Лазерное излучение опасно для человека. Свойства лазерного излучения и его воздействие на организм. Лазерное излучение и организм человека

Лазер считается одним из самых идеальных предвидений Альберта Эйнштейна. Он активно твердил о том, что атомы могут излучать свет. Данная теория подтвердилась через полвека, когда Прохоров, Басов изобрели квантовый генератор. Лазер способен давать особое излучение. В современном мире они широко используются в медицине, в разных областях техники, в шоу и представлениях на эстраде. Несмотря на сумасшедшую популярность, важно разобраться, какое воздействие осуществляется на человеческий организм.

Специфика излучения

Лазерное излучение рождается в атомах, так же как и простой свет. Однако для этого необходимы специальные физические процессы, благодаря которым, происходит необходимое влияние внешнего поля – электромагнитного. Именно поэтому излучение принято считать стимулированным, вынужденным. Для измерения его мощности используют особый прибор – измеритель для этого используются многие способы.

Простыми словами, лазерное излучение представляет собой волны электромагнитные, которые распространяются параллельно друг другу. Именно поэтому лазерный луч обладает острой направленностью, очень маленьким углом рассеивания, а также повышенной интенсивностью влияния на поверхность, которая подвергается облучению.

Чем же отличается лазерное излучение оттого, которое получается от лампы? Следует отметить, что лапа накапливания считается рукотворным источником освещения, который дает волны электромагнитные, что отличается от лазерного. Угол распространения в спектральном диапазоне составляет триста шестьдесят градусов.

Воздействие лазера на человеческий организм

По причине различного использования квантового генератора, многие ученые и медики решили изучить лазерное излучение, а также его воздействие на организм человека. Благодаря многочисленным опытам, научным работам, стало известно, что излучение лазерное имеет такие свойства:

  • в процессе взаимодействия с источником подобного излучения, повреждающим фактором может выступать установка и отраженные лучи;
  • тяжесть поражения напрямую связана с параметрами локализации облучения, электромагнитных волн;
  • энергия, которая поглощается подобными тканями, вызывает перечень негативных, вредных эффектов, а именно – световых, тепловых и прочих.

В момент биологического действия такого излучения поражение происходит в определенной последовательности:

  • Резко повышается температура тела, которая сопровождается ожогами.
  • Затем закипает межтканевая, клеточная жидкость.
  • Пар, который образуется в результате подобного процесса, оказывает невероятное давление, поэтому все заканчивается взрывом, своеобразной волной ударной, разрушающей ткани.

Малая, средняя интенсивность облучений оказывает поражающий эффект на кожу. Если происходит более серьезное облучение, то повреждения проявляются отеками на кожном покрове, омертвением участков тела, кровоизлиянием. Относительно внутренних тканей – они сильно трансформируются. Основная опасность источает от зеркально отраженного, прямого излучения. Такой процесс становится причиной серьезных изменений в работе всех внутренних систем, органов.

Больше всего страдают органы зрения – глаза, именно поэтому при работе с лазером, необходимо носить специальные защитные очки.

Лазер генерирует короткие импульсы облучения, которые провоцируют сильнейшее повреждение роговицы и сетчатки, хрусталика, а также радужной оболочки глаза.

Существует три основных причины для таких явлений:

  • За короткий отрезок времени, в течение которого срабатывает лазерное излучение, мигательный рефлекс не успевает вовремя сработать.
  • Роговица и оболочка считаются наиболее уязвимыми.
  • Пагубное воздействие спровоцировано оптической системой глаза, которая фокусирует излучение на дне глаза. Точка лазера попадает на сосуды сетчатки, закупоривая ее. Учитывая то, что там отсутствуют рецепторы, отвечающие за боль, повреждение сетчатки практически незаметно. Если выжженная часть глаза обретает большие размеры, изображения предметов, попадающие на нее – просто испаряются.

Характерные признаки поражения органов зрения:

  • наблюдается кровоизлияние в клетчатке;
  • отечность век;
  • болезненные ощущения в глазах;
  • помутнение, размытое изображение;
  • спазмы век.

В результате подобных повреждений, восстановить клетки сетчатки невозможно! Сила излучения, которая вызывает повреждение глаз, обладает более низким уровнем, чем-то облучение, которое поражает кожный покров. Основную опасность несут все лазеры инфракрасные. Помимо этого, все приборы, которые дают излучение видимого спектра с размером мощности более 5 мвт – чрезвычайно опасны для человека!

