательностей: теорема 1. Единственность предела (с доказательством). Теорема 2.
12. Бесконечно малые и бесконечно большие числовые последовательности: определения. Связь между ними.
13. Леммы о бесконечно малых числовых последовательностях. Следствия. Примеры.
14. Теоремы о пределах числовых последовательностей. Следствия.
15. Вычисление пределов числовых последовательностей: правила раскрытия неопределенностей вида, . Вывод. Пример.
16. Предельный переход в неравенствах: Теорема 1. (о сохранении знака предела). Теорема 2 (предельный переход в неравенствах). Теорема 3 (о сжатой последовательности). Теорема Вейерштрасса.
17. Число e (с доказательством). Натуральные логарифмы.
18. Предельные точки множества.
19. Определение предел функции в точке по Коши и его геометрический смысл.
20. Определение предела функции в точке по Гейне. Основные теоремы о пределе функции. Вычисление предела функции в точке: правило раскрытия неопределенности вида Пример.
21. Предел функции по множеству. Односторонние приделы. Замечания.
22. Первый замечательный предел (с доказательством). Следствия.
23. Второй замечательный предел. Замечания. Замечательные пределы, связанные с показательной и логарифмической функциями. Замена переменной под знаком предела. Пример.
24. Непрерывность и точки разрыва функции. Свойства непрерывных функций.
25. Производные простых функций: определение производной функции, геометрический смысл производной функции. Уравнения касательной и нормали к кривой.
26. Основные правила дифференцирования функций. Производные элементарных функций. Пример.
27. Производная сложной функции. Логарифмическое дифференцирование. Производная показательно-степенной функции.
28. .Дифференциал функции и его геометрический и механический смысл. Вывод.
29. Основные правила нахождения дифференциала функции. Дифференциал сложной функции. Инвариантность формы дифференциала первого порядка. .
30. Производные и дифференциалы высших порядков функции. Механический и геометрический смысл второй производной. Формула Лейбница.
31. Основные теоремы дифференцирования: теорема Ферма, теорема Роля и их геометрический смысл.
32. Основные теоремы дифференцирования: теорема Лагранжа, теорема Коши и их геометрический смысл.
33. Приложения производной: правило Лопиталя для раскрытия неопределенностей вида и, раскрытие неопределенностей вида. Пример.
34. Первообразная функции и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов.
35. Методы интегрирования функций: непосредственное интегрирование; метод замены переменной; метод интегрирования по частям.
36. Определение и свойства определенного интеграла.
37. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Методы интегрирования в определенном интеграле: замена переменной, метод интегрирования по частям.
38. Числовые ряды. Сходимость и расходимость числовых рядов. Необходимый признак сходимости рядов.
39. Достаточные признаки сходимости числовых рядов: признак сравнения, предельный признак сравнения.
40. Достаточные признаки сходимости числовых рядов: радикальный признак Коши, признак Даламбера.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

Множество a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a A , то пишут (a не входит в A , A не содержит a a , b , c

Операции над множествами .

Универсальное множество

Универса́льное мно́жество

Диаграммы Венна. Тождества алгебры множеств и их доказательство.

Диаграмма Венна - схематичное изображение всех возможных пересечений нескольких множеств, показывают математические, теоретико-множественные или логические отношения между множествами.

Тождества и их доказательства.

Для произвольных множеств А, В, и С справедливы следующие соотношения:

1. Коммутативность:

2. Ассоциативность

3. Дистрибутивность объединения относительно пересечения

3’. Дистрибутивность пересечения относительно объединения

4. Законы действия с пустым и универсальным множествами

5. Закон идемпотентности

6. Закон де Моргана

7. Закон поглощения

,

8. Закон склеивания

,

9. Закон Порецкого

,

10. Закон двойного дополнения

Доказать следующее тождество .

Докажем это тождество аналитическим способом (используя равносильности алгебры множеств)

Понятие формального языка

Формальный язык - язык, характеризующийся точными правилами построения выражений и их понимания. Он строится в соответствии с четкими правилами, обеспечивая непротиворечивое, точное и компактное отображение свойств и отношений изучаемой предметной области (моделируемых объектов).

Формальный язык – основа создания программного обеспечения.

ФЯ образуется с помощью исходного набора букв а1, а2, …., а100, с помощью букв образуются слава. Слово в формальном языке – упорядоченный набор букв (Ящерица – 30 букв)

Для операции * слов справедлив ассоциативный закон.

Теория полугрупп и полуколец – основа теории ФЯ

Тавтологии

Тавтология – тождественно-истинное высказывание, которое всегда истинно.

Простейшая тавтология - выражение (A или не A ), представляющее закон исключённого третьего, где вместо A может быть подставлено любое выражение,могущее быть ложным или истинным, например свет включен или не включен , дважды два равно или не равно пяти . Тавтологией являются и законы математической логики выраженные через оператор эквивалентности: и т. п.

Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.

Предикат – высказывание зависящее от какой-то меняющейся переменной величины.

Одноместный предикат – отображение, по которому каждому значению переменой указывается единственное значение 0 или 1 .примеры:

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Отрицанием предиката А(х) называется новый предикат, который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката, х Х является дополнение Т" к множеству Т в множестве Х.

