Получение железа из руд. Прямое получение железа. Восстановление железа из руд. Получение губчатого железа. Процессы прямого получения железа из руд. Производство стали

В жизни мы постоянно сталкиваемся со сплавами, самый распространенный из которых сталь. Поэтому нет ничего удивительно, что у кого-нибудь да возникнет вопрос о том, как делают сталь?

Сталь – это один из сплавов железа и углерода, получивший широчайшее распространение в повседневной жизни. Процесс производства стали многоступенчатый и состоит из нескольких этапов: добыча и обогащение руды, получение агломерата, производства чугуна и выплавка стали.

Руда и агломерат

Месторождения руд позволяют добывать как богатые, так и бедные породы. Богатую руду можно сразу использовать как производственное сырье. Чтобы можно было выплавлять и бедную руду, ее необходимо обогатить, то есть увеличить в ней содержание чистого металла. Для этого руду измельчают и, применяя различные технологии, отделяют частицы, богатые соединениями металла. Например, для железных руд применяют магнитную сепарацию – воздействие магнитным полем на исходное сырье с целью отделение частиц богатых железом.

Получается низкодисперсионный концентрат, который спекают в более крупные куски. Результат обжига железных руд и есть агломерат. Виды агломератов получили название по основному сырью, входящему в их состав. В нашем случае это железорудный агломерат. Теперь, чтобы понять, как делают сталь, необходимо проследить дальнейший технологический процесс.

Производство чугуна.

Чугун выплавляют в доменных печах, которые функционируют по принципу противотока. Загрузка агломерата, кокса и другого шихтового материала осуществляется сверху. Снизу вверх, навстречу этим материалам, поднимаются потоки раскаленного газа от сгорания кокса. Начинается череда химических процессов, в результате чего происходит восстановление железа и насыщение его углеродом. Температурный режим при этом сохраняется в районе 400-500 градусов Цельсия. В нижних частях печи, куда постепенно опускается восстановленное железо, температура увеличивается до 900-950 градусов. Образуется жидкий сплав железа с углеродом – чугун. К основным химическим характеристикам чугуна относятся: содержание углерода более 2,14 %, обязательное наличие в составе серы, кремния, фосфора и марганца. Чугун отличается повышенной хрупкостью.

Выплавка стали.

Теперь мы приблизились к последнему этапу, позволяющему узнать, как делают сталь. В химическом плане сталь отличается от чугуна пониженным содержанием углерода; соответственно, основная задача производственного процесса – уменьшить содержание углерода и других примесей в основном сплаве железа. Для производства стали используют мартеновские печи, кислородные конвертеры или электропечи.

По различным технологиям расплавленный чугун продувается кислородом при очень высоких температурах. Происходит обратный процесс – окисление железа на уровне примесей, входящих в сплав. Полученный шлак в дальнейшем убирается. В результате продувки кислородом понижается содержание углерода и происходит преобразование чугуна в сталь.

В сталь могут добавляться легирующие элементы, изменяющие свойства материала. Поэтому сталью считается сплав железо-углерод с содержанием железа не менее 45 %.

Вышеописанные процессы разъяснили, как делают сталь, из каких материалов и с применением каких технологий.

Железо и стали на его основе используются повсеместно в промышленности и обыденной жизни человека. Однако мало кто знает, из чего делают железо, вернее, как его добывают и преобразовывают в сплав стали.

Популярное заблуждение

Для начала определимся с понятиями, поскольку люди часто путаются и не совсем понимают, вообще. Это химический элемент и простое вещество, которое в чистом виде не встречается и не используется. А вот сталь - это сплав на основе железа. Она богата на различные химические элементы, а также содержит углерод в своем составе, который необходим для придания прочности и твердости.

Следовательно, не совсем правильно рассуждать о том, из чего делают железо, так как оно представляет собой химический элемент, который есть в природе. Человек из него делает сталь, которая в дальнейшем может использоваться для изготовления чего-либо: подшипников, кузовов автомобилей, дверей и т. д. Невозможно перечислить все предметы, которые из нее производятся. Итак, ниже мы не будем разбирать, из чего делают железо. Вместо этого поговорим о преобразовании этого элемента в сталь.