Основные способы защиты на производстве

Большинство людей сразу подумают о том, что понадобятся одни защитные очки от лазерного излучения, но их будет недостаточно. Учитывая то, что множество людей работает на предприятиях с квантовыми генераторами, важно знать главные предписания, нормы, касающиеся защиты от подобного облучения. Они состоят из индивидуальной, общей защиты, так как все зависит от степени опасности, которую несет установка с лазером.

Можно насчитать четыре группы опасности, о которых должен предупредит производитель. Для человеческого организма опасны те лазеры, которые входят во вторую, третью, четвертую группу. К коллективным средствам защиты можно отнести кожухи, экраны защитные и световоды, блокировка и сигнализация, телеметрические способы слежения, ограждение места с облучением, которое превышает допустимую норму.

Что касается индивидуальной защиты работников, то их необходимо обеспечить специальной одеждой. Что касается глаз, то потребуются защитные очки, имеющие специальное покрытие. Очки помогут вам сократить уровень негативного воздействия, сохранить зрение и здоровье глаз. Идеальная профилактика подобного облучения – современное посещение врача, соблюдение всех правил безопасности.

Важно всегда носит очки защитные, спецодежду, так можно уберечь себя и свое здоровье от проблем.

Меры защиты от лазерных гаджетов

Участились случаи, когда люди пользуются в быту без особого контроля светильниками, лазерами самодельными, фонариками лазерными и световыми указками, не понимая, какую они несут опасность. Даже при их использовании необходимо носить защитные очки. Чтобы предотвратить печальные последствия, важно всегда помнить:

  • носить защитные очки;
  • особую опасность несут те лучи, которые отражаются от пряжек, стекла, предметов;
  • защитные очки обязаны подходить длине волны всего излучения от лазера;
  • «играть» с лазером можно там, где нет людей;
  • если луч с небольшой интенсивностью попадет в глаза спортсмену, пилоту или же водителю, может произойти трагедия;
  • хранение подобных гаджетов – в недоступном месте для детей, подростков;
  • запрещается смотреть в объектив, который является источником излучения.

Стоит помнить, что лазерные гаджеты, генераторы квантовые, способны нести огромную угрозу для окружающих, а также их обладателей. Тщательное соблюдение правил безопасности позволит вам обезопасит себя. Защитные очки это — не аксессуар, а надежная и эффективная защита.

Польза низкоинтенсивного излучения

В современной дерматологии, косметологии особой популярностью пользуется низкоинтенсивное лазерное излучение. В процессе воздействия подобным излучением на организм человека, можно наблюдать положительные трансформации:

  • ликвидируются все воспалительные процессы, протекающие в организме;
  • замедляется старение клеток и ткани;
  • укрепляется общий, местный иммунитет;
  • происходит антибактериальное влияние;
  • повышается эластичность кожного покрова;
  • утолщается эпидермальный слой;
  • реконструируется дерма;
  • увеличивается численность сальных, потовых желез, за счет нормализации их полноценной активности;
  • фиксируется скопление жира, увеличивается мышечная масса, благодаря улучшенным процессам обмена веществ;
  • за счет хорошего питания тканей и клеток, усиленной циркуляции крови, наблюдается активный рост волос.

Подобный положительный эффект возможен благодаря длительному, систематическому лечению. Первый результат заметен спустя три сеанса, но в основном требуется не менее 10-30 терапий. Чтобы закрепить результат, профилактика проводится трижды в год по 10 сеансов.

Измерение мощности излучений

Что касается энергии и мощности излучений, то это совершенно разные, но связаны между собой величины, ими называют параметры энергетические. Измерение энергии, мощности, производится разными способами, а также теми, которые используют в СВЧ-диапазоне. Понадобится специальный измеритель.

Измеритель мощности бывает следующим:

  • Фотоэлектрический измеритель мощности лазерного излучения. Практически каждый фотоприемник, который имеет выходной сигнал пропорционально падающему потоку, позволит провести измерение мощности от непрерывных излучений. С этой целью понадобится полупроводниковый фотоприемник.
  • Измеритель большой мощности излучения. Для этой цели потребуются эффекты в кристаллах. Например, измеритель мощности сегнетоэлектрический. Когда лучи падают на него, то на специальном кристалле или же резисторе, можно увидеть напряжение, которое поддается измерению. В роли сегнетоэлектрика могут выступать – титанат бария или свинца. Такой измеритель очень эффективен.
  • Измеритель мощности с обратным электрооптическим эффектом. Когда монохроматическое излучение касается кристалла, происходит поляризация. Когда такой кристалл помещают в специальный конденсатор, то мощно померить мощность, которая связана с особым напряжением.

Измеритель поможет определить силу лазерного излучения. Важно помнить, что при работе с лазерами, особенно на большом производстве, необходимо соблюдать все возможные меры безопасности. Не забывайте носить специальные очки и одежду.

Влияние лазерного излучения на организм человека на данный момент изучено не полностью, но многие уверены в его негативном воздействии на всё живое. Лазерное излучение зарождается согласно принципу создания света и предполагает использование атомов, но с другим набором физических процессов. Именно по этой причине при лазерном излучении можно проследить воздействие внешнего электромагнитного поля.

Сфера применения

Лазерное излучение является узконаправленным вынужденным потоком энергии непрерывного или импульсного типа. В первом случае присутствует поток энергии одной мощности, а во втором – уровень мощности периодически достигает определенных пиковых значений. Образованию такой энергии помогает квантовый генератор, представленный лазером. Потоки энергии в этом случае являются электромагнитными волнами, которые относительно друг друга распространяются только параллельно. Благодаря такой особенности происходит создание минимального угла светового рассеивания и определенной точной направленности.

Источники лазерного излучения, основанные на его свойствах, достаточно широко применяются в самых разных областях человеческой жизнедеятельности, включая:

  • науку – исследования и эксперименты, опыты и открытия;
  • военно-оборонную промышленность;
  • космическую навигацию;
  • производственную сферу;
  • техническую сферу;
  • локальную термическую обработку – сварку и пайку, резку и гравировку;
  • бытовое использование в виде лазерных датчиков считывания штрихкода, устройств считывания компакт-дисков, а также указок;
  • лазерное напыление, заметно повышающее износостойкость металлов;
  • создание современных голограмм;
  • совершенствование различных оптических устройств;
  • химическую промышленность – анализ и запуск реакций.

Особенно важным является использование устройств подобного типа в сфере современных медицинских технологий.

Лазер в медицине

С точки зрения современной медицины лазерное излучение является своеобразным и очень своевременным прорывом в области лечения пациентов, которые нуждаются в оперативном вмешательстве. Лазер активно применяется при производстве качественного хирургического инструментария.

К неоспоримым преимуществам хирургического лечения относится использование лазерного высокоточного скальпеля, позволяющего выполнять бескровные разрезы мягких тканей. Такой результат обеспечивается практически мгновенной спайкой капилляров и мелких сосудов. Во время применения лазерного инструмента хирург способен полностью видеть операционное поле. Лазерным потоком энергии ткани рассекаются на определенном расстоянии, при этом отсутствует контакт инструмента с сосудами и внутренними органами.

Важный приоритет применения современного хирургического инструмента представлен обеспечением абсолютной максимальной стерильности. Благодаря строгой направленности лучей все операции происходят с минимальными показателями травматизации, при этом стандартный реабилитационный период прошедших операцию пациентов становится значительно короче и намного быстрее возвращается полноценная трудоспособность.

Отличительная особенность применения во время операции лазерного скальпеля сегодня представлена безболезненностью в послеоперационный период. Очень быстрое развитие современных лазерных технологий способствовало значительному расширению возможностей его применения. Относительно недавно были обнаружены и доказаны с научной точки зрения свойства лазерного излучения оказывать положительное влияние на состояние кожных покровов, благодаря чему устройства подобного типа стали активно применяться в дерматологии и косметологии.

Области медицинского применения

Медицина является на сегодняшний день далеко не единственной, но очень перспективной сферой применения современного лазерного оборудования:

  • процесс эпиляции с разрушениями волосяных луковиц и эффективным удалением волос;
  • лечение выраженной угревой сыпи;
  • эффективное удаление родимых и пигментных пятен;
  • шлифование кожи;
  • терапия бактериального поражения эпидермиса с обеззараживанием и уничтожением патогенной микрофлоры;
  • предупреждение распространения инфекции разного генеза.

Самой первой отраслью, в которой стало активно использоваться лазерное оборудование и его излучение, является офтальмология. Направления микрохирургии глаза, в которых находит широкое применение лазерная технология, представлены:

  • лазерной коагуляцией в виде использования термических свойств при лечении сосудистых глазных заболеваний, сопровождающихся поражением сосудов сетчатки и роговицы;
  • фотодеструкцией в виде рассечения тканей на пиковой мощности лазерного оборудования при лечении и рассечении вторичной катаракты;
  • фотоиспарением в виде длительного теплового воздействия при наличии воспалительных процессов глазного нерва, а также при конъюнктивите;
  • фотоабляцией в виде постепенного удаления тканей при лечении дистрофических изменений глазной роговицы, устранении ее помутнения, при операционном лечении глаукомы;
  • лазерной стимуляцией с противовоспалительным и рассасывающим воздействием, заметно улучшающим глазную трофику, а также при лечении склеритов, экссудации внутри глазной камеры и гемофтальмов.

Лазерное облучение достаточно широко используется в терапии онкологических заболеваний кожи. Наибольшую эффективность показывает современное лазерное оборудование при удалении меланобластомы. Данный метод также может применяться при лечении рака пищевода или опухолях прямой кишки на 1-2 стадиях. Следует отметить, что в условиях слишком глубокого расположения опухоли и множественных метастазах лазер практически совсем не эффективен.

Опасность излучения лазера

На данный момент относительно хорошо изучено негативное воздействие лазерного излучения на живые организмы. Облучение бывает рассеянным, прямым и отраженным. Отрицательное воздействие вызывает способность лазерных устройств излучать световые и тепловые потоки. Степень поражения напрямую зависит сразу от нескольких факторов, включая:

  • длину электромагнитной волны;
  • участок локализации негативного воздействия;
  • поглотительные способности тканей.

Сильнее всего подвержены отрицательному влиянию энергии лазера глаза. Именно сетчатка глаза отличается чрезвычайной чувствительностью и может получать ожоги разной степени выраженности.

Последствиями такого влияния становятся частичная потеря пациентом зрения, а также полная и необратимая слепота. Источники негативного излучения чаще всего бывают представлены разными инфракрасными приборами-излучателями видимого света.

Симптоматика поражения сетчатки, радужки, хрусталика и роговицы лазером:

  • болезненность и спазмы в глазах;
  • выраженная отечность век;
  • кровоизлияния разной степени;
  • помутнение глазного хрусталика.

Облучение средней степени интенсивности может стать причиной термических ожогов кожных покровов. На месте контакта лазерного оборудования и кожных покровов в этом случае заметно резкое повышение температуры, сопровождающееся вскипанием и испарением межтканевой и внутриклеточной жидкости. При этом кожа приобретает характерное красное окрашивание. Под действием давления происходят разрывы тканевых структур и появляется отек, который может дополнятся внутрикожными кровоизлияниями. Впоследствии на местах ожога наблюдаются некротические участки, а в самых тяжелых случаях происходит заметное обугливание кожных покровов.

Признаки негативного воздействия

Отличительным признаком лазерного ожога являются четкие границы на пораженных участках кожи с пузырьками, которые образуются непосредственно в слоях эпидермиса, а не под ним. Рассеянное поражение кожи характеризуется практически мгновенной потерей чувствительности, а эритема проявляется спустя несколько дней, после воздействия облучения.

Основные признаки представлены:

  • перепадами артериального давления;
  • замедленным сердцебиением;
  • повышенной потливостью;
  • необъяснимой общей утомляемостью;
  • чрезмерной раздражительностью.

Особенностью лазерного излучения инфракрасного спектра является проникновение глубоко внутрь, через ткани, с поражением внутренних органов. Характерное отличие глубокого ожога представлено чередованием здоровых и поврежденных тканей. Первоначально при лучевом воздействии люди не испытывают ощутимых болей, а к наиболее уязвимым органам относится печень. В целом, воздействие лазерного излучения на человеческих организм провоцирует функциональные расстройства в центральной нервной системе и сердечно-сосудистой деятельности.

Защита от негативного воздействия и меры предосторожности

Наибольший риск облучения возникает у людей, деятельность которых напрямую связана с использованием квантовых генераторов. Согласно принятым на сегодняшний день основным санитарным нормам, опасны для человека 2, 3 и 4 классы излучения.

Технические защитные методы представлены:

  • грамотной планировкой промышленных помещений;
  • правильной внутренней отделкой без зеркального отражения;
  • соответствующим размещением лазерных установок;
  • ограждением зон возможного облучения;
  • соблюдением требований по обслуживанию и эксплуатации лазерного оборудования.

Индивидуальная защита включает в себя специальные очки и спецодежду, безопасные экраны и кожухи, а также призмы и линзы для отражения лучей. Сотрудники таких предприятий должны регулярно направляться на медицинские профилактические осмотры.

В бытовых условиях необходимо соблюдать осторожность и обязательно придерживаться определенных правил эксплуатации:

  • не направлять источники излучения на светоотражающие поверхности;
  • не направлять лазерный свет в глаза;
  • хранить лазерные гаджеты в недоступном для маленьких детей месте.

Наиболее опасны для человеческого организма лазеры, имеющие прямое излучение, большую интенсивность, узкую и ограниченную направленность луча, а также слишком высокую плотность излучения.

Действие лазеров на организм зависит от параметров излучения (мощности и энергии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверхности), локализации воздействия и от анатомо-физиологических особенностей облучаемых объектов.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения, функционального характера (вторичные эффекты).

Биологические эффекты, возникающие при воздействии лазерного излучения на организм, зависят от энергетической экспозиции в импульсе или энергетической освещенности, длины волны излучения, длительности импульса, частоты повторения импульсов, экспозиции воздействия и площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов.

Лазерное излучение способно вызывать первичные эффекты, к которым относятся органические изменения, возникающие непосредственно в облучаемых тканях, и вторичные эффекты - неспецифические изменения, возникающие в организме в ответ на облучение.

Термический эффект импульсных лазеров большой интенсивности имеет специфические особенности. При действии излучения импульсного лазера в облучаемых тканях происходит быстрый нагрев структур. Причем, если излучение соответствует режиму свободной генерации, то за время импульса (длительность в пределах 1 мс) тепловая энергия вызывает термический ожог тканей. Лазеры, работающие в режиме модулированной добротности (с укороченным импульсом), излучают энергию за весьма короткое время (длительность импульса 1*10 -7 – 1*10 -12 с).

В результате быстрого нагрева структур до высоких температур происходит резкое повышение давления в облучаемых тканевых элементах, что приводит к механическому повреждению тканей. Например, в момент воздействия на глаз или на кожу импульс излучения субъективно ощущается как точечный удар. С увеличением энергии в импульсе излучения ударная волна возрастает.

Таким образом, лазерное излучение приводит к сочетанному термическому и механическому действию.

Влияние излучения лазера орган зрения. Эффект воздействия лазерного излучения на орган зрения в значительной степени зависит от длины волны и локализации воздействия. Выраженность морфологических изменений и клиническая картина расстройств функций зрения может быть от полной потери зрения (слепота) до инструментально выявляемых функциональных нарушений.

Лазерное излучение видимой и ближней ИК области спектра при попадании в орган зрения достигает сетчатки, а излучение ультрафиолетовой и дальней ИК областей спектра поглощается конъюнктивой, роговицей, хрусталиком.

Действие лазерного излучения на кожу. При применении лазеров большой, мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов. Характер повреждений кожи или слизистых оболочек варьирует от легкой гиперемии до различной степени ожогов, вплоть до грубых патологических изменений типа некроза.

Различают 4 степени поражения кожи лазерным излучением:

I степень – ожоги эпидермиса: эритема, десквамация эпителия;

II – ожоги дермы: пузыри, деструкция поверхностных слоев дермы;

III - ожоги дермы: деструкция дермы до глубоких слоев;

IV - деструкция всей толщи кожи, подкожной клетчатки и подлежащих слоев

Действие лазерных излучений наряду с морфофункциональными изменениями тканей непосредственно в месте облучения вызывает разнообразные функциональные сдвиги в организме. В частности, развиваются изменения в центральной нервной, сердечно-сосудистой, эндокринной системах, которые могут приводить к нарушению здоровья. Биологический эффект воздействия лазерного излучения усиливается при неоднократных воздействиях и при комбинациях с другими факторами производственной среды.

37. УФ-излучение

Ультрафиолетовое (УФ) излучение представляет собой невидимое глазом электромагнитное излучение, занимающее в электромагнитном спектре промежуточное положение между светом и рентгеновским излучением.

Биологически активная часть УФ излучения делится на 3 части: спектральная область – А с длиной волны 400 - 315 нм, область В с длиной волны 315 - 280 нм и С - 280 – 200 нм. УФ-излучение более короткого диапазона (от 180 нм и ниже) сильно поглощается всеми материалами и средами, в том числе и воздухом, а потому может иметь место только в условиях вакуума.

УФ-лучи обладают способностью вызывать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминесценцию и обладают.значительной биологической активностью. При этом УФ-лучи области А отличаются сравнительно слабым биологическим действием, возбуждают флюоресценцию органических соединений. Лучи области В обладают сильным эритемным и антирахитическим действием, а лучи области С активно действуют на тканевые белки и липиды, вызывают гемолиз и обладают выраженным антирахитическим действием.

Нормируемой величиной искусственного УФ-облучения является количество эритемного облучения, определяемое произведением эритемной облученности на время облучения. Эта величина аналогична освещенности и определяется плотностью эритемного потока.

Эритемный поток (Ф эр) – мощность эритемного излучения - представляет собой величину, характеризующую эффективность УФ-излучения по его полезному воздействию на человека и животных.

Производственные источники УФ-излучения

Наиболее распространенными искусственными источниками УФ-излучения на производстве являются электрические дуги, ртутно-кварцевые горелки, автогенное пламя. Все источники УФ-излучения принадлежат к так называемым температурным излучателям.

В условиях производства УФ-облучению подвергаются рабочие, занятые электросваркой, автогенной резкой и сваркой металла, плазменной резкой и сваркой, дефектоскопией; технический и медицинский персонал, работающий с ртутно-кварцевыми лампами при светокопировании, стерилизации воды и продуктов, персонал физиотерапевтических кабинетов; рабочие, занятые плавкой металлов и минералов с высокой температурой плавления на электрических, диабазовых, стекольных и других печах; рабочие, занятые производством ртутных выпрямителей; испытатели изоляторов и др. Сельскохозяйственные, строительные, дорожные рабочие и другие профессиональные группы подвергаются действию ультрафиолетового излучения солнечного спектра, особенно в осенне-летний период года.

Биологическое действие

Биологическое действие УФ-лучей солнечного света проявляется прежде всего в их положительном влиянии на организм человека. УФ-облучение - жизненно необходимый фактор. Известно, что при длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается своеобразный симптомокомплекс, именуемый «световое голодание».

Наиболее часто следствием недостатка солнечного света являются авитаминоз D, ослабление защитных иммунобиологических реакций организма, обострение хронических заболеваний, функциональные расстройства нервной системы.

К контингентам, испытывающим «световое голодание» организма или «ультрафиолетовую недостаточность», относятся рабочие шахт и рудников, люди, работающие в бесфонарных и безоконных цехах и на ряде других объектов, не имеющих естественного освещения, таких, как машинные отделения, метрополитен и др., а также работающие на Крайнем Севере.

УФ-облучение субэритемными и малыми эритемными дозами оказывает благоприятное стимулирующее действие на организм. Происходит повышение тонуса гипофизарно-надпочечниковой и симпатоадреналовой систем, активности митохондриальных и микросомальных ферментов и уровня неспецифического иммунитета, увеличивается секреция ряда гормонов. Наблюдается нормализация артериального давления, снижается уровень холестерина сыворотки, снижается проницаемость капилляров, повышается фагоцитарная активность лейкоцитов, увеличивается содержание сульфгидрильных групп; нормализуются все виды обмена.

Установлено, что под воздействием УФ-излучения наблюдается более интенсивное выведение химических веществ (марганца, ртути, свинца) из организма и уменьшение их токсического действия. Повышается сопротивляемость организма, снижается заболеваемость, в частности простудными заболеваниями, повышается устойчивость к охлаждению, снижается утомляемость, повышается работоспособность.

В целях профилактики «ультрафиолетового дефицита» используется как солнечное излучение - инсоляция помещений, световоздушные ванны, солярии, а также и УФ-облучение искусственными источниками.

Мероприятия по предупреждению «ультрафиолетовой недостаточности» в нашей стране закреплены санитарным законодательством.

Производственные помещения с постоянным пребыванием работающих, в которых естественное освещение отсутствует или недостаточно по биологическому действию, по требованию санитарных нормативов следует оборудовать установками искусственного УФ-излучения (с эритемными лампами). УФ-облучение рабочих может быть выполнено с помощью установок общего эритемного облучения, размещенных непосредственно в цехе, где работающие получают необходимую дозу облучения в течение рабочей смены, либо УФ-облучение рабочих производится в фотариях в течение 3 - 5 мин с использованием высоких уровней облучения.

УФ-излучение от производственных источников, в первую очередь электросварочных дуг, может стать причиной острых и хронических профессиональных поражений.

Наиболее подвержен действию УФ излучения зрительный анализатор.

Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острый коньюктивит или кератоконьюктивит. Заболеванию предшествует латентный период, продолжительность которого чаще всего составляет 12 ч. Проявляется заболевание ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением, блефароспазмом. Нередко обнаруживается эритема кожи лица и век. Заболевание длится до 2 - 3 сут.

Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и других работах.

С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Кожные поражения протекают в виде острых дерматитов с эритемой, иногда отёком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепсическими явлениями. В дальнейшем наступают гиперпигментация и шелушение. Классическим примером поражения кожи, вызванного УФ-излучением, служит солнечный ожог.

Хронические изменения кожных покровов, вызванные УФ-излучением, выражаются в «старении» (солнечный эластоз), развитии кератоза, атрофии эпидермиса, возможно развитие злокачественных новообразований.

Для защиты кожи от УФ-излучения используются защитная одежда, противосолнечные экраны (навесы и т.п.), специальные покровные кремы.

лазер безопасность излучение защита

Действие лазеров на организм зависит от параметров излучения (мощности и энергии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверхности), локализации воздействия и анатомо-физиологических особенностей облучаемых объектов.

Лазерное излучение представляет собой вид электромагнитного излучения, генерируемого в оптическом диапазоне длин волн 0,1…1000 мкм. Отличие его от других видов излучения заключается в монохромности, когерентности и высокой степени направленности. Благодаря малой расходимости луча лазера плотность потока мощности может достигать 10 16 …10 17 Вт/м 2 .