Возьмём высказывания: `` Сократ - человек "", `` Платон - человек "". Оба эти высказывания выражают свойство ``быть человеком"". Таким образом, мы можем рассматривать предикат `` быть человеком "" и говорить, что он выполняется для Сократа и Платона.

25 область определения и область истинности предиката

Множество М, на котором определен предикат P(х) , называется областью определения предиката.

Множество всех элементов х Î М, при которых преди­кат принимает значение «истина», называется множеством истинности предиката Р(х), то есть множество истиннос­ти предиката Р(х) - это множество 1р = {х| х Î М, Р(х) = 1}.

Р(х): «х 2 + 1> 0, xÎ R»; область определения предиката М = R и область истинности – тоже R, т.к. неравенство верно для всех действительных чисел. Таким образом, для данного предиката М = I p . Такие предикаты называются тождественно истинными.

В(х): «х 2 + 1< 0, xÎ R»; область истинности I p =Æ, т.к. не существует действительных чисел, для которых выполняется неравенство. Такие предикаты называются тождественно ложными.

Кванторы. Двухместные предикаты. Определения уравнения, тождества и неравенства.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:

· Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

· Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

1. любое натуральное число кратно 5;

2. каждое натуральное число кратно 5;

3. все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

1. существуют натуральные числа, кратные 5;

2. найдётся натуральное число, кратное 5;

3. хотя бы одно натуральное число кратно 5.

Их формальная запись:

.

· Высказывание означает, что область значений переменной включена в область истинности предиката .

(«При всех значениях (x) утверждение верно»).

· Высказывание означает, что область истинности предиката непуста.

(«Существует (x) при котором утверждение верно»).

Операции над кванторами

Правило отрицания кванторов - применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:

Двухместный предикат – отображение, по которому каждой паре переменных указывается единственное значение 0 или 1.

Предикат является двухместным предикатом, предметной областью которого могут служить любые множества действительных чисел. Высказывание истинно, а высказывание ложно. Если вместо одной из переменных подставить число, то получится одноместный предикат.

Пересечение графов

Пусть G1(V1,E1) и G’2(V2’,E2’) – произвольные графы. Пересечением G1∩G’2 графов G1 и G’2 называется граф с множеством вершин V1∩V’2 с множеством ребер E = E1∩E’2

Свойства

· Пересечение множеств является бинарной операцией на произвольном булеане 2 X ;

коммутативна :

· Операция пересечения множеств транзитивна (ассоциативность) :

· Универсальное множество X является нейтральным элементом операции пересечения множеств:

· Таким образом булеан вместе с операцией пересечения множеств является абелевой группой;

· Операция пересечения множеств идемпотентна:

· Если - пустое множество, то

Остов и коостов графов.

Остов графа - такой его подграф, который является деревом.

Коостов – дополнение остова до графа.

Понятие множества. Операции над множествами. Универсальное множество.

Множество (N- натуральные,Z-целые,Q-рационал, R-действительные) – неопределяемое понятие, это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Простое множество не имеет ни одного элемента. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

«пустое множество» - множество, не содержащее ни одного элемента, его обозначают

Способы задания: табличный, перечислением элементов, графический, рекуррентный, формулой.

Операции над множествами .

Пересечение множеств – множество, состоящее из элементов, которые принадлежат обоим множествам.

Для пересечения множеств справедливы:

· X∩Y=Y∩X - коммутативный закон

· (X∩Y)∩Z = X∩(Y∩Z) = X∩Y∩Z - ассоциативный закон

Объединение множеств – множество, состоящее из элементов, принадлежащих хотя бы одному из множеств.

Для объединенных множеств справедливы:

· XUY = YUX - коммутативный закон

· (XUY) UZ = XU (YUZ) = XUYUZ - ассоциативный закон,

Универсальное множество

Универса́льное мно́жество - множество, содержащее все мыслимые объекты. Универсальное множество единственно.

Универсальное множество – множество, которое содержит все элементы, из которых может состоять другое множество, т.е. полностью содержать все элементы универсального множества. .

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение XU(объединение)I = I.

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

Элемент множества

Мно́жество - один из ключевых объектов математики , в частности, теории множеств . «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие - значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество - это, пожалуй, самое широкое понятие математики и логики).

Теории

Существует два основных подхода к понятию множества - наивная и аксиоматическая теория множеств.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело - Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита , его элементы - маленькими. Если а - элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Упорядоченное множество -- множество, на котором задано отношение порядка .
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x 1 , x 2 , x 3 , … ), а элементы могут повторяться.