Добыча

В России и мире существует множество карьеров, где добывают железную руду. Это огромные и тяжелые камни, которые достаточно сложно достать из карьера, так как они являются частью одной большой горной породы. Непосредственно на карьерах в горную породу закладывают взрывчатку и взрывают ее, после чего огромные куски камней разлетаются в разные стороны. Затем их собирают, грузят на большие самосвалы (типа БелАЗ) и везут на перерабатывающий завод. Из этой горной породы и будет добываться железо.

Иногда, если руда находится на поверхности, то ее вовсе необязательно подрывать. Ее достаточно расколоть на куски любым другим способом, погрузить на самосвал и увезти.

Производство

Итак, теперь мы понимаем, из чего делают железо. Горная порода является сырьем для его добычи. Ее отвозят на перерабатывающее предприятие, загружают в доменную печь и нагревают до температуры 1400-1500 градусов. Эта температура должна держаться в течение определенного времени. Содержащееся в составе горной породы железо плавится и приобретает жидкую форму. Затем его остается разлить в специальные формы. Образовавшиеся шлаки при этом отделяют, а само железо получается чистым. Затем агломерат подают в бункерные чаши, где он продувается потоком воздуха и охлаждается водой.

Есть и другой способ получения железа: горную породу дробят и подают на специальный магнитный сепаратор. Так как железо имеет способность намагничиваться, то минералы остаются на сепараторе, а вся вымывается. Конечно, чтобы железо превратить в металл и придать ему твердую форму, его необходимо легировать с помощью другого компонента - углерода. Его доля в составе очень мала, однако именно благодаря нему металл становится высокопрочным.

Стоит отметить, что в зависимости от объема добавляемого в состав углерода сталь может получаться разной. В частности, она может быть более или менее мягкой. Есть, например, специальная машиностроительная сталь, при изготовлении которой к железу добавляют всего 0,75 % углерода и марганец.

Теперь вы знаете, из чего делают железо и как его преобразовывают в сталь. Конечно, способы описаны весьма поверхностно, но суть они передают. Нужно запомнить, что из горной породы делают железо, из чего далее могут получать сталь.

Производители

На сегодняшний день в разных странах есть крупные месторождения железной руды, которые являются базой для производства мировых запасов стали. В частности, на Россию и Бразилию приходится 18 % мирового на Австралию - 14 %, Украину - 11 %. Самыми крупными экспортерами является Индия, Бразилия, Австралия. Отметим, что цены на металл постоянно меняются. Так, в 2011 году стоимость одной тонны металла составляла 180 долларов США, а к 2016 году была зафиксирована цена в 35 долларов США за тонну.

Заключение

Теперь вы знаете, из чего состоит железо (имеется в и как его производят. Применение этого материала распространено во всем мире, и его значение практически невозможно переоценить, так как используется он в промышленных и бытовых отраслях. К тому же экономика некоторых стран построена на базе изготовления металла и его последующего экспорта.

Мы рассмотрели, из чего состоит сплав. Железо в его составе смешивается с углеродом, и подобная смесь является основной для изготовления большинства известных металлов.

Железо составляет более 5% земной коры. Для извлечения железа используются в основном такие руды, как гематит и магнетит . В этих рудах содержится от 20 до 70% железа. Важнейшими примесями железа в этих рудах являются песок и глинозем (оксид алюминия ).

Ядро Земли

На основании косвенных данных можно заключить, что ядро Земли представляет собой главным образом сплав железа. Его радиус приблизительно равен 3470 км, тогда как радиус Земли составляет 6370 км. Внутреннее ядро Земли, по всей видимости, находится в твердом состоянии и имеет радиус около 1200 км. Оно окружено жидким внешним ядром. Турбулентный поток жидкости в этой части ядра создает магнитное поле Земли. Давление внутри ядра находится в пределах от 1,3 до 3,5 миллиона атмосфер, а температура - в пределах

Хотя установлено, что ядро Земли состоит большей частью из железа, его точный состав неизвестен. Есть предположения, что от 8 до 10% массы земного ядра приходится на такие элементы, как никель, сера (в виде сульфида железа), кислород (в виде оксида железа) и кремний (в виде силицида железа).

По меньшей мере 12 стран в мире имеют разведанные запасы железных руд, которые превышают миллиард тонн. К числу этих стран относятся Австралия, Канада, США, ЮАР, Индия, СССР и Франция. Мировой уровень выплавки стали в настоящее время достигает 700 млн. т. Главными производителями стали являются СССР, США, Япония, в каждой из этих стран выплавляется более 100 млн. т. стали в год. В Великобритании уровень выплавки стали составляет 20 млн. т в год.

Производство железа

Получение железа из железной руды производится в две стадии. Оно начинается с подготовки руды-измельчения и нагревания. Руду измельчают на куски диаметром не более 10 см. Затем измельченную руду прокаливают для удаления воды и летучих примесей.

На второй стадии железную руду восстанавливают до железа с помощью оксида углерода в доменной печи (рис. 14.12). Восстановление проводится при температурах порядка 700°С:

Для повышения выхода железа этот процесс проводится в условиях избытка диоксида углерода

Моноксид углерода СО образуется в доменной печи из кокса и воздуха. Воздух сначала нагревают приблизительно до 600 °С и нагнетают в печь через особую трубу - фурму. Кокс сгорает в горячем сжатом воздухе, образуя диоксид углерода. Эта реакция экзотермична и вызывает повышение температуры выше 1700 °С:

Диоксид углерода поднимается вверх в печи и реагирует с новыми порциями кокса, образуя моноксид углерода. Эта реакция эндотермична:

Рис. 14.12. Доменная печь, 1 - железная руда, известняк, кокс, 2 загрузочный конус (колошник), 3 - колошниковый газ, 4- кладка печи, 5 - зона восстановления оксида железа, 6 - зона образования шлака, 7 - зона горения кокса, 8 - вдувание нагретого воздуха через фурмы, 9 - расплавленное железо, 10 - расплавленный шлак.

Железо, образующееся при восстановлении руды, загрязнено примесями песка и глинозема (см. выше). Для их удаления в печь добавляют известняк. При температурах, существующих в печи, известняк подвергается термическому разложению с образованием оксида кальция и диоксида углерода:

Оксид кальция соединяется с примесями, образуя шлак. Шлак содержит силикат кальция и алюминат кальция:

Железо плавится при 1540°С (см. табл. 14.2). Расплавленное железо вместе с расплавленным шлаком стекают в нижнюю часть печи. Расплавленный шлак плавает на поверхности расплавленного железа. Периодически из печи выпускают на соответствующем уровне каждый из этих слоев.

Доменная печь работает круглосуточно, в непрерывном режиме. Сырьем для доменного процесса служат железная руда, кокс и известняк. Их постоянно загружают в печь через верхнюю часть. Железо выпускают из печи четыре раза в сутки, через равные промежутки времени. Оно выливается из печи огненным потоком при температуре порядка 1500 °С. Доменные печи бывают разной величины и производительности (1000-3000 т в сутки). В США существуют некоторые печи новой конструкции с

четырьмя выпускными отверстиями и непрерывным выпуском расплавленного железа. Такие печи имеют производительность до 10000 т в сутки.

Железо, выплавленное в доменной печи, разливают в песочные изложницы. Такое железо называется чугун. Содержание железа в чугуне составляет около 95%. Чугун представляет собой твердое, но хрупкое вещество с температурой плавления около 1200 °С.

Литое железо получают, сплавляя смесь чугуна, металлолома и стали с коксом. Расплавленное железо разливают в формы и охлаждают.

Сварочное железо представляет собой наиболее чистую форму технического железа. Его получают, нагревая неочищенное железо с гематитом и известняком в плавильной печи. Это повышает чистоту железа приблизительно до 99,5%. Его температура плавления повышается до 1400 °С. Сварочное железо имеет большую прочность, ковкость и тягучесть. Однако для многих применений его заменяют низкоуглеродистой сталью (см. ниже).

Производство стали

Стали подразделяются на два типа. Углеродистые стали содержат до 1,5% углерода. Легированные стали содержат не только небольшие количества углерода, но также специально вводимые примеси (добавки) других металлов. Ниже подробно рассматриваются различные типы сталей, их свойства и применения.

Кислородно-конвертерный процесс. В последние десятилетия производство стали революционизировалось в результате разработки кислородно-конвертерного процесса (известного также под названием процесса Линца-Донавица). Этот процесс начал применяться в 1953 г. на сталеплавильных заводах в двух австрийских металлургических центрах - Линце и Донавице.

В кислородно-конвертерном процессе используется кислородный конвертер с основной футеровкой (кладкой) (рис. 14.13). Конвертер загружают в наклонном положении

Рис. 14.13. Конвертер для выплавки стали, 1-кислород и 2 - трубка с водяным охлаждением для кислородного дутья, 3 - шлак. 4-ось, 5-расплавленная сталь, 6 - стальной корпус.

расплавленным чугуном из плавильной печи и металлоломом, затем возвращают в вертикальное положение. После этого в конвертер сверху вводят медную трубку с водяным охлаждением и через нее направляют на поверхность расплавленного железа струю кислорода с примесью порошкообразной извести . Эта «кислородная продувка», которая длится 20 мин, приводит к интенсивному окислению примесей железа, причем содержимое конвертера сохраняет жидкое состояние благодаря выделению энергии при реакции окисления. Образующиеся оксиды соединяются с известью и превращаются в шлак. Затем медную трубку выдвигают и конвертер наклоняют, чтобы слить из него шлак. После повторной продувки расплавленную сталь выливают из конвертера (в наклонном положении) в ковш.

Кислородно-конвертерный процесс используется главным образом для получения углеродистых сталей. Он характеризуется большой производительностью. За 40-45 мин в одном конвертере может быть получено 300-350 т стали.

В настоящее время всю сталь в Великобритании и большую часть стали во всем мире получают с помощью этого процесса.

Электросталеплавильный процесс. Электрические печи используют главным образом для превращения стального и чугунного металлолома в высококачественные легированные стали, например в нержавеющую сталь. Электропечь представляет собой круглый глубокий резервуар, выложенный огнеупорным кирпичем. Через открытую крышку печь загружают металлоломом, затем крышку закрывают и через имеющиеся в ней отверстия опускают в печь электроды, пока они не придут в соприкосновение с металлоломом. После этого включают ток. Между электродами возникает дуга, в которой развивается температура выше 3000 "С. При такой температуре металл плавится и образуется новая сталь. Каждая загрузка печи позволяет получить 25-50 т стали.

Одним из наиболее распространенных металлов в земной коре после алюминия считается железо. Физические и химические свойства его таковы, что оно обладает отличной электропроводностью, теплопроводностью и ковкостью, имеет серебристо-белый цвет и высокую химическую реакционную способность быстро коррозировать при высокой влажности воздуха или больших температурах. Находясь в мелкодисперсном состоянии, оно в чистом кислороде горит и самовоспламеняется на воздухе.

Начало истории железа

В третьем тысячелетии до н. э. люди стали добывать и научились обрабатывать бронзу и медь. Широкого применения из-за дороговизны они не получили. Продолжались поиски нового металла. История железа началась в первом веке до н. э. В природе его можно встретить только в виде соединений с кислородом. Для получения чистого металла необходимо отделить последний элемент. Расплавить железо долго не удавалось, так как его надо было нагреть до 1539 градусов. И только с появлением сыродутных печей в первом тысячелетии до новой эры стали получать этот металл. На первых порах он был хрупким, содержал много шлаков.

С появлением горнов качество железа значительно улучшилось. Дальнейшую обработку оно проходило в кузнеце, где ударами молота отделялся шлак. Ковка стала одним из главных видов обработки металла, а кузнечное дело незаменимой отраслью производства. Железо в чистом виде - это очень мягкий металл. В основном его используют в сплаве с углеродом. Эта добавка усиливает такое физическое свойство железа, как твердость. Дешевый материал вскоре широко проник во все сферы деятельности человека и сделал переворот в развитии общества. Ведь еще в древние времена железные изделия покрывались толстым слоем золота. Оно имело высокую цену по сравнению с благородным металлом.

Железо в природе

Одного алюминия в литосфере содержится больше, чем железа. В природе его можно встретить только в виде соединений. Трехвалентное железо, вступая в реакцию, окрашивает почву в бурый цвет и придает песку желтоватый оттенок. Оксиды и сульфиды железа разбросаны в земной коре, иногда наблюдаются скопления минералов, из которых впоследствии и добывают металл. Содержание двухвалентного железа в некоторых минеральных источниках придает воде особый привкус.

Ржавая вода, текущая из старых водопроводных труб, окрашивается за счет трехвалентного металла. Его атомы находятся и в организме человека. Они содержатся в гемоглобине (железосодержащем белке) крови, который снабжает организм кислородом и выводит углекислый газ. В составе некоторых метеоритов содержится чистое железо, иногда встречаются целые слитки.

Какими физическими свойствами железо обладает?

Это пластичный серебристо-белого цвета металл с сероватым оттенком, имеющий металлический блеск. Он является хорошим проводником электрического тока и теплоты. Благодаря пластичности он прекрасно поддается ковке и прокатке. Железо не растворяется в воде, но разжижается в ртути, плавится при температуре 1539 и кипит при 2862 градусов по Цельсию, имеет плотность 7,9 г/см³. Особенностью физических свойств железа является то, что металл притягивается магнитом и после аннулирования внешнего магнитного поля хранит намагниченность. Используя эти свойства его можно применять для изготовления магнитов.

Химические свойства

Железо обладает следующими свойствами:

  • на воздухе и в воде легко окисляется, покрываясь ржавчиной;
  • в кислороде накаленная проволока горит (при этом образуется окалина в виде оксида железа);
  • при температуре 700-900 градусов по Цельсию вступает в реакцию с парами воды;
  • при нагревании реагирует с неметаллами (хлором, серой, бромом);
  • вступает в реакции с разбавленными кислотами, в результате получаются соли железа и водород;
  • не растворяется в щелочах;
  • способно вытеснить металлы из растворов их солей (железный гвоздь, в растворе медного купороса, покрывается красным налетом, - это выделяется медь);
  • в концентрированных щелочах при кипячении проявляется амфотерность железа.

Особенность свойств

Одним из физических свойств железа является ферромагнитность. На практике с магнитными свойствами этого материала приходится встречаться часто. Это - единственный металл, который обладает такой редкостной чертой.

Под действием магнитного поля происходит намагничивание железа. Сформировавшиеся магнитные свойства металл еще долго сохраняет и сам остается магнитом. Такое исключительное явление объясняется тем, что структура железа содержит большое количество свободных электронов, способных передвигаться.

Запасы и добыча

Одним из самых распространенных элементов на земле является железо. По содержанию в земной коре занимает четвертое место. Известно множество руд, которые содержат его, например, магнитный и бурый железняк. Металл в промышленности получают в основном из руд гематита и магнетита при помощи доменного процесса. Вначале происходит его восстановление углеродом в печи при высокой температуре 2000 градусов по Цельсию.

Для этого сверху в доменную печь подают железную руду, кокс и флюс, а снизу нагнетается поток горячего воздуха. Также применяют и прямой процесс получения железа. Измельченную руду перемешивают со специальной глиной, получая окатыши. Далее их обжигают и с помощью водорода обрабатывают в шахтной печи, где оно легко восстанавливается. Получают твердое железо, а потом переплавляют его в электрических печах. Чистый металл восстанавливают из оксидов при помощи электролиза водных растворов солей.

Преимущества железа

Основные физические свойства вещества железа дают ему и сплавам следующие преимущества перед другими металлами:

Недостатки

Кроме большого числа положительных качеств, есть и ряд отрицательных свойств металла:

  • Изделия подвержены коррозии. Для устранения этого нежелательного эффекта с помощью легирования получают нержавеющие стали, а в остальных случаях делают специальную антикоррозийную обработку конструкций и деталей.
  • Железо накапливает статическое электричество, поэтому изделия, содержащие его, подвергаются электрохимической коррозии и также требуют дополнительной обработки.
  • Удельный вес металла составляет 7,13 г/см³. Это физическое свойство железа придает конструкциям и деталям повышенный вес.

Состав и структура

У железа по кристаллическому признаку есть четыре модификации, которые отличаются структурой и параметрами решетки. Для выплавки сплавов именно наличие фазовых переходов и легирующих добавок имеет существенное значение. Различают следующие состояния:

  • Альфа-фаза. Она сохраняется до 769 градусов по Цельсию. В этом состоянии железо сохраняет свойства ферромагнетика и обладает объемно-центрированной решеткой кубического типа.
  • Бета-фаза. Существует при температуре от 769 до 917 градусов по Цельсию. Имеет немного другие параметры решетки, чем в первом случае. Все физические свойства железа остаются прежними за исключением магнитных, их оно утрачивает.
  • Гамма-фаза. Строение решетки становится гранецентрированным. Такая фаза проявляется в диапазоне 917-1394 градусов Цельсия.
  • Омега-фаза. Такое состояние металла появляется при температуре выше 1394 градусов Цельсия. От прежней отличается только параметрами решетки.

Железо - самый востребованный металл в мире. Больше 90 процентов всего металлургического производства приходится именно на него.

Применение

Люди начали использовать сначала метеоритное железо, которое ценили выше золота. С тех пор область применения этого металла только расширялась. Ниже представлено применение железа, на основе его физических свойств:

  • ферромагнитные оксиды используют для производства магнитных материалов: промышленных установок, холодильников, сувениров;
  • оксиды железа применяют как минеральные краски;
  • хлорид железа незаменим в радиолюбительской практике;
  • сульфаты железа используют в текстильной промышленности;
  • магнитная окись железа - один из важных материалов для производства устройств долговременной компьютерной памяти;
  • ультрадисперсный порошок железа находит применение в черно-белых лазерных принтерах;
  • прочность металла позволяет изготовлять оружие и броню;
  • износостойкий чугун можно использовать для производства тормозов, дисков сцепления, а также деталей для насосов;
  • жаростойкий - для доменных, термических, мартеновских печей;
  • жаропрочный - для компрессорного оборудования, дизельных двигателей;
  • высококачественная сталь используется для газопроводов, корпуса отопительных котлов, сушилок, стиральных и посудомоечных машин.

Заключение

Под железом часто подразумевают не сам метал, а его сплав - низкоуглеродистую электротехническую сталь. Получение чистого железа довольно сложный процесс, и поэтому его используют только для производства магнитных материалов. Как уже отмечалось, что исключительное физическое свойство простого вещества железа - это ферромагнетизм, т. е. способность намагничиваться в присутствии магнитного поля.

Магнитные свойства чистого металла до 200 раз превышают такие же показатели технической стали. На это свойство влияет и зернистость металла. Чем крупнее зерно, тем выше магнитные свойства. В некоторой степени оказывает влияние и механическая обработка. Такое чистое железо, удовлетворяющее этим требованиям, используют для получения магнитных материалов.

Железо составляет более 5% земной коры. Для извлечения железа используются в основном такие руды, как гематит Fe2O3 и магнетит Fe3O4. В этих рудах содержится от 20 до 70% железа. Важнейшими примесями железа в этих рудах являются песок (оксид кремния(IV) SiO2) и глинозем (оксид алюминия Al2O3).

Получение железа из железной руды производится в две стадии. Оно начинается с подготовки руды-измельчения и нагревания. Руду измельчают на куски диаметром не более 10 см. Затем измельченную руду прокаливают для удаления воды и летучих примесей.

На второй стадии железную руду восстанавливают до железа с помощью оксида углерода в доменной печи (рисунок 2.1), где: 1 - железная руда, известняк, кокс, 2 загрузочный конус (колошник), 3 - колошниковый газ, 4- кладка печи, 5 - зона восстановления оксида железа, 6 - зона образования шлака, 7 - зона горения кокса, 8 - вдувание нагретого воздуха через фурмы, 9 - расплавленное железо, 10 - расплавленный шлак.

Восстановление проводится при температурах порядка 700°С:

Fe2O3(тв.) +3CO(г.) = 2Fe(ж.) + 3CO2(г.)

Для повышения выхода железа этот процесс проводится в условиях избытка диоксида углерода СO2.

Моноксид углерода СО образуется в доменной печи из кокса и воздуха (2.12). Воздух сначала нагревают приблизительно до 600 °С и нагнетают в печь через особую трубу - фурму. Кокс сгорает в горячем сжатом воздухе, образуя диоксид углерода. Эта реакция экзотермична и вызывает повышение температуры выше 1700 °С:

C(г.) + O2(г.) > CO2(г.) , ?H0m = -406 кДж/моль

Диоксид углерода поднимается вверх в печи и реагирует с новыми порциями кокса, образуя моноксид углерода (2.13). Эта реакция эндотермична:

CO2(г.) +С(тв.) > 2CO(г.) , ?H0m = +173 кДж/моль

Железо, образующееся при восстановлении руды, загрязнено примесями песка и глинозема. Для их удаления в печь добавляют известняк. При температурах, существующих в печи (800 0C), известняк подвергается термическому разложению с образованием оксида кальция и диоксида углерода:

СaCO3(тв.) >CaO(тв.) + CO2(г.)

Оксид кальция соединяется с примесями, образуя шлак. Шлак содержит силикат кальция и алюминат кальция:

CaO(тв.) + SiO2(тв.) >CaSiO3(ж.)

CaO(тв.) +Al2O3(тв.) >CaAl2O4(ж.)

Железо плавится при 1540°С. Расплавленное железо вместе с расплавленным шлаком стекают в нижнюю часть печи. Расплавленный шлак плавает на поверхности расплавленного железа. Периодически из печи выпускают на соответствующем уровне каждый из этих слоев.

Доменная печь работает круглосуточно, в непрерывном режиме. Сырьем для доменного процесса служат железная руда, кокс и известняк. Их постоянно загружают в печь через верхнюю часть. Железо выпускают из печи четыре раза в сутки, через равные промежутки времени. Оно выливается из печи огненным потоком при температуре порядка 1500 °С. Доменные печи бывают разной величины и производительности (1000-3000 т в сутки). В США существуют некоторые печи новой конструкции с четырьмя выпускными отверстиями и непрерывным выпуском расплавленного железа. Такие печи имеют производительность до 10000 т в сутки.

Железо, выплавленное в доменной печи, разливают в песочные изложницы. Такое железо называется чугун. Содержание железа в чугуне составляет около 95%. Чугун представляет собой твердое, но хрупкое вещество с температурой плавления около 1200 °С.

Литое железо получают, сплавляя смесь чугуна, металлолома и стали с коксом. Расплавленное железо разливают в формы и охлаждают.

Сварочное железо представляет собой наиболее чистую форму технического железа. Его получают, нагревая неочищенное железо с гематитом и известняком в плавильной печи. Это повышает чистоту железа приблизительно до 99,5%. Его температура плавления повышается до 1400 °С.

Сварочное железо имеет большую прочность, ковкость и тягучесть. Однако для многих применений его заменяют низкоуглеродистой сталью.

Производство стали: процесс переработки чугуна в сталь состоит в том, что из чугуна удаляется избыток углерода, серы, фосфора, кремния, марганца и других элементов. Удаление примесей осуществляется переведением их в оксиды, которые либо улетучиваются(CO и CO2), либо переходят в шлак. Переработка чугунов в сталь осуществляется тремя способами: бессемеровским, томасовским и мартеновским, которые выбирают в зависимости от состава чугуна и от сорта стали, которую нужно получить. Ниже подробно рассматриваются различные типы сталей, их свойства и применения.

Мартеновский способ отличается от последующих тем, что в нем используют твердые окислители в виде оксидов железа, содержащихся в руде, окалине и скрапе (металлоломе). Мартеновский процесс проводят в специальных печах, которые называются мартеновскими. Мартеновские печи (Рисунок 2.2), где: 1 -- свод, 2 -- завалочные окна, 3 -- ванна расплава, 4 -- головки, 5 -- регенераторы, 6 -- перекидные клапаны.

Мартеновские печи относятся к типу пламенных печей - они нагреваются пламенем, получаемым при сжигании горючих газов над поверхностью нагреваемой массы. В мартеновскую печь загружают чугун, руду и скрап в таком соотношении, чтобы кислорода оксидов железа было достаточно для окисления определенного количества примесей. Флюсы подбирают с таким расчетом, чтобы шлак был кислым или основным, в зависимости от характера выводимых примесей. Процесс плавки длится 5-6 часов. В течении этого времени периодически берут пробы расплавленной стали, определяют её состав и вносят необходимые компоненты в виде ферросплавов (сплавов железа с различными металлами и неметаллами, такими, как никель, марганец, титан, молибден, вольфрам, хром, кремний и другие). Большая длительность плавки позволяет изготовить сталь определенного состава. Применение воздуха, обогащенность кислородом, дает возможность достичь более высокой температуры и позволяет интенсифицировать процесс плавки и сократить её время до 4 часов.

Кислородно-конвертерный процесс. В последние десятилетия производство стали революционизировалось в результате разработки кислородно-конвертерного процесса (известного также под названием процесса Линца--Донавица). Этот процесс начал применяться в 1953 г. на сталеплавильных заводах в двух австрийских металлургических центрах - Линце и Донавице.

В кислородно-конвертерном процессе используется кислородный конвертер с основной футеровкой (кладкой) (рисунок 2.3), где: 1-кислород и CaO, 2 -- трубка с водяным охлаждением для кислородного дутья, 3 - шлак. 4-ось, 5-расплавленная сталь, 6 - стальной корпус.

Конвертер загружают в наклонном положении расплавленным чугуном из плавильной печи и металлоломом, затем возвращают в вертикальное положение. После этого в конвертер сверху вводят медную трубку с водяным охлаждением и через нее направляют на поверхность расплавленного железа струю кислорода с примесью порошкообразной извести СaO. Эта «кислородная продувка», которая длится 20 мин, приводит к интенсивному окислению примесей железа, причем содержимое конвертера сохраняет жидкое состояние благодаря выделению энергии при реакции окисления. Образующиеся оксиды соединяются с известью и превращаются в шлак. Затем медную трубку выдвигают и конвертер наклоняют, чтобы слить из него шлак. После повторной продувки расплавленную сталь выливают из конвертера (в наклонном положении) в ковш.

Кислородно-конвертерный процесс используется главным образом для получения углеродистых сталей. Он характеризуется большой производительностью. За 40-45 мин в одном конвертере может быть получено 300-350 т стали.

В настоящее время всю сталь в Великобритании и большую часть стали во всем мире получают с помощью этого процесса.

В зависимости от материала футеровки печи конверторный способ разделяют на два вида: бессемеровский и томасовский.

Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2%). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300°C быстро поднимается до 1500--1600°С. Выгорание 1% Si обусловливает повышение температуры на 200°C (2.17). Около 1500°C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

Si(тв.) + O2(г.) = SiO2(тв.)

  • 2C(тв.) + O2(г.) = 2CO(г.)
  • 2Fe(тв.) + O2(г.) = 2FeO(тв.)

Образующийся монооксид железа, FeO, хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:

FeO(тв.) + SiO2(тв.) = FeSiO3(тв.)

Фосфор полностью переходит из чугуна в сталь. Так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конверторе идут быстро -- в течение 10--20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей -- ферросилиция, фероманганца или алюминия:

2FeO(тв.) + Si(тв.) = 2Fe(тв.) + SiO2(тв.)

FeO(тв.) + Mn(тв.) = Fe(тв.) + MnO(тв.)

3FeO(тв.) + 2Al(тв.) = 3Fe(тв.) + Al2O3(тв.)

Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорания металла, и выход стали составляет лишь 90% от массы чугуна, а также расходуется много раскислителей. Серьезным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2% углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа.

Томасовским способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция и переходит в шлак:

4P(тв.) + 5O2(г.) = 2P2O5(тв.)

P2O5(тв.) + 3CaO(тв.) = Ca3(PO4)2(тв.)

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

FeS(ж.) + CaO(тв.) = FeO(ж.) + CaS(тв.)

Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа.

Электросталеплавильный процесс. Электрические печи используют главным образом для превращения стального и чугунного металлолома в высококачественные легированные стали, например в нержавеющую сталь. Электропечь представляет собой круглый глубокий резервуар, выложенный огнеупорным кирпичем. Через открытую крышку печь загружают металлоломом, затем крышку закрывают и через имеющиеся в ней отверстия опускают в печь электроды, пока они не придут в соприкосновение с металлоломом. После этого включают ток. Между электродами возникает дуга, в которой развивается температура выше 3000 0С. При такой температуре металл плавится и образуется новая сталь. Каждая загрузка печи позволяет получить 25--50 т стали.

Качество стальных изделий можно улучшить дополнительной обработкой. Для этого применяют термическую обработку, цементацию, азолирование, алитиование и различные антикоррозионные покрытия.

Таким образом, промышленный метод получения железа является основным и он намного эффективнее лабораторного. Существует много промышленных методов получения железа, в их основу положено получение железа в следствии выплавки чугунка из железных руд, виплавки из чугунка стали. промыленные методы добывания железа постоянно модернизируются и на смену одной методике приходит новая.