Эффекты воздействия (тепловой, фотохимический, ударно - акустический и др.) определяются механизмом взаимодействия лазерного излучения с тканями и зависят от энергетических и временных параметров излучения, а также от биологических и физики - химических особенностей облучаемых тканей и органов.

Лазерное излучение представляет особую опасность для тканей, максимально поглощающих излучение. Сравнительно легкая уязвимость роговицы и хрусталика глаза, а также способность оптической системы глаза многократно увеличивать плотность энергии(мощность) излучения видимого и ближнего инфракрасного диапазона (780<л<1400 нм) на глазном дне по отношению к роговице делают глаз наиболее уязвимым органом.

При повреждении появляется боль в глазах, спазм век, слезотечение, отек век и глазного яблока, помутнение сетчатки, кровоизлияние. Клетки сетчатки после повреждения не восстанавливаются.

Ультрафиолетовое излучение вызывает фотокератит, средневолновое инфракрасное излучение (1400<л<3000 нм) может вызвать отек, катаракту и ожог роговой оболочки глаза; дальнее ИК - излучение (3000<л<10 6 нм) - ожог роговицы.

Повреждение кожи может быть вызвано лазерным излучением любой длинны волны в спектральном диапазоне 180…100000 нм. Характер поражения кожи аналогичен термическим ожогам. Степень тяжести повреждения кожи, а в некоторых случаях и всего организма, зависит от энергии излучения, длительности воздействия, площади поражения, ее локализации, добавления вторичных источников воздействия (горение, тление). Минимальное повреждение кожи развивается при плотности энергии 1000…10000 Дж/м 2 .

Лазерное излучение дальней инфракрасной области (>1400 нм) способно проникать через ткани тела на значительную глубину, поражая внутренние органы (прямое лазерное излучение).

Длительное хроническое действие диффузно отраженного лазерного излучения нетепловой интенсивности может вызывать неспецифические, преимущественно вегетативно - сосудистые нарушения; функциональные сдвиги могут наблюдаться со стороны нервной, сердечно - сосудистой системы, желез внутренней секреции. Работающие жалуются на головные боли, повышенную утомляемость, раздражительность, потливость.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;

Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.

Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.

Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Оптические квантовые генераторы (ОКГ, лазеры) - приборы, представляющие собой источник светового излучения совершенно нового типа. В отличие от луча любого известного источника света, несущего в себе электромагнитные волны различной длины, лазерный луч монохроматичен (электромагнитные волны строго одной длины), отличается высокой временной и пространственной когерентностью (все волны генерируются одновременно в одной фазе), узкой направленностью, что обусловливает точную фокусировку в малом объеме. Поэтому плотность мощности лазерного излучения в импульсе может быть огромна.

Имеются различного типа лазеры: твердотельные, где излучателем является твердое тело - рубин, неодим и др., газовые лазеры (гелий-неоновые, аргоновые и др.), жидкостные и полупроводниковые. Лазеры могут работать в непрерывном и импульсном режиме.

Излучение ОКГ характеризуется следующими основными параметрами: длина волны (мкм), мощность (Вт), плотность потока мощности (Вт/см2), энергия излучения (Дж) и угловая расходимость луча (угл. мин).

Сфера применения ОКГ очень широка: в различных областях народного хозяйства, в технике связи (позволяет передавать большое количество информации), в микроэлектронной, часовой промышленности, при сварке, пайке и др., в научных исследованиях, в освоении космоса.

Уникальность лазерного луча - получение большой мощности излучения на очень маленькой площади, полная стерильность - позволяет применять его в хирургии для коагуляции тканей при операциях на сетчатке, в качестве нового исследовательского инструмента в экспериментальной биологии, в цитологии (луч может достигать отдельных органоидов, не повреждая всю клетку), и др.

Все большее число лиц вовлекается в сферу действия лазеров; таким образом, этот вид излучения приобретает значение очень серьезного профессионально-гигиенического фактора.

В производственных условиях наибольшую опасность представляет не прямой световой луч, действие которого возможно только при грубом нарушении правил техники безопасности, а диффузное отражение и рассеяние луча (при визуальном контроле за попаданием луча на мишень, при наблюдении за приборами вблизи хода луча, при отражении от стен и других поверхностей). В особенности опасны зеркально отражающие поверхности. Хотя интенсивность отраженного луча невелика, однако возможно превышение безопасных для глаз уровней энергии. В лабораториях, где работают с импульсными ОКГ, имеются дополнительные неблагоприятные факторы: постоянный (80-00 дБ) и импульсный (до 120 дБ и более) шум, слепящий свет ламп накачки, утомление зрительного анализатора, нервно-эмоциональное напряжение, газовые примеси в воздушной среде - озон, окислы азота; ультрафиолетовое излучение и т. д.

Биологическое действие лазеров

Биологическое действие лазеров обусловлено двумя основными критериями: 1) физической характеристикой лазера (длина волны излучения лазера, непрерывный или импульсный режим облучения, длительность импульса, скорость повторения импульсов, удельная мощность), 2) абсорбционной характеристикой тканей. Свойства самой биологической структуры (поглощающая, отражающая способность) влияют на эффекты биологического действия лазера.

Действие лазера многогранно - электрическое, фотохимическое; основное действие - тепловое. Наиболее опасны лазеры с большой энергией в импульсе.

Прямой световой монохроматический импульс вызывает в здоровой ткани локальный ожог - коагуляцию белков, местный некроз, резко отграниченный от смежной области, асептическое воспаление с последующим развитием соединительнотканного рубца. При интенсивном облучении - расстройства васкуляризации, кровоизлияния в паренхиматозных органах. При повторных облучениях патологический эффект возрастает. Наиболее чувствительны глаз (роговица и хрусталик фокусируют излучение на сетчатке) и кожа, в особенности пигментированная.

Клиника

При прямом попадании лазерного луча в глаз - ожог сетчатки, разрывы ее. Могут быть поражены роговица, радужная оболочка, хрусталик, кожа век. Поражение, как правило, носит необратимый характер.

Для глаз опасно не только прямое, но и рассеянное отраженное излучение от какой-либо поверхности. При длительном воздействии последнего наиболее часто обнаруживаются игольчатые, стреловидные, реже - точечные помутнения хрусталика. На сетчатке - светлые, желтовато-белые, депигментированные очаги. При исследовании функционального состояния зрительного анализатора определяются снижение световой и контрастной чувствительности, увеличение времени восстановления адаптации, изменения световой чувствительности. Характерны жалобы на боли и давление в глазных яблоках, резь в глазах, утомленно глаз к концу рабочего дня, головные боли.

Помимо поражения органа зрения, при работе с ОКГ развивается комплекс неспецифических реакций со стороны различных органов и систем.

Клиника общих нарушений складывается из вегетативной дисфункции с присоединением невротических реакций на астеническом фоне. По мере увеличения профессионального стажа нарастает частота нейроциркуляторной дистонии по гипотоническому или гипертоническому вариантам в зависимости от характера лазерного излучения (непрерывный, импульсный), а также степень невротизации.

Наблюдаются также нарушения функции вестибулярного аппарата как в сторону повышения, так и понижения его возбудимости. Частота этих нарушений тоже возрастает по мере увеличения профессионального стажа.

Из биохимических показателей характерны: повышение уровня аммиака в крови, увеличение активности щелочной фосфатазы и трансфераз, изменение экскреции катехоламинов.

В эксперименте на животных при действии небольших интенсивностей энергии отмечаются изменения мозгового кровотока, сопряженные с изменением системной гемодинамики. Установлено действие лазерной энергии на гипоталамо-гипофизарную систему.

Экспертиза трудоспособности

При развитии функциональных нарушении центральной нервной системы, сердечно-сосудистого аппарата рекомендуются лечение и временный перевод на другую работу; возвращение на работу при улучшении состояния (под врачебным наблюдением) и при условии улучшения условий труда. Поражение глаз является противопоказанием к дальнейшей работе с лазером.

Профилактика

Рациональная организация условий труда лаборатории. Размещение лазера в изолированном помещении. Система сигнализации, обеспечивающая безопасность во время работы лазера. Избегать применения отражающих поверхностей. Пучок лазера должен быть направлен на неотражающий и невоспламеняющийся фон. Окраска стен матовая - в светлых тонах. Экранировка луча (в особенности мощного ОКГ) на протяжении от излучателя до объектива. Категорически запрещается пребывание людей в опасной зоне излучения ОКГ при работе лазера. Запрещается нахождение в лаборатории лиц, не занятых обслуживанием лазера. Эффективная вентиляция. Общее и местное освещение. Строгое соблюдение требований электробезопасности, мер индивидуальной защиты. Применение специально сконструированных защитных очков (для каждой длины волны свой отеческий фильтр). Работа в условиях общего яркого освещения с целью сужения зрачка. При работе с высокими энергиями избегать контакта любой части тела с прямым лучом, рекомендуется ношение черных фетровых или кожаных перчаток. Строгий офтальмологический контроль. Предварительные и периодические медицинские осмотры.