По иерархии:

Множество множеств Подмножество Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. - М .: Просвещение, 1968. - 232 с.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Элемент множества" в других словарях:

    элемент множества - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] элемент множества Объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в… …

    Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в этом смысле употребляют «точка множества», «член множества» и др.… …

    МНОЖЕСТВА, в математике совокупность определенных объектов. Эти объекты называются элементами множества. Число элементов может быть бесконечным или конечным, или даже равняться нулю (число элементов в пустом множестве обозначается 0). Каждый… … Научно-технический энциклопедический словарь

    элемент - Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем … Справочник технического переводчика

    Часть чего нибудь. Одна из возможных этимологий этого слова по названию ряда согласных латинских букв L, M, N (el em en). Элемент (философия) Элемент обязательная принадлежность флага, знамени и штандарта. Элемент множества Элементарные… … Википедия

    Элемент - первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы … Экономико-математический словарь

    Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    А; м. [от лат. elementum стихия, первоначальное вещество] 1. Составная часть чего л.; компонент. Разложить целое на элементы. Из каких элементов состоит культура? Природа э. производства. Составные элементы чего л. // Характерное движение, одна… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Элемент. Элемент (лат. elementum стихия) самостоятельная часть, являющаяся основой чего либо, например системы или множества. Этимология Латинское слово elementum использовали ещё … Википедия



Задача 1

Сравни элементы множеств в первом и во втором рядах. Есть ли в первом ряду элемент, которого нет во втором ряду? Есть ли во втором ряду элемент, которого нет в первом ряду?

    Решение
  • В первом ряду нет элементов, которых нет во втором ряду
  • Во втором ряду нет элементов, которых нет в первом ряду

Задача 2

Сравни множества в первом и во втором рядах. В каком ряду есть лишний элемент?

Задача 3

Верно ли записано равенство? Почему?


    Решение
  • а) Верно. В этих равенствах одни и теже элементы, только в разном порядке.
  • б) Не верно. В левой части равенства есть треугольник, а в правой нет.
  • в) Верно. Левая часть не равна правой, потому что их элементы отличаются.


Задача 4

Пусть А = {0; 1; 2 }. Какие из множеств В - {2; 0; 1 }, С = { 1; 0 }, D = { 3; 2; 1; 0) равны множеству А, а какие ему не равны? Сделай записи и объясни их.

    Решение
  • A = B: У этих множеств одинаковые элементы, записанные в разном порядке.
  • C не равно A: У множества C отсутствует элемент 2, который есть у множества A.
  • D не равно A: У множества A отсутствует элемент 3, который есть у множества D.

Задача 5

D = { a; ; 5 }. Составь множество А, равное множеству D, и множество В, не равное множеству D.

Задача 6

  • а) Составь все множества» равные множеству { О; /\ };
  • б) Составь все множества, равные множеству {а; б; в).
    Решение
  • а) { О; /\ }, {/\ ; О}.
  • б) {а; б; в), {а; в; б}, {в; а; б}, {б; а; в}.

Задача 7

    Сколько элементов содержит:
  • а) множество дней недели;
  • б) множество парт в первом ряду;
  • в) множество букв русского алфавита;
  • г) множество хвостов у кошки Мурки;
  • д) множество носов у Пети;
  • е) множество лошадей, пасущихся на Луне?
    Решение
  • а) множество дней недели = 7;
  • б) множество парт в первом ряду = 3;
  • в) множество букв русского алфавита = 33;
  • г) множество хвостов у кошки Мурки = 1;
  • д) множество носов у Пети = 1;
  • е) множество лошадей, пасущихся на Луне = 0.


Задача 8

  • а) Растут ли в вашем школьном саду тропические пальмы? Каково множество пальм в школьном саду?
  • б) Каково множество шестиногих лошадей, двухлетних детей в классе, крокодилов в Москве-реке?
  • в) Придумай несколько примеров пустого множества.
    Решение
  • а) Не растут пальмы в школьном саду. Пустое множество Ø
  • б) Пустое множество. Ø
  • в) Двухметровые мухи, деревянные перчатки.

Задача 9

Найди правильное обозначение пустого множества, а остальные зачеркни:

Задача 10

  • а) Во сколько раз 56 больше, чем 8?
  • б) Во сколько раз 8 меньше, чем 56?
  • в) На сколько единиц 56 больше, чем 8?
  • г) На сколько 8 меньше, чем 56?
    Решение
  • а) 56 больше, чем 8 в 7 раз.
  • б) 8 меньше, чем 56 в 7 раз.
  • в) 56 больше, чем 8 на 48 единиц.
  • г) 8 меньше, чем 56 на 48 единиц.

Задача 11

  • а) Шапка стоит а руб., а пальто - в 9 раз дороже. Сколько стоят пальто и шапка вместе?
  • б) Масса арбуза Ь кг, а масса тыквы - на 2 кг меньше. Какова общая масса арбуза и тыквы?
  • в) В ведро входит c л воды, а в кастрюлю - в 7 раз меньше. На сколько объём ведра больше объёма кастрюли?
  • г) В куске было (d м ткани. Из этой ткани сшили 8 одинаковых платьев, расходуя на каждое платье по n м. Сколько метров ткани осталось в куске
    Решение
  • а) (a * 9) + a
  • б) (b - 2) + b
  • в) c - (c: 7)
  • г) d -(8 * n)

Задача 12

Отгадай, кто это?




На странице использованы задачи и задания из книги Л. Г. Петерсон «Математика. 3 класс. Часть1.» 2008г.
Ссылка на сайт автора: